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PREFACE

The present text is just what its title claims, namely, a text on logic
written for the mathematician. The text starts from first principles, not
presupposing any previous specific knowledge of formal logic, and tries to
cover thoroughly all logical questions which are of interest to a practicing
mathematician. _

We use symbolic logic in the present text, because we do not know how
otherwise to attain the desired precision. Any reader of the text must per=
force become a competent operator in symbolic logic. However, for us this
is only a means to an end, and not an end in itself. Indeed, to mitigate the
difficulties of learning and operating the symbolic logic, we have intro-
duced some novelties. These may be of interest to students of logic, but
introduction of logical novelties is not any part of the aim of this text. We
seek to convey to mathematicians a precise knowledge of the logical princi-
ples which they use in their daily mathematics, and to do so as quickly as
possible. In this respect, we feel that the present text is unique.

Modern logic has become a large and diversified field of study, with many
well-developed branches. Many of these branches have little value to the
mathematician as a tool for mathematical reasoning. A text on such a
branch of logic, however excellent, would be of little interest to a reader
who is primarily a mathematician. Contrariwise, certain topics of great
value as tools for mathematical reasoning have little interest, for students
of logic, and are almost never treated in books on logic. Thus it happens
that among the many books on logic, none is completely suitable for the
mathematician. : '

One of the most suitable is the epoch-making “Principia Mathematica”
of Whitehead and Russell. The subject matter in “Principia Mathematica”
was admirably chosen for the needs of mathematicians, and we have fol-
lowed this text closely with regard to subject matter. We have omitted
a few topics which seem to be little used nowadays, and instead have in-
cluded treatments of such new developments as Zorn’s lemma. We have
improved on the symbolic machinery of “Principia Mathematica,” which
is out of date and extremely unwieldy. By using techniques invented since
its writing, we have succeeded in condensing most of ‘“Principia Mathe-
matica’s” three large volumes into the present text.

Since familiar logical principles often look very strange in the garb of
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iv. PREFACE

symbolic logic, we have included a large number of pertinent examples of
ordinary mathematical reasoning handled by symbolic means. This should
help the reader to apply the principles of this text to his own problems in
mathematical reasoning,.

Although the present text is complete and does not presuppose any previ-
ous acquaintance with logie, it is written for the mathematician with some
maturity. For one thing, the illustrative examples are chosen from a
variety of fields of mathematics, and their point will be lost on the mathe-
matically immature.

By including numerous exercises, we have tried to make this text suitable
for classroom instruction, and have used it this way ourselves. With a
teacher to help, less maturity is needed on the part of the reader than if he
is reading it alone. However, even with a teacher to help, it is recom-
mended that the student should have had some mathematics beyond the
calculus, preferably a course in which some attention was paid to careful
mathematical reasoning. Let us recall that this text attempts to treat all
logical principles which are useful in modern mathematics, and unless the
reader has some acquaintance with the mathematical fields in which the
principles are to be used, he will find a study of the principles alone rather
sterile. It is in the hope of counteracting such sterility that we have in-
cluded so many illustrations of reasoning from standard mathematical texts.

We are vastly indebted to the many logicians with whom we have been
associated in the past twenty years as well as to the many others whose
writings we have read. This debt is only partially indicated by the titles
in our bibliography. Almost equally important for the present text have
been the many suggestions from mathematicians who are not primarily
logicians, but who have been kind enough to tell us of logical questions
which they would like to see answered. We hope that they will find them

answered in the present text.’ ’

Those theorems, or parts of theorems, or corollaries, which are referred
to at least five times in later sections are marked with a *. Those of
particular importance are marked with a **.

At the end of the present text there is a bibliography arranged alpha-
betically according to the names of the authors. References to items having
a single author are made by giving the author’s name and the date of the
item, as “Hardy, 1947.” In the one case where this is ambiguous, we use
“Zermelo, 1908, first paper’” and “Zermelo, 1908, second paper.” Refer-
ences to items having two authors are made by giving the names of the
authors, as “Hardy and Wright.””

J. BARKLEY RossER
ItHACA, N.Y.
September, 1952



CHAPTER 1
WHAT IS SYMBOLIC LOGIC?

1 A Hypothetical Interview. We wish to record an imaginary interview
between a modern mathematician and one of past times. Our mathe-
matician of the pa.st will be Descartes, but we should like to leave our
modern mathematician anonymous; in the classic tradition of mathematics,
we shall refer to him as Professor X. We imagine Professor X equipped
with a time-traveling machine, so that he can go back to chosen points in.
time and interview various famous mathematicians of the past. Professor
X elects to go back to a time just after the invention of coordinate geometry
by Descartes and to have an interview with Descartes about his new
invention. Professor X takes with him a gift of several reams of coordinate
paper, together with a supply of mechanical pencils and erasers, which so
impress Descartes that he is very cordial. They discourse on many matters,
of which we shall record only their discussion of continuous curves.

They define a curve as continuous if it can be drawn without lifting the
pencil from the paper. Descartes, fascinated with his pencils and paper,
draws a large number of curves and classifies them into continuous and
discontinuous. Fortified with his knowledge of early twentieth. century
mathematics, Professor X is able to suggest many interesting curves and
even manages to trick Descartes at first with some special curves like

_snz
y.= z ’
which is not defined at # = 0 and so has a gap there which makes it dis-
continuous. However, Descartes, being a clever mathematician, soon
catches on to all Professor X’s tricks and can quickly and unerringly
classify even the most complicated curves as continuous or discontinuous.

Needless to say, Professor X is familiar with the modern precise definition
of continuity:

(1) A function f is continuous 'at z = a if f(a) is defined and unique,
and if for each positive ¢ there is a positive § such that whenever
|z — a| < & it follows that | f(z) — f(a) | < e.

(2) A function f is continuous if it is contmuous at z = a for each value
of a.

Professor X decides to a.cquaint Descartes with this definition with the
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2 LOGIC FOR MATHEMATICIANS [CHaAP. 1

intention of persuading him to adopt it in place of the vague intuitive idea of
tracing a curve without lifting the pencil from the paper. He decides further
that he cannot argue in favor of his precise ¢-4 definition on the basis that
it is more useful for deciding whether a curve (or function) is continuous.
Already, with his vague definition of continuity, Descartes can decide
which curves are continuous and can do so quickly and correctly. As a
matter of fact, Professor X realizes that he himself usually decides whether
a function is continuous by visualizing if its graph can be drawn with a
continuous pencil stroke and only uses the e-4 definition of continuity
to prove the conclusion which he has reached by visualizing the graph.
Clearly then, the value of the e-4 definition lies mainly in proving things
about continuity and only slightly in deciding things about continuity.
Professor X reflects that the situation is quite analogous to that in early
twentieth century mathematical circles where, if one has a difficult mathe-
matical problem, one is apt to proceed quite intuitively, interchanging
limits of integration, differentiating under the integral sign, etec., in hopes
of guessing an answer. Only after one has guessed an answer, and wishes to
verify it beyond doubt, does one bring in the precise definitions, the ¢’s and
&’s, and the other powerful machinery of modern mathematics. For getting
answers, it is better to use intuitive arguments, even rather vague ones.
For proving answers, only rigid, formal arguments can be trusted.

Professor X thinks of an analogous situation which he can present to
Descartes. For the Egyptian originators of geometry, geometric concepts
were quite vague. A straight line was a stretched string; parallel lines were
wagon tracks; etc. This vagueness did not prevent the Egyptians from
discovering many useful geometric theorems but made it quite impossible
for them to prove them. Hoyever, the Greeks introduced the precise ideas
of abstract straight lines, etc., and were thus enabled to devise proofs of
geometric theorems. The great increase of geometric knowledge with the
Greeks makes it hard to believe that the increased precision was not also
of value in discovering geometric theorems as well as proving them. _

Actually, Professor X found Descartes very agreeable to his suggestions
and quite willing to replace his vague idea of continuity by a precise one.
However, Descartes raised one difficulty which Professor X had not fore-
seen. Descartes put it as follows.

“I have here an important concept which I call continuity. At present
my notion of it is rather vague, not sufficiently vague that I cannot decide
which curves are continuous, but too vague to permit of careful proofs.
You are proposing a precise definition of this same notion. However,
since my definition is too vague to be the basis for a careful proof, how are

we going to verify that my vague definition and your precise definition are
definitions of the same thing?”’
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If by “verify”” Descartes meant “prove,” it obviously could not be done,
since his definition was too vague for proof. If by ‘“verify’”’ Descartes
meant ‘“decide,”’ then it might be done, since his definition was not too
vague for purposes of coming to decisions. Actually, Descartes and Pro-
fessor X did finally decide that the two definitions were equivalent, and
they arrived at the decision as follows. Descartes had drawn a large num-
ber of curves and classified them into continuous and discontinuous, using
his vague definition of continuity. He and Professor X checked through all
these curves and classified them into continuous and discontinuous using
the e-8 definition of continuity. Both definitions gave the same classifica-
tion. As these were all the interesting curves that either of them had been
able to think of, the evidence seemed “conclusive’” that the two definitions
were equivalent.

2. The Role of Symbolic Logic. When Professor X returned to the-
present, he related these matters to us. We said that we were reminded
of the situation with respect to symbolic logic. Professor X suggested that,
as he knew nothing about symbolic logic, the connection could hardly be
apparent to him, and he asked if we could explain without getting too
complicated. We replied as follows.

Suppose Professor X wishes to prove that from assumption A he can
deduce conclusion Z. How does he proceed? The most straightforward
way is to observe that B is a logical consequence of A, then C is a logical
consequence of B, and so on until he comes to Z. For this; it is required
not only that Professor X be able to discover the sequence of statements
B, C, ..., but that he be able to decide that each is a logical consequence
of the preceding. One thing that symbolic logic does is give a precise
definition of when one statement is a logical consequence of another state-
ment. To get the connection with Descartes, we sét up an analogy as
follows. A step of Professor X’s proof (such as deducing B from A4, or C
from B, etc.) is to correspond to one of Descartes’s curves. Deciding
whether the step is logically correct or not is to correspond to deciding
whether the curve is continuous or not. To continue the analogy, we note
that Professor X is quite skillful at deciding when a step is logically correct,
just as Descartes was quite skillful at deciding when a curve is continuous.
Moreover, Professor X bases his decisions on a rather vague intuitive notion
of logical correctness, just as Descartes based his decisions on a rather vague
intuitive notion of continuity. Furthermore, the vague intuitive notion of
logical correctness is adequate for deciding about the correctness of a
logical step, just as the vague intuitive notion of continuity was adequate
for deciding about the continuity of a curve. If one wishes to prove the
correctness of a logical step, a precise definition of logical correctness will
be needed, just as a precise definition of continuity was needed before
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Descartes could prove a curve to be continuous. Finally, symbolic logic
furnishes a precise definition of logical correctness and so is analogous to
the ¢4 definition of continuity, which furnishes a precise definition of
continuity.

“Why do you think my notion of logical correctness is rather vague and
intuitive?”’ asked Professor X. “I admit that I very seldom justify the
logic involved in my proofs, but that doesn’t prove that I can’t. After all,
I took two years of good stiff courses in logic under the chairman of the
philosophy department back in ’27-'29.” ;

Our reply was that classical logic was quite inadequate for mathematical
reasoning, being particularly weak in treating functions, use of infinite
classes, and other matters of great importance in mathematics, As a matter
of fact, the first treatment of logic adequate for use in modern mathematics
was the famous “Principia Mathematica” of Whitehead and Russell (see
Whitehead and Russell).

Professor X admitted that his two years of logic had been of very little
use in mathematics. He further admitted that he had no notion how to
give a precise definition of logical correctness. Nevertheless, he had always
been able to tell which proofs were valid and which were not. What would
he gain by learning a precise definition of logical correctness? , ;

We countered by referring him back to his interview with Descartes.
What would he have said if Descartes had answered in similar fashion that
he had been getting along very well with a vague definition of continuity
and had no need of a precise definition? .

This seemed to satisfy Professor X, However, he had one further ques-
tion to ask. :

“I should like to ask the same question that Descartes asked. You are
proposing to give a precise definition of logical correctness which is to be
the same as my vague intuitive feeling for logical correctness. How do you
intend to show that they are the same?”

This is not merely Professor X’s question. It should be the question of
every reader of the present text. :

Actually, not all mathematicians have exactly the same notion of logical
correctness. Mathematicg is a living, growing subject, and mathematicians
do not all work in the same branch of mathematics. Often mathematicians
in one branch of mathematics make constant use of some logical principle
which is regarded with distrust by mathematicians in other branches.
The axiom of choice, to which we shall devote a chapter of discussion, is
such a principle. ‘ A

However, there is a sort of “common denominator” of notions of logical
correetness, and we claim to give a symbolic logic which is a precise defini-
tion of logical correctness which agrees with this “common denominator.”
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Our symbolic logic is accordingly incomplete. In the case of a principle like
the axiom of choice, which is in dispute among mathematicians, our sym-
bolic logic deliberately fails to classify it as either correct or incorrect,
leaving the individual reader free to make whichever decision pleases him
most. However, we do attempt to convince the reader that logical princi-
ples which are judged correct by the great majority of mathematicians are
classified as correct by our symbolic logic and that principles which are
judged incorrect by the great majority of mathematicians are classified as
incorrect by our symbolic logic.

" Our procedure for doing this has already been foreshadowed in the inter-
view between Descartes and Professor X. Just as they decided to accept
the equivalence of the intuitive and precise definitions of continuity because
these definitions agreed in a large number of cases, even so a reader might
be convinced that our symbolic logic agrees with his intuitive notions of
logical correctness if he is shown that they agree in a large number of cases.
Accordingly, we shall give a large number and wide variety of illustrations
of mathematical reasoning and show how to classify each as correct or
incorrect on the basis of our symbolic logic. We have tried to choose our
illustrations from well-known soprces, so that there would be no doubt
about the general opinion of mathematicians as to the correctness or in-
correctness of the reasoning in our illustrations. With the general opinion
on the correctness agreeing with our symbolic logic in a wide variety of
cases, we feel that most readers will be convinced.

For the benefit of any professional skeptics, we admit here and now that
certainly no number of illustrations could ever suﬁice to carry absolute
conviction.

The symbolic logi¢c which we present is a modernized version of that
presented in the “Principia Mathematica’ of Whitehead and Russell. We
have altered the form of the system somewhat, using a greatly simplified
version of the theory of types due to Quine (see Quine, 1937). Minor details
have been adjusted to bring them into line with common mathematical
usage. Simplifications and improvements of the proofs have been adopted
from numerous sources.. We have not attempted to list these sources,
since in the present text we are not concerned with the genesis of the logic
but with its applications. Persons interested in the- connections of this
symbolic logic with others may consult such works as Hilbert and Bernays;
Church, 1944; Quine, 1951; and Hilbert and Ackermann. :

3. General Nature of Symbolic Logic. The aim in constructing our
symbolic logic is that it shall serve as a precise criterion for determining
whether or not a given instance of mathematical reasoning is correct. The
symbolic logic which we shall present is primarily intended to be a tool in
mathematical reasoning. Of course, many of the logical principles involved



6 LOGIC FOR MATHEMATICIANS [CHAP, I

have general application outside of mathematics, but there are many fields
of human endeavor in which these principles are of little value. Politics,
salesmanship, ethics, and many such fields have little or no use for the sort
of logic used in mathematics, and for these our symbolic logic would be quite
useless. In engineering and science, particularly those branches of science
which make extensive use of mathematics, the symbolic logic might be of
considerable value. However, it would be fairly inadequate for the logical
needs of even the most mathematical sciences. For one thing, no adequate
symbolic treatment of the relationship involving cause and effect has yet
been devised. However, if one is satisfied to restrict attention to purely
mathematical reasoning, several quite satisfactory symbolic logics are
available. We present one such in the present text,

+ The components of mathematical reasoning are mathematical statements.
8o, in building a symbolic logic, we must start with a precise definition of
what a mathematical statement is. Intuitively, we can say that it is
merely a declarative sentence dealing exclusively with mathematical and
logical matters. Needless to say, it need not be true. ‘3 is a prime’’ and
“6 is a prime” are both mathematical statements, the first true, and the
second false. _ ;

Because all existing languages are full of words with multiple or ambigu-
ous meanings, it was found necessary to construct a complete new language
in order to be able to give a precise definition of “mathematical statement.”
This language is called symbolic logic. In order to aid the reader in learning
this new language, we shall introduce him to it gradually over several
chapters. Our discussions will be rather general and descriptive at first,
becoming more and more exact. Correspondingly our notion of a mathe-
matical statement will at first be merely the vague notion of a declarative
sentence but will gradually be sharpened. Finally in Chapter IX we shall
have developed our symbolic logie sufficiently to be able to give a precise
definition of a mathematical statement.

We shall drop the “mathematical” and henceforth refer to a mathematical
statement merely as a “‘statement.”

Once a precise definition of “‘statement’”” has been given (see Chapter IX),
one can give a precise definition of “valid statement” and of “‘demonstra-
tion.” A demonstration shall be a sequence of statements such that each
statement is either already known to be valid or is an assumption or is
derived from previous statements of the sequence in a specified fashion.
The analogy with the usual form of mathematical demonstration is quite
intentional. Certain statements, designated as “axioms,” are taken to be
valid, and then any other statement is called “valid” if it is the final state-
ment in a demonstration that involves no assumptions, that is, that pro-
ceeds from axioms alone.
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Our definitions of “axiom” and “‘demonstration” will be carefully and
intentionally framed so that they depend only on the forms of the state-
ments involved, and not in the least on the meanings. Thus the decision
as to wbether a statement is an axiom or whether a sequence of statementsis
a demonstration depends not on intelligence, but on clerical skill. One
could build & machine which would be quite capable of making these
decisions correctly. That is, one could build a machine which would check
the logical correctness of any given proof of a mathematical theorem. That
the check is mechanical does not mean that it requires no intelligence at all.
There are many machines of a sufficient complexity that at least a low
order of intelligence is required to match their performance. In the present
case, the ability to perform simple arithmetical computations is enough to
check axioms and demonstrations, as was shown by Godel (see Godel, 1931),
who put the definitions into an arithmetical form. Thus, a person with
simple arithmetical skills can check the proofs of the most difficult mathe-
matical demonstrations, provided that the proofs are first expressed in
symbolic logic. This is due to the fact that, in symbolic logic, demonstra-
tions depend only on the forms of statements, and not at all on their
meanings. '

This does not mean that it is now any easier to discover a proof for a
difficult theorem. This still requires the same high order of mathematical
talent as before. However, once the proof is discovered, and stated in
symbolic logic, it can be chécked by a moron.

This complete lack of any reference to' the meanings of statements in
symbolic logic indicates that there is no need for them to have meanings.
This allows us to introduce formulas whenever they are useful without
reference to whether they are meaningful. In fact, there is a type of for-
mula about whose meaning (if any) there is great disagreement. It happens
to be a useful type of formula, and we use it frequently, not being the least
bit inconvenienced by its possible lack of meaning (see Chapter VIII).

This lack of reference to meanings also enables us to evade quite a num-
ber of difficult philosophical questions. This situation is quite in line with
current mathematical practice. Consider the positive integers, which are
at the basis of most of mathematics. Mathematicians do not care in the
least what the meanings of the positive integers are, or even if they have
meanings. For the mathematician, it suffices to know what operations he is
permitted to perform on the positive integers. Once this information is
available, any information as to the meanings of the integers is wholly
irrelevant for mathematical purposes. The same applies to real numbers,
imaginary numbers, functions, or any other of the paraphernalia of
mathematics.

The matter was well expressed by Lewis Carroll, long-time mathematical



8 LOGIC FOR MATHEMATICIANS [CHaP, I

lecturer of Christ Church, who upon being asked to contribute to a philo-
sophical symposium responded: \

“And what mean all these mysteries to me
Whose life is full of indices and surds
2+ 7z + 53 '

g _ l—l ] ”' .

3

We shall not make any use of the familiar term “proposition.” This is
because the word “proposition” refers to the meanings of _statements,
and we intend to ignore the meanings (if any) of our statements. However,
we shall here say a word about propositions and the problems connected
with them just to show how useful it is not to have to consider these
problems. o i ,

A proposition is the meaning of a statement, and one says that the
statement expresses the proposition. One difficulty that arises immediately
is that of deciding when two different statements express the same propo-
sition. Sometimes it is easy. Thus “three is a prime” and “Drei ist eine
Primzahl” certainly express the same proposition. However, what about
“Three is a prime” and “Three is greater than unity and is not divisible
by any positive integers except itself and unity’”? Do they express the
same proposition or equivalent propositions? :

Any attempt to be precise and pay attention to meanings would involve
us with such problems as the above, which are really quite irrelevant for
mathematics. For mathematics, it is: the form that must be considered,
and the meaning can be dispensed with. Oyr symbolic logic will accord
with this doctrine. :

Actually, although one carefully builds the symbolic logic so that it can
be used without reference to meaning, this does not mean that we ean ignore
~meaning in devising our logic. We recall that our symbolic logic is intended
to give a precise definition of an intuitive notion of logical correctness. So
the mechanical operations of our symbolic logic, though devoid of meaning,
must nevertheless manage to parallel closely the intuitive thought processes
based on meaning. Clearly, then, careful attention is paid to meaning and
intuitive thought processes in inventing the symbolic logic. '

Now that the symbolic logic has been invented, we could present it to
the reader merely as a mechanical system, without reference to the motiva-
tion which underlies it. Certainly it is intended to be used in this way.
Nonetheless, the reader will find it easier to learn, remember, and use the
symbolic logic if ‘we explain to him the underlying thought. processes.
Consequently much of our discussion in the earlier chapters will be quite
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intuitive in character and not particularly precise. Gradually, as our
symbolic logic crystallizes out of the intuitive background, we shall become
more precise, though we shall never lose sight of our intuitive background
completely even after we have finally completely defined our symbolic
logic and are proceeding quite mechanically.

4. Advantages and Disadvantages of a Symbolic Logic. We have
already mentioned some advantages of a symbolic logic over a simple
intuitive notion of logical correctness, namely, its greater precision and its
lack of reference to meanings; because of the lack of reference to meanings,
many difficult philosophical problems can be evaded and mechanical
checks of proofs are possible.

A symbolic logic is a formal system and as such has the advantage of
objectivity which is inherent in any formal system. This can be illustrated
by a reference to the origins of geometry. To the Egyptians, a straight
line was a stretched string. Now two stretched strings are much alike,
but not completely so, and thus one person’s idea of a straight line would
not coincide exactly with another person’s idea. As an extreme instance,
one man may be dealing with a fine silk cord, and the second man with a
towrope. In this case, their “‘straight lines” would be quite appreciably
different. Then came the Greeks, who replaced the stretched string by an
abstract idea of a straight line which was defined by purely formal axioms.
From that time on, the straight line has meant the same thing to all who
accepted the Greeks’ definition. Analogously, by means of symbolic logic
we replace a person’s intuitive ideas, subjectively conceived and full of
personal psychological overtones, by abstract formal ideas which can be

- the same for all persons.

A symbolic logic uses symbols and so has the advantages arising from the
use of symbols, in particular, greater ease in handling complex manipula-
tions. This is so familiar to mathematicians that an instance is probably
unnecessary. We cite one anyhow for completeness. Consider the simple
problem: ‘“Mary is now three times as old as Jane. In ten years Mary will
be twice as old as Jane. How old are Mary and Jane now?”’ Algebraically
this is almost trivial. We take the symbols M and J to stand for the present
ages of Mary and Jane, getting

M =3J,
M + 10 = 2(J + 10).

Subtraction gives J = 10, whence we get M = 30. The point is that,
though this is very simple when handled by symbols, it is not particularly
easy if one tries to handle it intuitively. Certainly one can get the answer
by words alone, but it is so awkward to do so that variants of the above
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problem are actually given as simple puzzles for those not accustomed to
the use of algebraic technique.

It is interesting to note that the algebraic procedure outlined above does
not differ greatly from the intuitive procedure that one might use to solve
the problem verbally. In other words, use of symbolic manipulations does
not necessarily give one any technique for solving the problem which was
not already present in the intuitive case; it merely makes the existing
techniques more flexible, more effective, and more apparent. This is
characteristic of the use of symbols.

- When one gives a precise definition of a concept, then there arises the
possibility of generalizing or varying the concept by slight alterations in
the definition. Thus, as long as the early Egyptians were thinking of
parallel lines as wagon tracks, there was no possibility of getting non-Euclid-
ean geometries in which parallel lines behave in quite unfamiliar fashions.
However, after the Greeks had defined parallel lines as straight lines which
never meet, and Euclid had defined geometry (we call it Euclidean geome-
try nowadays) by specifying that parallel lines should behave essentially
like wagon tracks, then one could generalize to non-Euclidean geometries
by specifying other behaviors for parallel lines. Similarly, by going from
the simple intuitive concept of continuity to the precise &-4 definition, one
can then introduce many variations of continuity, such as absolute con-
tinuity, semicontinuity, and upper and lower semicontinuity.

An analogous situation has already arisen in connection with symbolic
logic. There are now several different systems of symbolic logic available
which differ in various details. We have chosen that one which seems to us
most nearly in accord with the intuitive notion of logical correctness as
conceived by most mathematicians.

Thus our choice of a system of symbolic logic is arbitrary. This is a
disadvantage in that later study may show our choice to have been a poor
one. It is also an advantage in that if we ever become dissatisfied with our
choice, we can readily change it. :

The main disadvantage of a system of symbolic logic is that it is a formal
system divorced from intuition. Intuition arises from experience, and so
may be expected to have some foundation in fact. However, a formal
system is merely a model devised by human minds to represent some facts
perceived intu’tively. As such, it is bound to be artificial. In some cases,
the artificiality is quite clear. Thus electrical engineers are taught a system
for computing currents and voltages in rotating electrical machinery by
representing them as complex numbers of the form a + b2, 2 = v/ —1 (see
Glasgow, 1936). As there is nothing imaginary about the currents and
voltages, this is clearly an artificial representation. Nevertheless, its
advantages outweigh its obvious artificiality.



SEc. 4] WHAT IS SYMBOLIC LOGIC? 11

Probably the only time that the artificiality of a formal system does any
harm is when the users of the system ignore or overlook the fact that it is
artificial. Thus, for two thousand years it was supposed that the physical
universe was actually a Euclidean three-dimensional space. This inhibited
men’s thinking tremendously and was a great misfortune. Nowadays,
astronomical measurements have made it seem quite likely that the uni-
verse is non-Euclidean. Though this demonstrates the artificiality of
Euclidean ‘geometry, nonetheless Euclidean geometry is still extremely
useful, as useful in fact as it ever was. Thus artificiality is not a serious
disadvantage if one does not lose sight of the artificiality.

From the point of view of the nonmathematician, who finds it difficult to
work with symbols, use of symbols is a disadvantage. We intend the
present text for mathematicians, to' whom the use of symbols is quite
congenial, and so make no apology for the use of symbols.

We mentioned the possibility of mechanical checking of proofs as an
advantage. It is not wholly an advantage. If a person has little clerical
skill, he is liable to make mistakes in his mechanical checking, and so find
it of little value. On the other hand, if one relies exclusively on intuition,
there is danger of overlooking some detail which appears insignificant but
isn’t. The truth is that the average person cannot rely exclusively on
either intuition or mechanical checking. For the average person, mechan-
ical checking is a valuable adjunct to intuition, but in doing the mechanical
checking he must continually refer back to his intuition to catch clerical
erTors.

We summarize the above points. Although we think that the average
mathematician will find that a study of symbolic logic is very helpful in
carrying out mathematical reasoning, we do not recommend that he should
completely abandon his intuitive methods of reasoning for exclusively
formal methods. Rather, he should consider the formal methods as a sup-
plement to his intuitive methods to provide mechanical checks of critical
points, and to provide the assistance of symbolic operations in complex
situations, and to increase his precision and generality. He should not
forget that his intuition is the final authority, so that, in case of an irrecon-
cilable conflict between his intuition and some system of symbolic logic, he
should abandon the symbolic logic. He can try other systems of symbolic
logic, and perhaps find one more to his liking, but it would be difficult to
change his intuition.



CHAPTER II
THE STATEMENT CALCULUS

1. Statement Functions. As indicated in the previous chapter, we shall
not proceed at once to a precise definition of a statement. We have told
the reader that essentially a statement is a declarative sentence (not
necessarily true) which deals exclusively with mathematical and logical
matters. We shall gradually make this idea precise, but in the present
chapter we shall confine our attention to certain of the very simplest ways
of building statements, by use of the so-called “statement functions.”

We derive all the statement functions from two basic ones, “&” and “~",
Consider two statements, “P” and “Q”, of symbolic logic which are trans-
lations of the English sentences “A” and “B”. Then “(P&Q)” is the
statement which is a translation of “4 and B” and “~P” is the statement
which is a translation of the negation of the sentence “A”. If “A” hap-
pens to be a simple sentence, the negation would most usually be formed by
inserting a “‘not” into “A” at the grammatically proper place. Thus “&”
is the translation of “and”, and, allowing for the difference of sentence
structure, ““~" is the translation of “not”. Hence we usually refer to
l{&” and “N” as ({andll a.n.(i l{no ”’ and usllally read l‘(P&Q)” 3lld “NP”
as “P and Q@” and “not P”, respectively. However, when we wish to be
very careful we refer to “&” and “~” by their correct names “ampersand”’
and “curl” or “twiddle”. '

To illustrate, let “P”” and “Q” be translations of “It is raining now”’ and
“It is not cloudy now”. Then “(P&Q)” is a translation of “It is raining
now and it is not cloudy now”, and “~P” and “~Q” are translations of
“It is not raining now” and “It is cloudy now”. Finally “~(P&Q)” is a
translation of “Either it is not raining now or else it is cloudy now or else
it is both cloudy and not raining now” or of “It is not now both raining and
not cloudy” or of some such negation of “It is raining now and it is not
cloudy now”,

“(P&Q)” has properties analogous to the product of two numbers in
arithmetic or algebra. For this reason, it is called the logical product of
“P” and “Q”, which are called the factors, and is often written “(P.Q)” or
simply “(PQ)”. Also, one omits the parentheses whenever possible without
ambiguity, so that it may also be written “P&Q”, “P.Q”, or “PQ”. To

diminish the number of possible cases of ambiguity, we agree that whenever
12
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a “~" occurs it shall affect as little as posmble of what follows it. This is
expressed as follows.

Conventton. Any given occurrence of ‘“~’’ shall have as small a scope
as possible.

As an illustration, consider “~PQ” (or either of the alternative forms
“~P.Q” or “~P&Q"). According to our convention, the “~” affects
“P” but not “Q”, and so we understand “~PQ"’ to mean ‘“(~P)Q"” (or
“(~P).Q” or “(~P)&Q”). Without our convention, there would be the
possibility that “~PQ’’ might mean “~(PQ)”.

The expression ‘P~ is unambiguous even without our convention,
since it clearly can mean nothing but “P&(~Q)”.

By means of “&” and ‘““~”, we can translate many other English con-
junctions besides ‘“and” into symbolic logic. As before, let “P”’ and “Q”
be statements of symbolic logic which are translations of the English sen-
tences “A”” and “B”’, and let us seek to find a translation for “Either 4 or
B”. First we should agree whether we interpret “Either A or B” in the
exclusive sense of “Either A or B but not both” or in the inclusive sense of
‘“Either A or B or both”. According to each of the four best unabridged
dictionaries, the exclusive use is the only correct use, and the inclusive use
has no justification at all in correct English. Nonetheless, in mathematics
the inclusive form of ‘“‘or” is very commonly used, and in everyday lan-
guage, it is often not clear which is intended. In legal documents one
commonly finds the inclusive “or’”’ expressed as “A and/or B”.

In some languages, there are different words for the exclusive and in-
clusive “or”. Thus in Latin, the word “aut’’ denotes an exclusive ‘‘or’”’ so
that “aut’” means ‘“‘or—but not both”’, whereas “vel” denotes an inclusive
“or’”’ so that “vel” means “and/or”’. We shall translate both the exclusive
“or” and the inclusive “or”’ into symbolic logic.

We take first the inclusive “or’”. We are seeking the interpretation of
“A and/or B” or the equivalent ‘“Either A or B or both”. This statement
is equivalent to denying that “A’”” and “B” are simultaneously false, and
we use this fact to carry out the translation. That “A” is false would be
translated as “~P”’, and that “B”’ is false would be translated as “~Q”.
That both are false would be translated as “(~P)&(~Q)”, which we can
simplify unambiguously to ‘““~P~Q”. The denial of this is then trans-
lated as “~(~P~Q)”. So we conclude that the translation of “Either A
or B or both” is “~(~P~Q)".

To translate ‘“Either A or B but not both”, it suffices to adjoin the addi-
tional statement “not both””, which certainly would be translated “~(PQ)”".
So the translation of “Either A or B but not both” is “(~(~P~Q))&
(~(PQ))’’, which we can simplify unambiguously to “~(~P~Q)&~(PQ)”’
or “~(~P~Q)~(PQ)”.



