POSTSCRIET

LANGUAGE

TUTORIAL
-and
COOKBOOK

ADOBE SYSTEMS

POSTSCRIET

'LANGUAGE

TUTORIAL
and
COQKBOOK

ADOBE SYSTEMS
INCORPORATED

A

vy

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts * Menlo Park, California

Don Mills, Ontario = Wokingham, England = Amsterdam
Sydney « Singapore * Tokyo » Mexico City

Bogota - Santiago « San Juan

5.

Library of Congress Cataloging in Publication Data
Muain entry under title
Postseript language tutonal and cookbook

Includes index

1 PostScrnipt ¢Computer program {anguage)
I Adobe Systems
QA76 73 P67P68 1985 005133 85-15694
ISBN 0-201-16179-3

Copyrnight © 1985 by Adobe Systems Incorporated

All nghts reserved No pant of this publication may be
reproduced. stored in a‘retrieval system, or transmitted, in any
form or by any means. electronic. mechanical, photocopying.
recording, or otherwise without the prior wnitten permission
of the publisher

Printed 1n the Umited States of America,

Published stmultaneously m Canada

POSJ‘SCRIP'!" 15 a trademark of Adobe Systems Incorporated.

Times 15 a trademark.and Helvetica s a registered trademark of
Allied Corporation -
Linotron 101 15 a registered trademark ot Allied Corporation
Scribe and Usitoic dare registered trademarks of Lsnocic Lid
Apple AppleTalk and MacTerminal are trademarks of
Apple Computer Inc
Macintosh 1s a trademark hcensed to Apple Computer Inc

The mtormation 1n this book 15 turmshed for informatonal use only 15
subject to change without notice and should not be construed as a
commitment by Adobe Systems Incorporated Adobe Systems
Incorporated assumes no responstbiiity or fiabthity for any errors or
inaccuracies that may appear in this book The software described 1
this book s turnished under license and may only be used or copied n
accordance with the terms of such hcense

ABCDEFGHIJ-HA-898765
First printing August 1985

Preface

The POSTSCRIPT page description language provides a device in-
dependent standard for representing the printed page. This book
is designed to be a companion piece to the POSTSCRIPT Lan-
guage Reference Manual. It presents illustrative material to aid
* in understanding the POSTSCRIPT language. The tutorial infor-
mation presented here has been deliberately separated from the
reference manual to help ensure that the defining document of-
fers a precise, unambiguous definition of the language and asso-
ciated graphics imaging model. In all cases, when questions of
definition or precise specification are raised, the POSTSCRIPT
Language Reference Manual is the final word.

This book actually contains two documents: the POSTSCRIPT
Language Tutorial and the POSTSCRIPT Language Cookbook.

The tutorial provides an easy, informal introduction to the
POSTSCRIPT language and its graphics primitives. The tutorial’s
style and level of presentation is aimed at programmers who
wish to design and implement applications, such as word
processing packages, graphics illustrators, and CAD/CAM draw-
ing systems. It is interactively oriented, and written with the as-
sumption that you, the reader, already know how to program.
You are encouraged to try variations of the examples presented

"in the tutorial on a POSTSCRIPT printer as you work your way
through the book.

The cookbook is, as its name suggests, a collection of programs
that are offered as examples of POSTSCRIPT usage. These
samples have been chosen both as illustrations of the functional
range of POSTSCRIPT and as useful ingredients for inclusion in
application packages that you design. The cookbook samples
demonstrate techniques for rendering quality graphics, achieving
effective typography with digital fonts, and maintaining true
device independence. Again, you are encouraged to experiment
with variations of these samples on a POSTSCRIPT printer as you
develop your own applications.

The principal authors of this material are Linda Gass and John
Deubert. The final organization and the majority of the material
for the POSTSCRIPT Language Tutorial is due to John Deubert.
Ed Taft reviewed and proofread the material during the later
stages of its production. Linda Gass designed and developed the
POSTSCRIPT Language Cookbook and she is the principal author
of both the examples and the explanatory text. The seminal idea
of the cookbook is due to Doug Brotz and several of the illustra-
tions in the cookbook are due to John Warnock. Andy Shore
proofread the text und POSTSCRIPT sample programs. The book
design was specified by Bob Ishi and was implemented by Andy
Shore and Brian Reid. The index was compiled by Steven Soren-
sen.

The art of printing is rich in tradition, and the technology for
producing the printed page has evolved over centuries. We at
Adobe Systems are pleased to offer POSTSCRIPT as a tool for
printing in the electronic age. I believe that this tutorial material
will significantly enhance your ability to explore this exciting
technology and help you enjoy the process of discovering the
world of electronic printing.

Charles Geschke
August 1985

Contents:

PREFACE

POSTSCRIPT LANGUAGE
TUTORIAL

ciarter 1 INTRODUCTION

11 PQSTSCRIPT as a Page Description Language 1
12 POSTSCRIPT as a Programmuing Language 4

cHapTER 2 STACK AND ARITHMETIC

21 The POSTSCRIPT Stack 7
22 Amthmebc 8

23 IMeractive Stack Operators 12
2.4 Now Operator Summanes 14
2.5 Qperator Summary 15

chapTER 3 BEGINNING GRAPHICS

31 Drawing Lines 18
32 Filled Shapes 22
33 Operator Summary 25

crarter 4 PROCEDURES AND VARIABLES

41 POSTSCRIPT Dictionaries 27

4 2 Defimng Vanables and Procedures 28
43 Using Procedures and Vanables 30

4 4 Operator Summary 33

cHarTer B PRINTING TEXT

51 POSTSCRIPT Fonts 35
52 Pnnung Vanety 38
' 53 Operator Summary 46

vi

CHAPTER 6

CHAPTER 7

chapTeR 8

cHaPTER 9

CHAPTER 1 O

CHAPTER 1 1

CHAPTER 1 2

MORE GRAPHICS

6 1 Coordinate Systems 47
6.2 Graphics State 50

63 Curves 53

6.4 Operator Summary 60

LOOPS AND CONDITIONALS

7 1 Condihional Execution 62
7.2 Loops 67
7.3 Operator Summary 76

ARRAYS

8.1 POSTSCRIPT Arrays 77
82 Array Operators 78
8.3 Operator Summary 86

MORE FONTS

9.1 Different Shows 87

92 Character Encoding 91

9.3 Font Transformations 94
94 Character Outlines 97

95 Operator Summary 100

CLIPPING AND LINE DETAILS

10 1 Clipping Path 101
10 2 Line-Drawing Details 104
10 3 Operator Summary 110

IMAGES

11 1 The image Operator 111
11 2 Operator Summary 116

POSTSCRIPT PRINTERS
12.1 Apple LaserWnter 117

POSTSCRIPT LANGUAGE
COOKBOOK

INTRODUCTION

FORMAT OF THE EXAMPLES 123
HOW TO USE THE COOKBOOK 124

BASIC GRAPHICS

ABOUT THE PROGRAMS 127

DICTIONARIES AND LOCAL VARIABLES 128
Program 1 / Repeated Shapes 133

Program 2 / Expanded and Constant Width Lines " 135
Program 3 / Elliptical Arcs 137

Program 4 / Drawing Arrows 141

Program 5 / Centered Dash Patterns 145

Program 6 / Pninting Images 149

PRINTING TEXT

ABOUT THE PROGRAMS 153

Program 7 / Printing with Small Caps 157

Program 8 / Setting Fractions 161

Program 9, Vertical Text 165

Program 10 / Circular Text 167

Program 11 / Placing Text Along an Arbitrary Path 171

APPLICATIONS

ABOUT THE PROGRAMS 175

Program 12 / A Simple Line Breaking Aigonthm 179
Program 13 / Making a Poster 183

Program 14 / Drawing a Pie Chart 187

Program 15 / Filling an Area with a Pattern 191

MODIFYING AND CREATING FONTS

MODIFYING EXISTING FONTS 197

CREATING NEW FONTS 198

ABOUT THE PROGRAMS 199

Program 16 / Making an Qutine Font 203

Program 17 / Re-encoding an Entire Font 207

Program 18 Y Making Small Changes 1o Encoding Vectors 211
Program 19 / Changing the Character Widths of a Font 215
Program 20 / Creating an Analytic Fant 219

Program 21 / Creating a Bitmap Font 223

vil

FOR FURTHER REFERENCE 227
QUOTATIONS 229

APPENDIX OPERATOR SUMMARY

INDEX 239

viil

CHAPTER 1

INTRODUCTION

The POSTSCRIPT language is a programming language designed
to convey a description of virtually any desired page to a printer.
It possesses a wide range of graphic operators that may be com-
bined in any manner. It contains variables and allows the com-
bining of operators into more complex procedures and functions.

.POSTSCRIPT page descriptions are programs to be run ‘by an in-
terpreter. POSTSCRIPT programs are usually generated by appli-
cation programs running on’ other computers. However, many
POSTSCRIPT printers, including the Apple -LaserWriter, have an
interactive state in which the user may program directly m
POSTSCRIPT (see section 12. 1). :

a

1.1 POSTSCRIPT AS A PAGE DESCRIPTION LANGUAGE

POSTSCRIPT has a large selection of graphics operators that al-
low it to precisely describe a desired page. These operators con-
trol the placement of three types of graphics objects:

e Text in a wide variety.of typefaces can be placed on a page
in any position orientation, and scale. : '

"« Geometric figures can be constructed using POSTSCRIPT
graphics operators. These describe the locations of straight
lines and curves of ‘any size, orientation, and width, as well"
as filled spaces of any size, shape, and color.

2

Chapter 1: INTRODUCTION

e Sampled Images of digitized photographs, free-hand
sketches. or any other image may be placed on a page in
any scale or orientation.

All graphic objects may be easily rotated, scaled, and clipped to
a specified portion of the output page.

POSTSCRIPT Imaging Model

An imaging model is the set of rules that are incorporated into
the design of a graphics system. The POSTSCRIPT imaging model
is very similar to the model we instinctively adopt when we draw
by hand.

The POSTSCRIPT model considers an image to be built up by
placing ink on a page in selccted areas. The ink may form letters,
lines, filled shapes, or halftone representaticns of photographs.
The ink itself may be black, white, colored, or any shade of gray.
These elements may be cropped to a boundary of any shape as
they are placed on the page. Once the page has been built up to
the desired form, it may be printed on an output device.

Three concepts are central to the implementation of the
POSTSCRIPT imaging model:

Current Page: The current page is the “ideal page” on which
POSTSCRIPT draws. It is independent of the capabilities of the
printer being used.

When a program begins, the current page is completely empty.
POSTSCRIPT painting operators place marks on the current page,
each of which completely obscures marks that they may overlay.
Once the current page is completely déscribed, it is sent to the
printer, which reproduces the page as well as it can.

It is important to remember that no matter what color a mark
has — white, gray, black, or color—it is put onto the current
page as if it were applied with opaque paint.

Current Path: The current path is a set of connected and dis-
connected points, lines, and curves that together describe shapes
and their positions. There is no restriction to the shapes that may
be defined by the current path; they may be convex or concave,

even self-intersecting. The elements of the current path are
specified in terms of their positions on the current page. The
resolution of the printer in use in no way constrains the defini-
tion of the path.

The current path is not itself a mark on the current page.
POSTSCRIPT path operators define the current path, but do not
mark the page. Cnce a path has been defined, it can be stroked
onto the current page (resulting in a line drawn along the path).
filled (yielding solid regions of ink), or used as a clipping bound-
ary.

Clipping Path: The current clipping path is the boundary of
the area that may be drawn upon. Initially, the clipping path
matches the printer’s default paper size. The clipping path may
be changed to any size and shape desired. If an imaging operator
tries to mark the current page outside of the current clipping
path, only those parts of the mark that fall within the clipping
path will actually be drawn onto the current page.

Coordinate Systems

Positions on a page are described as v and v pairs in a coordinate
system imposed on the page.

Every output device has a built-in oordinate system by which 1t
addresses points on a page. We call this built-in coordinate sys-
tem, idiosyncratic to each device, device space. Device space
varies widely from printer to printer; there is no uniformity in the
placement of coordinate origins or in horizontal and vertical
scaling.

Positions on the POSTSCRIPT current page are described in terms
of a user coordinate system or user space. This coordinate sys-.
tem is independent of the printer’s device space. Coordinates in a
POSTSCRIPT program are automatically transformed from user
space into the printer’s device space before printing the current
page. User space thus provides a coordinate system within which
a page may be described without regard for the particular
machine on which the page is to be printed.

The POSTSCRIPT user space can be altered in three ways. The

1.1 POSTSCRIPT AS A PAGE DESCRIPTION LANGUAGE 3

4

Chapter 1

coordinate system’s ongin may be nanslated. moved to any
point 1n user space The axes may be rotated to any orientation
The axes may be scaled to any degree desired, the scaling may
be different 1n the v and y directions A sophisticated user may
specify any lhinear transformation from user space to device
space Thus, coordinates 1in a POSTSCRIPT program are change-
able with respect to the current page, since they are described
from within a coordinate system that* may shde around, turn.
shrink, or expand.

1.2 POSTSCRIPT AS A PROGRAMMING LANGUAGE

INTRODUCTION

About one-third of the POSTSCR'PT language 1s devoted to
graphics. The remainder makes up an enurely general computer
programming language The POSTSCRIPT language contains ele-
ments of many other programming languages, but most closely
resembles the FORTH language

POSTSCRIPT Stack

POSTSCRIPT reserves a piece of memory called a stack for the
data with which 1t 1s working The stack behaves like a stack of
books. The last book placed on the stack 1s the first book that
will later be removed. Similarly, numbers, strings. and other

" pieces ot data placed on the stack will be removed 1n reverse

order, the last 1tem added to the stack being the first retrieved

Postlix Notation

POSTSCRIPT operators that require numbers or other data. such
as add and sub, retrieve that data from the stack To use an
operator. one must first place the data it requires, its operands,
on the stack. and then call the operator The operator will place
its own results on the-stack This style of programming, 1n which
the operands are specified before the operator. 15 reterred to as
postfivnotation

POSTSCRIPT Data Types

POSTSCRIPT supports many data types common to other lan-
guages, including reals, booleans, arrays, and strings. The
POSTSCRIPT language also defines object types such as
dictionary and mark. For déscriptions of all the POSTSCRIPT data
and object types, refer to the POSTSCRIPT Language Reference
Manual. '

POSTSCRIPT Flexibility

POSTSCRIPT is an extremely flexible language. Functions that do
not exist, but which would be useful for an application, can be
defined and then used like other POSTSCRIPT operators. Thus,
POSTSCRIPT is not a fixed tool within whose limits an appli-
cation must be written, but is an environment that can be
‘changed to match the task at hand. Pieces of one page descrip-
tion can be used to compose other, more complicated pages.
Such pieces can be used in their origiral form or translated,
rotated, and scaled to form a myriad of new composite pages.

Printable Programs

POSTSCRIPT programs are written entirely in printable ASCII
characters. This allows them to be handled as ordinary text files
by the vast majority of communication and computer file sys-
tems. In additidn, it ensures that a POSTSCRIPT program will be
as easy for a person to read as the structure of the program al-
lows.

1.2 POSTSCRIPT AS A PROGRAMMING LAMGUAGE 5

CHAPTER 2

STACK AND ARITHMETIC

The POSTSCRIPT programming la:guage, like all programming
languages, works with various types of data, such as numbers,
arrays, strings, and characters. The pieces of data manipulated by
POSTSCRIPT are referred to as POSTSCRIPT vhjects.

There are many ways a language can manipulate data; for ex-
ample, many languages require that data be placed in variables
and be addressed by a variable name. The POSTSCRIPT language
has variables, but it also manipulates data directly by using a
special entity called a stack. '

2.1 THE POSTSCRIPT STACK

A stack is a piece of memory set aside for data which is to be
immediately used by POSTSCRIPT. This memory area is or-
ganized in such a way that the last item put in is the first item
available to be removed. This type of data structure is referred to
as a last in, first out or LIFO stack.

A LIFO stack behaves like a stack of books. As the books are
stacked up—Twain, then Dickens, then Hemingway, and so
on—only the book on the top, the last one added, is really acces-
sible.

8

12 63 -89

| 12 || 6.3 || -99
12 || 6.3

12

POSTSCRIPT Stack

mark
/Font
[12)
(PS)

Anything can be placed
on the stack

Putting Numbers on the Stack

Any number appearing in a POSTSCRIPT source file (that 1s, a
text file that contains a POSTSERIPT program) is placed on the
stack. For example, 1f a source file contains the following line

12 63 -99

the interpreter will take the following actions as 1t reads the line
from left to right (see tllustrauon at left):

1 Push the number /2 onto the stack

2 Place 63 on the stack. pushmg 12 10 the next posttion
down

3 Put —99 onto the stack, pushing the first two numbers down
one place

The number ~99 1s now at the top of the stack, waiting to be
used The other numbers are on the stack also. but can only be
taken off 1n the proper order It should be borne 1n mind as we
use the stack that anmy kind of POSTSCRIPT object can be placed
on the stack. This includes arrays, strings, and the more exotic
POSTSCRIPT objects, ke dactionanies For the first chapter or
two of this tutonal, we shall concentrate primanily on numbers,
to simplify our discussion.

.

Note that spaces, tabs, and newline characters act as delimuters of -
POSTSCRIPT objects Other characters, such as parentheses and
brackets. can be delimiters under some circumstances; we shall
discuss these as we progress through the tutorial.

2.2 ARITHMETIC

A POSISCRIPT aperator 15 a word that causes the POSTSCRIPT
interpreter to carry out somé action It 1s the equivalent of the
commands and procedures ot other languages When the inter-
preter comes dacross a word 1h a source file. it searches its mtef-
nal dictionaries to see 1f that word 15 an operator name If the
name 1s hsted in the dictionary..the interpreter carries out
whatever instructions are assoctated with that name and then
continues on to the next word in the source file For more detail
on POSTSCRIPT dictionanes. refer to chapter tour

Chapter 2 STACK AND ARITHMETIC

