mhﬁlh

(RIZhR)

PRACTICAL
SOFTWARE
ENGINEERING

A Case Study Approach

mbﬂinLHjF&%i
China Machin



2 K R KR ¥ K

SSRREIE

(ZR3ZhR)

Practical Software Englneermg
A Case Study Approach aE

sy Leszek A. Maciaszek -y
(B) Bruc Lee Liong FE ~ /

@mmlﬂy_tﬂm&

China Machine Press




Leszek A. Maciaszek and Bruc Lee Liong, with contributions from Stephen Bills:
Practical Software Engineering: A Case Study Approach (ISBN 0-321-20465-4).

Copyright © 2005 by Pearson Education Limited.

This edition of Practical Software Engineering: A Case Study Approach is
published by arrangement with Pearson Education Limited. Licensed for sale in the
mainland territory of the People’s Republic of China only, excluding Hong Kong,

Macau, and Taiwan.

A4S HE R EN IR B 3€ [#] Pearson Education (354 #&F HIRER ) BAHR. &
LR E BTV, ARLMEM G RE RS BABAE.
BERZENRR A BRAE o [ K BB X B8 (AR, B, GEHX).

IRALERE . BRSR.
FHEEmE AR RIARIMESR

ABHRAEIZES: EF: 01-2005-4509
EBERmE (CIP) ¥R

SRR TR (BE3ChR) / () SAEWER (Maciaszek. L. A. ) %3, — b3t
B Tl Hi ittt 2006.1

(22 R A5 )42 )

B AJRIC: Practical Software Engineering: A Case Study Approach

ISBN 7-111-17328-7

.92 0.5 I 4#KEETR-¥L IV.TP31L.5
o [ i A B 451 CIPE A% 5 (2005) 451022312

AU ol AR (Abseilimaskix e 5 i k229 WBBCHED  100037)
TiEgmst: BiIRE

AestntAb bl BRI - BB IS R R AT R AT

20064F 1 F 45 LR 45 1R BN I

718mm x 1020mm 1/16 - 54E[15k

El%Z: 0001 - 3 0004t

EHr: 69.005C (FHGED)

JUBAFS, anA@0. B, Geol, mAr k47 iE
ALk (010) 68326294



LEhRE BI1E

SCEESLLARE, TR KRB RS AR B B AR BLTE, DT B AL B AR
FH R TUREE T 2M RS hELXAFELE, BREERFEEARRIAT
LR AREN . M. ErL RS, EET LR BE SOk LS %
g4, HHEYLFER PR £ R WAL R B SRR BCE M Bl £k, dbkifa 7 A £
BHEEME, AR TR, SEE TERIIRE, BEEEARE, XAF¥
A, HAEHASE A A B T RoE .

A, 2GRN T, HREMEI LR RRE, &b A4
KAEY . XX HEHLET F MR A RIS, hRSk; %k B IR
BHEEME LA ERE. ERERGBEAKRRMERE. Mk IBDRBURT, %
B 5 ok KA F R ALEHE & Ry LR R R 2 B A IF 2 ER RS 240,
Bk, 51—/t ESMET L FHLBO 13 3 E L FHLBCH F0l i & SR BRI HE S E R
AR SR, BIREEWHR RS R 2.

HUBE Tl Ao B S5 B A R A Rl B IRE] “HREABEFRS . H19984
Froh, RN RS LEE AURE Tk, BIREIMEBEM L. @ JLERAWE ),
F A1 5Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ% {35 4
MRS RIS T RAFIOATES R, M E1BLA 19 B Fh S0k oF B2 4 Tanenbaum ,
Stroustrup, Kernighan, Jim GrayZ KUfi 45 —#LMERS, DL “BEYEFEANR” 4
ERRMAR, #EREE2]. PR KREASQHE R, WEARB T EMNBRHL
Fkg i .

“URALFHEAR” B TERE T EANMEE DB, A& R AR
THEREERET, SRS EHAE T BRSBTS 1R & A 2 i
HAEmET ERERE, AR ERAHBIPIEAER. 24, “HEILEEAE 28
HAR TEEA R, X EESREERE DR T RO, HEF 2 /BRI L IER K
MMSZHBFE, kPR 5RBRITT 7RG,

Bifi % 7 PHE Y 90 22 50 38 RN B0k SO R B IL . B08 St B AR 0 75 ok
FPHEE AN — BRI B . Ak, EEARRMASIEBEM D E, £ “EEHF
HLEELRIZ TR EA R PR LR EA: B “THENLBE R Z4b, 3HZERR %
B, W MOFREE “UMERE” 5 [k, Sl E@mmEEa S35 “Schaum’s
Outlines” RFIH “2ELMEIRIFARI”. A TRIEX ZENBARUZM:, [FkH
AT B A ER M EMAIARS , B S T hERER . ALt K%, R,
EPRHE RS, EHK%, BlEKRF. MEKR% WL KR%. PEBHERE. WBR



1v

WK%, FEEEAY. PEARKY. sk, bxtibi K%, dil
K. MRBCER TR, M A WAL T ke, EERE B L 2NIFAE+.OF E
N E A KRF AR E TR S AT & A EHR “ERESERST, A
1 14520 10 T DL 0 ) Bl

X =N R R Z R AR O AR A S, b B R T BAL B AR R
LI ESITER. HhiF2EMYEAM. L T., Stanford, U.C. Berkeley, C. M.
U. R 2 KFE R AMURE TRFRT. BdRsW. BIERLE. UHHEILG RS
. BARZE. SiFFE. KM TR, BEY. BE5ME. Bt SERNKRFETREIL
Ll e PO IR, MASH REe—ANHAETRITEZF. AL =1
EMAE. ARCHELHREILE T RmEERA. 76X 5% R 208 20 K ERTESIZ T,
i BB EHLE S E B R AE.

PUBIHITER . M EM . —mEE. ROER. KA, XeEE-K
TIERA THREMRIE, HEHRO0BRERERE, I ELELRNEFH X —
Ktk AR EEZR B . B HR R ZRNEEEIRS IR . BTN [N Z)iFni%
BXFEAO TR MBS THRIE, BATWEEAR ik T:

B, f-#B{:: hzjsj@hzbook.com
BEZHiE: (010) 68995264

R AL AL IR A 1S
HR B Hwf: 100037



ERIESE

£

(et 2
g
NS
=2y
I &3k
ERE 2
X
2 e

=

f_1

J
Jea

\

)

XA
Z %
FiEF
% o) %
%W A
J& R
A2 B 35

X £
* B &
WmAF
B 1h &
T B
WA A=



MOTTO
Make everything as simple as possible,

but not simpler

— Albert Einstein

DEDICATIONS

For Diana, Dominika, and Tomasz
— Leszek A. Maciaszek

To my parents, Edison and Tina

— Bruc Lee Liong



Guided Tour

Chapter openings
set the scene for more
detailed discussion

| emm—
% § g Web-Based User Interface
Design and Programming

Numerous annotated
screenshots to draw
X g 233 S OV S i A st oy
out key points
A ks w4 g ol g o o T
‘ s By W -~
, o e e T O e
s e st & s e v
e 4 R BN YR R, T 0 TS R
mnuu*u:nm?nwg:g:\;-n‘: 1A Suppact kor Repngioasring
R e e ; sor e o,
. ol e e e ey [ .
--M-—n-—mm.q—x‘mmn s
-y 3 Ry sy i+ e omrabon ey Wit wars 1 o ol o
i L T peee—
Extensive use of UML o

Linting 1030 Sresagn s Peiberh iy Mganhen

diagrams

Real code shows
readers how to put
concepts into practice

L
Package Entity
0

on "
1 s T g bt o he o o amcesary ok o el -




viii Guided Tour

Key terms highlighted within text
Summary gt the end of each chapter
reinforces ‘ learning

-|=-ws-u—\u..o

- o e e
oy e o ey
Comeomend w
oy
A"
X
oy
- e .
-\
pRepe- -
- e

v
gy, S v w3 sk I ngle developes 28 st 59 10 g sl Comples
. e )

o ~ e i v 4

Review Questions
Ciacuenan Queations
W e o i . W, vl e s o
o g

G b ey o o el s Bt Wy gl

s
Peswsiey

.

5. o e s e o o of A e

'
ey
Cane Snry Ouastins

o e s e 1492 PP

b n..-.u--» 20 08 80 e s g 014t s
s ¥ apion oot S T vt . mirn G v 0. W 2 o
o o

ety
A Tt e o e o O B ke e P 014
S o ) 5 e v o
——

General end-of-chapter review questions
End-of-chapter review questions specific to
the running case study

To aid revision, key terms and their in-text
definitions are noted at the end of every chapter

Cuwe Study Exeroers
+ g
o
a5
B 1 e ot e e b 7 s s
0 e o e s 1 e 1 ety L by e T 23t

g e AR . s ey ot 4t oot
R i

1 x—--umo—uwn—n_.—-x—-nu

m—-.——

. et gy o (hocion 11438 Comet @ sy fisgrom 5.
T 54 e oo g,

Micane - Time Loggeg Sysiem

e

h
— e v

. 14 e

\ (e

g [

e St e bk gy e e b o

et
) |t e <t eyt e b
b e ey Lol berri

e -
_*--..—.....n.-.---—.

End-of-chapter problem-solving exercises
take readers deeper into the case study to ensure
understanding

Additional end-of-chapter minicase exercises
to test understanding further



Preface

The Book’s Story

This book has a history of iterative and incremental development. It has certainly under-
gone all four major phases of one popular lifecycle model: project inception, elaboration,
construction, and transition. The book has been an agile development by a pair of authors,
with user stories as requirements, with continuous integration and lots of refactoring, but
unfortunately not with short cycles to delivery.

The inception of the book dates back to the publication in 1990 of Maciaszek’s
Database Design and Implementation (Prentice Hall). Many readers of that book
requested a follow-up text with more complete case studies, short and long examples, and
with a stepwise (i.e. iterative and incremental) increase of technical difficulty and content
sophistication. The business case for the book was made and the project entered the
elaboration phase — the vision was refined, the risks resolved, the requirements and scope
identified, but the target platform ended up to be...lots of industry training and
consulting instead of a book.

Ten years later, and after countless industrial projects, the amount of practical material
collected was screaming for publishing to a wider audience. But the audience has changed
— the industry entered the Internet age. A new textbook was needed to define the
prerequisite knowledge demanded by modern software engineering. That textbook was
Maciaszek’s Requirements Analysis and System Design: Developing Information Systems
with UML (Addison-Wesley, 2001), going into its 2nd edition concurrently with this book.
Soon after, the book you are holding entered the construction phase.

The construction phase was bumpy. Originally the book was perceived as a companion
to Maciaszek’s 2001 textbook or any similar book. Later the emphasis shifted to a stand-
alone textbook that uses an iterative case study approach to teaching practical software
engineering. The book concentrates on software design, programming and management. It
emphasizes modern development practices, methods, techniques, and tools.

The transition phase of this book is in your — the reader’s — hands. The beta-tests of this
book were conducted in classrooms and on software projects. The deployment is at the
reader’s mercy. Please submit change requests, defects and enhancements to the develop-
ment team.



X ’ Preface

Book Outline and Organization

The distinctive character of this book stems from two endeavors. Firstly, this book is
about the way software engineering is done in practice. Secondly, it is about software
engineering for enterprise applications. The following description of what enterprise
applications include and exclude applies fully to this book: ‘Enterprise applications
include payroll, patient records, shipping tracking, cost analysis, credit scoring, insurance,
supply chain, accounting, customer service, and foreign exchange trading. Enterprise
applications don’t include automobile fuel injection, word processors, elevator controllers,
chemical plant controllers, telephone switches, operating systems, compilers, and games’
(Fowler, 2003, p.3).

The book is pivoted on one main case study, two minicases with related exercises, a
large number of supporting examples, tutorials to review basic modeling and program-
ming concepts, and end-of-chapter problem-solving exercises which contain mostly case
study exercises. The organization that is a reference for the case study, and for some
minicases and examples, is a company specializing in advertising expenditure measurement.
The book names this organization after its core business activity — AEM (in reality the
organization is ACNielsen’s Nielsen Media Research in Sydney, Australia). The case study
is Email Management (EM) — a subsystem of AEM’s Contact Management (CM) system.

As shown in the Venn diagram, AEM is the business, CM is one of the business
domains, and EM is the case study. Examples and minicases are drawn from a cross-
section of domains of the AEM business, including CM. Some examples are not related to
AEM. The case study is enriched by examples and by case study exercises. Tutorials are
used to auickly teach introductory topics with relation to UML modeling, Java program-
ming, relational databases, GUI (graphical user interface) construction, and working with
business components.

The business
(Advertising Expenditure Measurement)

The domain
(Contact Management)

Tutorials
(MovieActor
Database)

Managgment)

e e
e —




Preface | xi

The book endeavors to give broad software engineering knowledge and to provide back-
ground information prior to presenting case study solutions. However, a distinguishing
emphasis of the book is to show how to apply this knowledge on software projects. For
given requirements, the book iteratively develops design and implementation models.
Case study, minicases, examples and problem-solving exercises are carefully selected to
emphasize various aspects of software development as necessitated by the unique charac-
teristics of different applications and target software solutions.

The book consists of four parts. Part 1 (Software Projects) discusses software
lifecycle, modeling languages, engineering tools, project planning, and process manage-
ment. The next three parts (2, 3, and 4) introduce the case study, minicases and examples.
The discussion in these three parts concentrates on the methods, techniques, processes, and
development environments of software engineering.

Parts 2, 3 and 4 correspond to three project (case study) iterations. Each iteration starts
with use case specifications enriched by an initial object model. The generic theory and
practical knowledge underpinning each iteration are explained prior to demonstrating the
case study design and programming solutions. Any knowledge specific to the case study
solutions, and without significant generic appeal, is presented within or as a subsection of
the case study discussion. Each iteration results in a complete solution and concludes with
a chapter that contains the source code with necessary annotations and references to
explanations in prior chapters.

Part 2 (From Requirements via Architectural Design to Software Release) starts by
giving the business context for the EM case study. The first two chapters in this part
present the business object model for AEM and the domain object model for CM. Next,
the EM requirements are defined and the EM Iteration 1 is successively developed. The
cornerstone of the first iteration is a sound architectural design amenable to successive
stepwise enhancements. The ‘deliverable’ of the first iteration is the software release to the
users (i.e. the readers of this book).

Part 3 (Software Refactoring and User Interface Development) concentrates on
determining the front end of the system and on the presentation and domain layers of
the application. It discusses the graphical user interface (GUI) design, including a web-
enabled front end. The transformation from Iteration 1 to Iteration 2 is achieved through
architectural refactoring and the development of an attractive user interface.

Part 4 (Data Engineering and Business Components) moves the focus point from the
system front end to its backbone and to the middle tier. This part discusses the storage
and manipulation of data, implementation of business rules, transaction processing, and
security control. It explains also how the application logic can be moved to an application
server in the middle tier.

Although Iteration 3 of the case study is developed from Iteration 2, Parts 3 and 4 of
the book can be studied relatively independently. A reader can elect to concentrate on one
of these parts and only skim through the other part. For example, a database designer/
programmer may have a marginal interest in Part 3, whereas a GUI designer or Java
programmer may have a marginal interest in Part 4. An expectation is that some readers
will concentrate on Parts 1 and 2 of the book and will fully identify with Parts 3 and 4 after
a period of experimentation and gaining better appreciation of the knowledge contained
in earlier parts. It is also possible, in more advanced project-oriented courses, to begin
using the book from Part 2.



xii Preface

From the total number of 23 chapters in the book, 6 are dedicated to the EM case study
(these are Chapters 8, 13, 14, 18, 19, and 23). The educational value of these six chapters
is through understanding and analyzing the case study. This is truly learning by example.
By contrast, the first five chapters (Part 1) explain the foundations of software engineering
and they do not refer to the case study. The remaining 12 chapters have both theoretical
parts and the parts that link the theory to the case study, minicases, or other examples.

Distinguishing Features

The main distinguishing feature of the book is in its subtitle: A Case Study Approach. If
you believe — as many educators do — that the best teaching formula is to teach by example,
then this book is for you. If you want to be challenged and invited to learn from mistakes,
then this book gives you plenty of opportunity to experiment with your solutions and
compare them with the authors’ answers and explanations. If on top of that, you would like
to customize learning to your current needs and level of knowledge then each iteration has
different emphasis, different modeling difficulty and may demand a different subset of
development techniques and models.

An overriding objective of this book is to relate theories to reality by giving special
attention to software design and implementation (while not neglecting analysis) and by
addressing non-trivial practical problems. In its objective of ‘exemplifying to explain’, the
book is unique in a number of ways:

1. Education in mind. The book was written with education in mind. The case study,
examples and problem-solving exercises are not just plainly taken from real-world
solutions; they are molded to suit educational needs. Real-world solutions are part of
a complex business and software implementation context. That context is likely to be
overwhelming and uninteresting to the reader, so it is simplified as much as possible.
Presentation of GUI and database designs as well as programming examples
eliminates unnecessary dependencies, ‘information noise’, and repetitive tasks.

2. Annotated solutions. There are no black-or-white, true—false, zero—one solutions in
information systems. Frequently, a solution serves a particular purpose and may look
plainly wrong when analyzed from a different perspective. Therefore, answers and
solutions are carefully annotated.

3. Alternative solutions. Sometimes a single solution, no matter how annotated and
explained, is not distinctly better than other potential solutions. To this end, alternative
solutions are frequently provided and explained.

4. Lists of key terms at the end of each chapter compiled as indexes with references to
page numbers. The lists can be used for self-study reviews of the understanding of the
basic terminology introduced in each chapter. They can also be used by instructors to
query the students’ knowledge of each chapter.

5. Review questions to reinforce the reader’s knowledge by insightful questions to each
chapter. The questions are divided, when appropriate, into discussion questions and
case study questions. Answers to all review questions are available to instructors from
the book’s website.



Preface xiii

6. Problem-solving exercises to challenge the reader to research the issues before
attempting a solution and to attempt extended or alternative solutions to the case
study, minicases or other examples. Sample solutions to all review questions are
available to instructors from the book’s website.

7. Website with complete set of supporting material, including models and programming
code (mostly UML, Java and database (Oracle) code). All programming code,
including code not presented in the text, is available on the book’s website.

8. Emphasis on principles. There are some well-defined principles (patterns, frameworks,
standards, libraries, etc.) of good software engineering and system development. The
book identifies and explains these principles and makes linkages to sources of information.

9. Balanced mixture of professional depth and educational benefit. In general, writing
software and writing educational books are somewhat disjoint activities. Hopefully,
this book contradicts this observation.

10. Substituting for professional education and training courses. Busy professionals tend
to perform routine tasks and they can quickly fall behind the state-of-art and
frequently the state-of-practice in the discipline. Finding time and funds to attend
expensive professional education and training courses with case studies similar to
those in this book may be difficult. Perhaps this book can give professionals an
opportunity to catch up on latest developments at the time of their choice or between
normal work duties.

Intended Readership

This book is aimed at a wide readership of students and IT professionals. An ideal reader
is a student of a software engineering course or a software developer (or project leader/
manager). The book is written so that it can be fully understood by students and
professionals who possess basic knowledge of information systems and basic program-
ming skills (hopefully in an object-oriented language and with some database use). For
most readers, this corresponds to the first year of a university degree in computer science
or informatics (information systems, information technology).

For students, the primary use of this textbook is in software engineering courses with a
software development component. The book can also be used as a textbook in courses in
information systems development, software projects, or systems analysis and design when
taught in higher years or to more mature students. Moreover, the book can be used as a
recomimended reading in courses on object technology, object programming, web-based
systems, database design and programming, and similar.

Practitioners most likely to benefit from the book include system designers, pro-
grammers, software architects, business and system analysts, project leaders and managers,
web and content developers, reviewers, testers, quality assurance managers and industry
trainers. The book can be used for professional education and training courses and
workshops. It can also be adopted as a source of information for project teams. For
practitioners already using UML, Java and relational databases on software projects, this
book can serve as a validation of their software development practices and as a source of
development ideas and directions.



Xiv ‘ Preface
Supplementary Materials

A comprehensive package of supplementary material is provided for the companion
website. Most of the website content is freely available to all readers, but some material is
password-protected for the benefit of instructors who have adopted the book in their
teaching. The home page for this book is maintained at:

http://www.comp.mq.edu.au/books/pse
http://www.booksites.net/maciaszek

The web package for this book contains two sets of resources: for all readers and for
instructors who adopted the textbook for teaching. The instructor resources are password-
protected.

Instructor resources on the web include (but are not limited to):

1. Instructor’s Manual with:
(a) questions and answers to all end-of-chapter review questions and problem-solving
exercises
(b) extra projects and solutions — not contained in the textbook and available from the
website to assist instructors in setting up student assignments and projects
2. Lecture slides — in PowerPoint and in modifiable Acrobat pdf formats

3. UML models and Java/Database source code for solutions to:
(a) exercises and minicases
(b) projects provided on the book’s website
(c) alternative design/programming approaches to the book’s case study

Resources for all readers include (but are not limited to):

1. Lecture slides — in printable-only Acrobat pdf format

2. Errata and addendum document

3. UML models and Java/Database source code for the book’s case study and examples,
complete with instructions on how to compile and run the code.

Your comments, corrections, suggestions for improvements, contributions, etc. are very
much appreciated. Please, direct any correspondence to:

Leszek A. Maciaszek
Department of Computing
Macquarie University

Sydney

NSW 2109, Australia

email: leszek@ics.mq.edu.au

web: http://www.comp.mq.edu.au/~leszek
phone: +61 2 9850-9519

facsimile: +61 2 9850-9551
courier: North Ryde, Herring Road, Bld. E6A, Room 319



Acknowledgements

Author’s Acknowledgements

This book took a considerable time to write but that time shrinks to insignificance in
comparison with the time taken to gain the knowledge and skills necessary for its writing.
Our special gratitude goes to our friends and colleagues at ACNielsen, Sydney, Australia,
who provided the initial ‘testbed’ for much of the knowledge transferred to the readers in
this book. Our thanks go in particular to Stephen Bills (who is also this book’s named
contributor) and his team of developers, including Paul Antoun, Bruno Beira, Sue Dayes,
Steven Grotte, Jeff Hong, Yijun Li, Kevin Mathie, Denise McCrae, Chantal O’Connell,
James Rees, Jovan Spoa, Eric Zurcher.

Writing a book is a considerable project. As explained in Chapter 4 and elsewhere in
the book, a successful project requires that sufficient work and material resources be
allocated to project tasks. Work resources consist of people and equipment, including
hardware and software. Material resources are consumables and supplies. The authors of
this book allocated themselves to the tasks, but the project would dismally fail without all
accompanying work and material resources. The resources were provided by Macquarie
University, Sydney, Australia, and University of Economics, Wroctaw, Poland. We are
indebted to our friends, colleagues and students at these two universities for their advice,
support, and assistance, for all the resources that they have provided to this project.

Talking about resources, this book could not have been written without intensive and
wide-ranging use of software tools and environments. The software necessary for the book
was obtained by various means, from purchase via downloads of demonstration copies
to using open software sources. People behind software obtained through such means are
anonymous to us, so acknowledgements are not possible. Our acknowledgements are,
however, in place to these software vendors who responded to our requests to provide
software free of charge for educational use by us and our students. We are particularly
indebted to Oracle Corporation (Oracle and JDeveloper), Rational Software Corporation,
currently IBM (Rational Suite), Sybase (PowerDesigner), and yWorks (yDoc).

Most significantly, we are grateful to Keith Mansfield of Pearson Education, the editor
of this book as well as the editor of Maciaszek’s Requirements Analysis and Systems Design.
Thank you, Keith, for having the vision for both books and for your hard work from
inception to production and deliverables. Book production is a real team effort. Risking
the omission of quite a few names, we would like to thank especially: Anita Atkinson
(senior desk editor), Helen MacFadyen (proofreader), Ruth Freestone King (copyeditor)



xvi | Acknowledgements

and Owen Knight (editorial assistant). Thank you all for your corrections, improvements,
insights, advice and great cooperation.

Publisher’s Acknowledgements
We are grateful to the following for permission to reproduce copyright material:

Table 1.1 based on information from Fundamentals of Software Engineering, Prentice Hall
(Pearson Education, Inc.), (Ghezzi, C., Jazayeri, M. and Mandrioli, D., 2003); Figure 1.10
adapted from figure of Rational Unified Process, reprinted by permission from http://
www.rational.com/products/rup/, © Copyright 2003 by International Business Machines
Corporation. All Rights Reserved; Figures 3.1,43,4.4,45,4.7,48,49,4.10,4.11,4.13,
4.14, 4.16, 4.17, 4.19, 4.20, 4.21, 4.22, 4.23, 4.25, 4.26, 4.28 and 4.29 from screen shots
of Microsoft® Office Project (2003), reprinted by permission from Microsoft Corporation,
Copyright © 19982003 Microsoft Corporation; Figure 3.2 from screen shot of Manage-
Pro™ 6.1 from www.managepro.net, March 2004, Performance Solutions Technology, LLC,
reproduced by kind permission of Performance Solutions Technology, LLC; Figure 3.3
from screen shot of eRoom from www.eroom.net/eRoomNet/, July 2003, Documentum,
Inc., reproduced by kind permission of Documentum, Inc.; Figure 3.4 from a screen shot
of eProject Enterprise, July 2003, reproduced by kind permission of eProject, Inc.; Figures
3.5 and 3.6 from screen shots of Small Worlds, reprinted by permission from www.
thesmallworlds.com/, © Copyright 2003 by International Business Machines Corporation. All
Rights Reserved; Figure 3.8 from screen shot of @Risk from www.palisade-europe.com,
reproduced by kind permission of the Palisade Corporation; Figures 3.9, 3.10, 3.12, 3.14,
3.16, 3.30, 3.31, 5.14, 5.15 from screen shots of IBM Rational Suite, reprinted by
permission from Rational Suite Tutorial, Version 2002.05.00, © Copyright 2002 by
International Business Machines Corporation. All Rights Reserved; Figure 3.9 from screen
shot of Microsoft® Word, reprinted by permission from Microsoft Corporation, Copyright
© 1998-2003 Microsoft Corporation; Figure 3.11 from screen shot of DOORS® from
www.telelogic.com, reprinted by kind permission of Telelogic UK Ltd., Copyright © 2004
Telelogic AB; Figure 3.13 from screen shot of Enterprise Architect from www.sparxsystems.
com.au, August 2003, Sparx Systems Pty Ltd., reproduced by kind permission of Sparx
Systems Pty Ltd.; Figure 3.15 from a screen shot of Gentleware’s Poseidon Sales
Application model, August 2003, reproduced by kind permission of Gentleware AG;

Figures 3.16, 3.34 and 3.35 from screen shots of No Magic’s MagicDraw™ from
www.magicdraw.com, July 2003, © Copyright No Magic, Inc. 19982004, reproduced with
permission. All Rights Reserved; Figure 3.17 from screen shot of Sybase® PowerDesigner®

version 9.5, from www.sybase.com, July 2003, © Copyright 2002, Sybase, Inc., All Rights
Reserved; Figure 3.25 from screen shot of Borland® Together® CantrolCenter® example
(2003), www.borland.com, reprinted by permission of Borland Software Corporation;
Figure 3.27 from screen shot of Oracle JDeveloper from www.otn.oracle.com, reproduced
by permission of Oracle Corporation; Figure 3.29 from screen shot of Perforce, from
www.perforce.com, reproduced by kind permission of Perforce Software, Inc.; Figure 3.32
from screen shot of Microsoft® Visual SourceSafe from http://msdn.microsoft.com/ssafe/
default.asp, (2003), reprinted by permission from Microsoft Corporation, Copyright ©



