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Preface

In parallel computing applications, one faces the difficult challenge of

building software which can take advantage of highly parallel systems.
Parallel software is so poorly understood that a new branch of software engineer-
ing will be required to achieve the transition from sequential to parallel applica-
tions. At the heart of this transition is parallel programming.

The “genius compiler” advocates believe it is possible to construct compilers
that translate sequential programs written in our favorite sequential languages
into parallel programs. In this scenario, FORTRAN, Pascal, and C source pro-
grams are converted into highly efficient parallel equivalents. Thus, a sequential
program can be moved onto a parallel processor, compiled, and run many times
faster than on a sequential processor.

The problem with this approach is the underlying assumption that sequential
algorithms can be converted into parallel algorithms. In many cases this is true,
but in other cases it is impossible to convert a good sequential algorithm into a
good parallel algorithm because the two approaches are radically different. For
example, a binary search is known to be a good sequential search algorithm, but a
linear search done on N processors is better, given enough processors. Yet, it is
unlikely that a genius compiler will ever be able to convert a program which
implements binary search into a parallel program which implements a much
faster linear search algorithm.
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viii FOUNDATIONS OF PARALLEL PROGRAMMING

The second option is to discard all sequential programs and start over again!
This extreme view has the advantage that one can redesign programs to use algo-
rithms which are efficient on parallel processors. Clearly, it will be a long time
before the world converts all of its existing sequential software into parallel pro-
grams which implement efficient parallel algorithms.

An intermediate prescription borrows from both extremes. Some sequential
programs can be converted automatically into parallel equivalents, and others will
need to be thrown away and rewritten. In this approach, new applications would
be coded directly in new explicitly parallel languages so that after a period of per-
haps decades, the transition to parallelism would be 100% complete. Sequential
programming would become a subset of parallel programming, and there would no
longer be a division between the sequential and parallel paradigms.

The problem with this approach is that it is still too early to decide on the fea-
tures of a good parallel programming language. Each parallel computer seems to
offer its own dialect of parallel FORTRAN, parallel C, or some new language alto-
gether. If we are going to begin now, what language should we use? Selecting a
new parallel programming language at this early stage might be just as wasteful
as continuing to program in sequential languages.

This book is not about parallel algorithms; nor is it about how to write parallel
programs for a specific machine. Instead, it is about the design of parallel pro-
grams using a small number of fundamental constructs which are powerful
enough to express any parallel algorithm. Its emphasis is on foundations and con-
cepts rather than syntax and machine dependencies.

This book’s approach might also be called performance-based design, because it
develops analytical measures of performance for each of the fundamental con-
structs of parallel programming. These analytical results can be used by a human
programmer or a machine compiler to optimize the performance of any parallel
program. This is especially important in parallel programming, because the object
of parallelism is performance.

This approach is also machine independent. The only assumption made is that
the parallel processor has N processors, linked by some interconnection network.
Different machines may exhibit different performance characteristics, but they all
possess multiple processors and some form of interconnection. One can use the
performance-based design formulas to optimize a given program for a given
architecture.

How can a programming book be both language and machine independent?
This book proposes a simple pseudo-code notation for describing parallel pro-
grams. This notation is rigorous enough to be incorporated into a language some
day, but for the purposes of this book it is strictly a pedagogical device. Even so,
one can express any parallel algorithm succinctly and correctly in this notation,
and derive performance formulas accordingly.

In a sense, this notation is a specification language for parallel programs. These
blueprints are given in a very structured manner, so that students of parallel com-
puting can understand the ideas without getting lost in details. Thus, the concepts
of data distribution, synchronization, tasking, allocation of tasks to processors,
and the trade-off between communication and computation are all made explicit
without obfuscating details.



PREFACE iX

What are the fundamentals of parallel programming? Each chapter of this
book, commencing after the introductory chapters, deals with a major building
block used in parallel programming. Each of these building blocks is rooted in a
fundamental concept which can be expressed as a programming construct. Thus,
Chapter 4 introduces the data-parallel fan; Chapter 5 introduces the reduction
tree, and so forth. These building blocks are sufficient to express any parallel
algorithm. Furthermore, each construct corresponds to a fundamental concept of
flow-correct programs.

The text covers concepts of both fine-grained and large-grained parallelism,
beginning with low-level fine-grained parallelism at the statement level, and
working up to procedural parallelism. This also corresponds to increasingly more
difficult control problems, e.g., synchronization and race conditions.

This book is designed for an upper division undergraduate course for students
in the physical sciences and engineering. Many of the examples are taken from sci-
ence and engineering. Most students will have had calculus, programming lan-
guages, and operating systems prerequisites.

The author would like to thank the students of Oregon State University who
have suffered through early drafts of this book. Their comments and questions
have vastly improved the material. In addition, the manuscript has benefitted
from a number of unknown reviewers.

TED LEWIS
lewis@cs.nps.navy.mil
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CHAPTER 1

Models and Measures of
Parallelism

There are many varieties of parallelism; each variety is called a

paradigm. A paradigm is a way of viewing the world, and in computing,
a world view becomes a program design and coding style. Therefore, a program-
ming paradigm dictates the abstractions used by programmers. One abstraction
might be represented by message-passing, while another abstraction might be rep-
resented by synchronization mechanisms called locks.

We classify parallelism according to two broad paradigms: control-flow and
data-parallel. We claim that the control-flow paradigm is the most general, but
does not yield a high degree of parallelism. Data-parallelism is more restricted,
but generally yields very high levels of parallelism. We will show that control-flow
parallelism can be implemented efficiently on multiple-instructions—multiple-data
(MIMD) machines using either message-passing or locking. Message-passing is
preferred on distributed-memory machines, while locking is preferred on shared-
memory machines. Further, we will show that data-parallel parallelism can be
implemented efficiently on message-passing machines in either the single-
procedure—multiple-data (SPMD) or single-instruction—multiple-data (SIMD) form.
Thus, MIMD, SPMD, and SIMD are architectures for supporting either the
control-flow or data-parallel paradigms.

We claim that the Amdahl Law of speedup governs control-flow parallelism,
while the Gustafson-Baris Law governs data-parallel parallelism. We will briefly
derive these laws to gain an understanding of their bases; one in the world of
control-flow parallelism and the other in the world of data-flow parallelism. These
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are idealized laws, so one must turn to a more detailed analysis of each parallel
algorithm to determine practical bounds on performance. We will define scalability
as the ability to obtain N-fold speedup in the face of communications overhead,;
parallel-computable algorithms as scalable algorithms; and quasi-scalability as
speedups in excess of unity, but short of parallel-computable speedups.

We will present Petri nets and Gantt charts as means of visualizing the execu-
tion semantics and performance of arbitrary parallel programs. In addition to pro-
viding a crisp definition of the semantics of each construct, these diagrams allow
performance analysis, and lead to greater insights into parallelism.

The models presented here assume a linear relationship between processor
speed and process execution; and message-passing and communication delays.
Furthermore, we will assume very simple interconnection networks, ignoring con-

tention, for example, as well as routing overhead. These assumptions may not hold
in general.

1.1 PROCESSORS, MEMORIES,
AND NETWORKS

A process is any single flow of control through a set of instructions
stored in a computer, and a processor is a hardware device for executing a process.
A parallel computer is a collection of two or more processors connected to one
another through an interconnection network or memory. A parallel program con-
tains more than one process. The purpose of a parallel computer is to run parallel
programs. Note that it is possible for a parallel program to run on a single proces-
sor, sequentially, such that each of its processes runs one after the other. Clearly,
the advantage of parallel computers is that they deliver greater performance than
single-processor computers.

The most general form of a parallel computer is shown in Figure 1.1. If the pro-
cessors operate independently of one another but with occasional pauses to syn-
chronize their processes, we call the parallel computer a multiple-instruction—
multiple-data (MIMD) system. Alternately, if the processors operate in lock-step
unison, synchronizing with one another after every instruction, we say the paral-
lel computer is a single-instruction-multiple-data (SIMD) system. SIMD proces-
sors simultaneously execute exactly the same instructions, but on different data.

Examples of MIMD machines are the Intel iPSC series, nCUBE series, and
other commercial products that link a number of commodity microprocessors
together to form a single system. MIMD systems contain multiple sequencing
units, which means that they can operate asynchronously and independently.
Each processor runs under the control of its own sequencing unit, which means
that many different instructions can be simultaneously executed, one in each
processor.

Examples of SIMD machines are the Thinking Machines, Inc., Connection
Machine (CM) series and the Maspar Computer Corp. MP series, products that
link together a number of processing elements under the control of a single
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Figure 1.1 General model of a parallel computer

sequencing unit. In a SIMD system, all processing elements do the same thing at
the same time, or else they are idle. The processing elements may be incomplete
computers that perform simple arithmetic operations on distributed data, or as in
Thinking Machines’ CM-5 series, they may be entire computers. The most
important distinction between MIMD and SIMD architectures is the degree of
synchronization among processors: SIMD architectures are much more tightly
synchronized.

Processors in SIMD computers are almost always connected by some form of
interconnection network that permits them to pass messages among each other. In
such systems, memory is associated with individual processors rather than the
group of processors; hence, there is no central memory. An application’s data must
be copied and sent to where they will be processed. Thus, SIMD machines are also
distributed-memory machines.

For example, in the Maspar series, processors and memory are arranged as a
mesh-structured array. Each processor/memory subsystem is connected to its
nearest neighbors on the north, east, west, and south (NEWS) borders. Other
distributed-memory SIMD machines are linked together by hypercube intercon-
nection networks, or even more exotic networks. In a hypercube interconnection
network, processors are given a binary number designation such as 011 (3 in deci-
mal), and only neighbors that differ in one bit are connected. Thus, processor 011
is connected to processors 111, 001, 010.

The trend has been toward more and more sophisticated interconnections of
memories and processors. If the interconnection creates one path through all pro-
cessors, it is called a I-D network; paths that can be drawn on a single sheet of
paper without crossing each other are called 2-D networks; 3-D networks must be
drawn in 3 dimensions, and so forth. Interconnection networks are called static if
their connections are hardwired into the machine at the factory, and dynamic if it
is possible for processor—processor connections to be switched while the machine
runs.
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Some networks collect data into packets before transmitting them from one pro-
cessor to the other, while other networks establish a route between two processors,
and transmit data for as long as the route exists. Packet-switched networks break
messages into packets; circuit-switched networks operate like a telephone system
and send messages over closed-circuit routes. In a packet-switched network,
delays may be introduced by intermediate processors, because the message hops
from one processor to the next, along the network. Worm-hole routing bypasses
intermediate hops, thus achieving greater performance than that of purely packet-
switched networks.

MIMD machines are usually either distributed-memory or shared-memory sys-
tems. If the architecture is a shared-memory design such as the Sequent Symme-
try, Silicon Graphics Onyx, or Sun Microsystems multiple-processing system,
processes must synchronize their access to shared data, or else indeterminate
results may occur. Thus, shared-memory MIMD programmers must be concerned
with locking and protection mechanisms.

A distributed-memory MIMD machine like the Intel Paragon uses message-
passing to synchronize the parallel parts of an application program. When the
message-passing style of parallel programming is adopted, an application’s data
are distributed among the processors’ local memories, where they are processed in
parallel. In this paradigm, the MIMD programmer must be concerned with copy-
ing and distributing the data.

Thus, even the MIMD paradigm calls for two radically different styles of pro-
gramming. This necessity is a major hindrance to the progress of parallel comput-
ing, because details of the machine architecture creep into the design of software.
Portability, and reuseability of software are greatly hampered by such machine
dependencies.

For example, shared-memory programming is similar to operating systems pro-
gramming, where processes are forked and joined to achieve a level of concurrency.
No message-passing or copying of data is needed, and data are shared merely by
declaring them as shared. But, in distributed-memory systems such as the
nCUBE and Intel iPSC series machines, message-passing is used to distribute the
data. These machines use Send and Receive primitives as illustrated by the follow-
ing example. A Send primitive places data in a buffer, which is then emptied by
the operating system. A Receive primitive forces a processor to wait for some mes-
sage, then to copy it into the address space of a waiting destination process. Once
distributed, additional effort is needed to update the copies and collect the results.

Example 1.1

Suppose two processors want to access the same value, stored in variable Y, as follows.
Processor 1 runs a part of a parallel program that sets the value of Y, and processor 2
runs a part of the parallel program that increments Y. The following code is shown
graphically in Figure 1.2.

Processor 1 Processor 2

Y = 100;

Send(Y) to B; Receive(X) FROM A;
Receive(Y) FROM B; X=X+1;

Output(Y); Send(X) TO A;
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Processor 1 Processor 2

Memory Y Tontrol-flow X
Program 100 .
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Figure 1.2 Synchronization in distributed-memory machines is achieved by message-passing.

The progress of each parallel part of the program is shown as a time-line in Figure 1.2.
Both processors begin at the same time, but 2 immediately blocks on the Receive, waiting
for a value to be received from 1. In the meantime, processor 1 sets Y to 100, and then
places its value in a buffer so the operating system can send it across the interconnection
network to processor 2’s buffer. Processor 1 continues on to the next statement which is a
Receive primitive. The Receive forces processor 1 to block, waiting for a returned value to
fill its buffer. In the meantime, processor 2 receives 100, stores this value in its local vari-
able X, increments X, and then sends 101 to processor 1.

When 101 is received by processor 1 and stored in variable Y, the processor unblocks
and resumes. The Output function writes 101 from variable Y. Thus, the synchronization
between these two processors is achieved by message-passing between the two local
memories of the parallel computer.

A shared-memory system is one in which parallel parts of an application pro-
gram are synchronized by setting and clearing locks on data stored in a central-
ized, shared memory space, or by synchronizing processes through programmer-
created barriers. A lock prevents access to data unless certain conditions have
been met, such as “only one process has access.” A barrier forces any process to
wait until all processes have arrived at the same point in the parallel program.
Shared-memory MIMD machines share access instead of duplicating data.

A shared-memory MIMD machine like the Sequent Symmetry series, uses locks
to coordinate access to shared data as illustrated by the following example.
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Processor 1

Processor 2

Figure 1.3
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Shared-memory locks synchronize access to shared data.

Example 1.2

Suppose the previous distributed-memory example is repeated for a shared-memory
machine. Once again, the problem is to simply increment the value stored in Y. But, this
time, Y is a shared variable stored in shared memory. We use a simplified version of the

Sequent DYNIX model to illustrate how this is done on most shared-memory MIMD
machines.

shared int Y; /* Declare Y to be shared

shared lock p; /* Create a lock variable

Y = 100; /* SetY

m_fork(2); /* Fork program into two programs
s_lock(p); /* Set lock so only one process can access

critical section of code
/* Processor 1 increments shared Y
/* Clear lock so all can access
/* Output the result

if (mid == 1){Y =Y + 1};
s_unlock(p);
output(Y);

In this version, the two processors (identified as mid = 1 and mid = 2) are activated by
two copies of the same program. In addition, the data that are shared must be placed in a
special shared partition of memory, see Figure 1.3. This is done by declaring Y to be a
shared integer.

When the original program executes the m_fork(2) primitive, the operating system
makes a copy of the program and starts running identical code on two processors. That
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is, the program is halted, and two copies instantiated. Both copies run in parallel, from
that point on, as illustrated by the lines in Figure 1.3 that show the flow of control.

When each copy executes the s_lock primitive, the operating system forces one copy to
wait while the other copy continues through the critical section of code. It is nondeter-
ministic which processor reaches the s_lock primitive first, but assuming 1 is faster than
2, the lock is set by processor 1. Later, when processor 2 executes its copy of s_lock, it is
blocked until shared lock p is cleared by processor 1.

Continuing, processor 1 is allowed to increment Y, because mid is equal to 1. The
s_unlock primitive is executed next, causing processor 2 to become reactivated. But, mid

is equal to 2 in processor 2, so the increment is skipped. The s_unlock clears p, leaving p
unlocked.

The observant reader will also notice that both processes output Y, but the value of Y
is different in each one!

Example 1.2 shows how a single copy of an application program can become a
model for a parallel program consisting of many parallel parts. These parts must
be coordinated by careful placement of locks. This is in stark contrast to message-
passing. However, the reader should note that this is a software paradigm; it is
possible to implement message-passing on a shared-memory computer. If we were
to do so, the paradigm would shift from locks and barriers to sends and receives,
regardless of the underlying hardware.

1.2 PARALLEL PROGRAMMING
PARADIGMS

Regardless of the architecture of the target parallel computer, parallel
programs must harmoniously coordinate two or more program segments to assure
correctness as well as high speed. This is the challenge of parallel programming.
Exactly how parallelism is controlled is largely determined by the particular para-
digm used by the programmer and programming language designer. Thus, paral-
lel programming reduces to the study of programming paradigms.

A parallel program is a collection of processes connected to one another through
either message-passing or access to shared data. If the processes operate indepen-
dently of one another, we call the parallel program ¢rivially parallel. If they oper-
ate independently but with occasional pauses to coordinate among themselves,
then the program must adopt one of two general styles to properly synchronize its
parallel parts: control-flow programming or data-parallel programming (see Figure 1.4).

A control-flow program is one in which more than one thread of control is sup-
ported by the underlying hardware, and thus by the parallel program. This means
that a single program can perform different operations in the same time interval.
Control-flow parallelism is also used to indicate that the order in which (parallel)

parts of a program execute is governed by program control rather than by the
availability of data.



