OLIVER ABERTH

Introduction to
Precise Numerical

Methods




Intfroduction to
Precise Numerical »
Methods W

Oliver Aberth

Mathematics Department
Texas A & M University

LAY

E2009000151

AMSTERDAM « BOSTON « HEIDELBERG « LONDON
NEW YORK « OXFORD « PARIS « SAN DIEGO
SAN FRANCISCO « SINGAPORE « SYDNEY « TOKYO

'
D

e TR
ELSEVIER Academic Press is an imprint of Elsevier

et R AL A0 A SN S P 5 .,




Acquisitions Editor Tom Singer

Project Manager Jay Donahue

Marketing Manager Leah Ackerson

Cover Design Eric DeCicco

Composition Integra Software Services Pvt. Ltd., India
Cover Printer Phoenix Color

Interior Printer Sheridan Books

Academic Press is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.
Copyright © 2007, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) 1865 843830, fax (+44) 1865 853333,
email: permissions@elsevier.com. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Aberth, Oliver.
Introduction to precise numerical methods/Oliver Aberth.
p. cm.
ISBN 0-12-373859-8
1. Computer science—Mathematics. 2. Numerical analysis—Data processing. 1. Title.
QA76.9.M35A24 2007
518.0285—dc22
2007000712

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN 13: 978-0-12-373859-2
ISBN 10: 0-12-373859-8

For information on all Academic Press publications
visit our website at www.books.elsevier.com

Printed in the United States of America
07 08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER  BOOKAID  q,pre Foundation




Introduction to Precise
Numerical Methods g




Preface

Now that powerful PCs and Macs are everywhere available, when solving a
numerical problem, we should no longer be content with an indefinite answer,
that is, an answer where the error bound is either unknown or a vague guess. This
book’s software allows you to obtain your numerical answers to a prescribed
number of correct decimal places. For instance, one can compute a definite
integral fab f(x) dx to a wide choice of correct decimal places.

The problems treated in this book are standard problems of elementary numeri-
cal analysis, including a variety of problems from the field of ordinary differential
equations and one standard problem from the field of partial differential equa-
tions. Most programs allow you to choose the number of correct decimal places
for a problem’s solution, with the understanding that more correct decimals
require more computer time.

Besides the availability of powerful computers, two other advances permit
the easy generation of accurate numerical answers. One is the development of
efficient methods for accurately bounding computation errors, stemming from
Ramon Moore’s invention of interval arithmetic in 1962. The other is the
development of methods for analyzing computation tasks, stemming from Alan
Turing’s groundbreaking work in the 1930s.

The CD that comes with this book contains a set of demonstration programs
that will run on any PC using the Microsoft Windows XP operating system.
Page 248 explains how to load the demonstration programs onto your PC’s hard
disk. After you follow those directions and read the short first chapter, you are
ready to use any program. A beginning numerical analysis student can use this
software to solve numerical problems that arise in the student’s other science or
engineering courses.

The text gives the mathematics behind the various numerical techniques and
also describes in general terms the procedures followed by the various compu-
tation programs. The software is open-source; that is, the source code for each

xi



xii Preface

computation program is available for inspection. Thus a student is able, when
conversant with programming languages, to adapt these programs to other uses.

Chapters 1 through 15 can be read by a student who has completed the calculus
sequence and an elementary linear algebra course. The final chapter, Chapter 16,
requires some acquaintance with complex analysis.



Acknowledgments

In the writing of this book and the creation of the accompanying software, I have
had help from many sources. Two people have made fundamental contributions.
Mark J. Schaefer, formerly of Tiibingen University, helped write some of the
computation programs. His brilliant programming skills were much needed, and
it was his idea to identify quantities correct to the last decimal place with
a terminal tilde. Ramon Moore of Ohio State University, who made precise
numerical computation possible, has been supportive through many decades and
helped test the various computation programs.

Rudolf Lohner of Karlsruhe University showed me how to improve my treat-
ment of ordinary differential equations, by using his ingenious computation
methods. R. Baker Kearfott of the University of Southwestern Louisiana helped
me understand the crossing number concept.

I am indebted to Brian Hassard of SUNY at Buffalo, for his inspiring early
attempts, with his students, at precise computation of specific partial differen-
tial equation problems. His experiments encouraged me to develope the pde
program, described in Chapter 15.

Oliver Aberth

xiii



Contents

Preface xi
Acknowledgments xiii

1 Introduction 1
1.1 Open-source software 1
1.2 Calling up a program 2
1.3 Log files and print files 3
1.4 More on log files 4
1.5 The tilde notation for printed answers 5

2 Computer Arithmetics 9
2.1 Floating-point arithmetic 9
2.2 Variable precision floating-point arithmetic 10
2.3 Interval arithmetic 11
2.4 Range arithmetic 13
2.5 Practical range arithmetic 15
2.6 Interval arithmetic notation 15
2.7 Computing standard functions in range arithmetic 17
2.8 Rational arithmetic 18
Software Exercises A 20
Notes and References 23

3 Classification of Numerical
Computation Problems 25
3.1 A knotty problem 25
3.2 The impossibility of untying the knot 27



vi

33
34

3.5
3.6
3.7

Contents

Repercussions from nonsolvable problem 3.1 27
Some solvable and nonsolvable decimal

place problems 29

The solvable problems handled by calc 32
Another nonsolvable problem 32

The trouble with discontinuous functions 33
Notes and References 35

4 Real-Valued Functions 37

4.1

Elementary functions 37
Software Exercises B 39

5 Computing Derivatives 41

Sl
5.2
5.3
54
5.5

Power series of elementary functions 41

An example of series evaluation 48

Power series for elementary functions of several variables
A more general method of generating power series 52
The demo program deriv 54

Software Exercises C 54

Notes and References 54

6 Computing Integrals 57

6.1
6.2
6.3

6.4
6.5

6.6

Computing a definite integral 57
Formal interval arithmetic 59

The demo program integ for

computing ordinary definite integrals 61
Taylor’s remainder formula generalized 63
The demo program mulint for higher
dimensional integrals 64

The demo program impint for computing
improper integrals 66

Software Exercises D 67

Notes and References 68

7 Finding Where a Function f(x) is Zero 69

7.1
7.2
7.3
7.4

Obtaining a solvable problem 69

Using interval arithmetic for the problem 72
Newton’s method 73

Order of convergence 75

Software Exercises E 77

49



Contents

8 Finding Roots of Polynomials 79

8.1
8.2
8.3

8.4

8.5
8.6

Polynomials 79

A bound for the roots of a polynomial 85

The Bairstow method for finding roots of

a real polynomial 86

Bounding the error of a rational

polynomial’s root approximations 90

Finding accurate roots for a rational or a real polynomial
The demo program roots 95

Software Exercises F 95

Notes and References 96

92

9 Solving n Linear Equations in n Unknowns 97

9.1
9.2
9.3
9.4
9.5
9.6

Notation 97

Computation problems 98

A method for solving linear equations 100
Computing determinants 102

Finding the inverse of a square matrix 104
The demo programs equat, r_equat, and
c_equat 105

Software Exercises G 106

Notes and References 107

10 Eigenvalue and Eigenvector Problems 109

10.1
10.2
10.3
10.4

10.5
10.6
10.7

Finding a solution to Ax =0 when detA =0 110
Eigenvalues and eigenvectors 113

Companion matrices and Vandermonde matrices 118
Finding eigenvalues and eigenvectors by

Danilevsky’s method 122

Error bounds for Danilevsky’s method 127

Rational matrices 134

The demo programs eigen, c_eigen, and r_eigen
Software Exercises H 136

11 Problems of Linear Programming 137

11.1
11.2

11.3
11.4
11.5

Linear algebra using rational arithmetic 137

A more efficient method for solving

rational linear equations 140

Introduction to linear programming 141

Making the simplex process foolproof 145

Solving n linear interval equations in n unknowns 148

135

vii



viii Contents

11.6 Solving linear interval equations via linear programming 152
11.7 The program linpro for linear programming problems 155
11.8 The program i_equat for interval linear equations 156
Software Exercises I 156
Notes and References 157

12 Finding Where Several Functions are Zero 159
12.1 The general problem for real elementary functions 159
12.2 Finding a suitable solvable problem 160
12.3 Extending the f(x) solution method to the

general problem 163
12.4 The crossing parity 165
12.5 The crossing number and the topological degree 166
12.6 Properties of the crossing number 170
12.7 Computation of the crossing number 171
12.8 Newton’s method for the general problem 175
12.9 Searching a more general region for zeros 176 i
Software Exercises J 178
Notes and References 180

13 Optimization Problems 181
13.1 Finding a function’s extreme values 181
13.2 Finding where a function’s gradient is zero 184
13.3 The demo program extrema 188
Software Exercises K 188
Notes and References 189

14 Ordinary Differential Equations 191
14.1 Introduction 191
14.2 Two standard problems of ordinary differential
equations 193
14.3 Difficulties with the initial value problem 196
14.4 Linear differential equations 197
14.5 Solving the initial value problem by power series 198
14.6 Degree 1 interval arithmetic 201
147 An improved global error 205
14.8 Solvable two-point boundary-value problems 208
14.9 Solving the boundary-value problem by power series 210
14.10 The linear boundary-value problem 213
Software Exercises L 214
Notes and References 216



Contents

15 Partial Differential Equations 217
15.1 Partial differential equation terminology 217
15.2 ODE and PDE initial value problems 219
15.3 A power series method for the ODE problem 220
15.4 The first PDE solution method 223
15.5 A simple PDE problem as an example 227
15.6 A defect of the first PDE method 228
15.7 The revised PDE method with comparison computation 229
15.8 Higher dimensional spaces 230
15.9 Satisfying boundary conditions 231
Software Exercises M 232
Notes and References 233

16 Numerical Methods with Complex Functions 235
16.1 Elementary complex functions 235
16.2 The demo program c_deriv 237
16.3 Computing line integrals in the complex plane 237
16.4 Computing the roots of a complex polynomial 238
16.5 Finding a zero of an elementary complex function f(z) 239
16.6 The general zero problem for elementary
complex functions 242
Software Exercises N 245
Notes and References 247

The Precise Numerical Methods Program PNM 248
Index 249

ix



Introduction

The programs that come with this book not only obtain numerical approxima-
tions, but also bound the errors, and in this way are able to display answers correct
to the last decimal digit. This first chapter provides the information needed to
use the software easily and to understand any numerical results obtained. The
next section gives some background for the software, the three sections after that
describe how to use the software, and the last section illustrates how numerical
approximations are displayed and how these displays should be interpreted.

1.1 Open-source software

Because precision in numerical computation is still a novelty, we thought it
important to provide the code for every computation program. To keep the source
code relatively simple, all computation programs are MS-DOS programs instead
of Windows programs. The successive Windows operating systems all allow a
user to run an MS-DOS program via a command subsystem.

Our Windows program PNM lets you avoid extensive keyboard typing, as
was necessary in the MS-DOS era. We need to review the fundamentals of how
to call up a program using the command subsystem of Windows.

In general, a command line, entered at the computer keyboard, specifies two
files and has the form

namel name?2
Here namel specifies a hard disk file, namel.exe, containing the computer
execution instructions. (Each hard disk filename has a three letter file extension

that is separated from the main part of its name by a period.) A following

1



2 1 Introduction

name2 may not be present in the command line, but if present, it specifies
some additional hard disk file containing information needed by the executing
program. With our command lines, the name2 file extension is always log,
so when name2 is present in a command line, the file name2.log holds the
needed data.

1.2 Calling up a program

As a simple example problem, which will be solved in detail in this section,
suppose we require the solution of the two linear equations

X +x,=1

X —x,=2

You can become familiar with controlling the software by imitating the following
steps on your PC.

We need to call up an appropriate program to solve this problem, and we
suppose that either we do not know the name of the program or have forgotten it.
In this situation, call up the general program problem. That is, click on PNM
in your Windows “Programs” display, and after the PNM form appears, click
on the Command menu, then click on the Exe part subsection, and finally,
choose the problem program from the list of programs that appears.

The PNM form caption now will be “Command: problem”. Next click on the
Command menu again, and this time click on the Go subsection. The PNM form
will disappear, and the next step is to get to the Windows command subsystem
(review page 248), type just the single letter g (for “go”) and hit the ENTER key.

The program problem will display various options and, according to your
responses, eventually displays the name of an appropriate computation program.
To solve our simple example, we first enter the integer 6, followed by the
integer 1. The program problem, in response to these entries, displays the
program name “equat”.

Now, knowing the program name, the next step is to call it up. We need to
exit the Windows command subsystem, and this can always be done by entering
the letter e (for “exit”) and hitting the ENTER key.

Once more, click on PNM in your Windows ‘“Programs” display, and after the
PNM form appears, click on the Command menu, then click on the Exe part
subsection, and choose equat from the list of programs. The displayed caption
changes to “Command: equat”. Next click on the Command menu again, and
click on the Go subsection. Again the PNM form disappears, and once more we
need to get to the Windows command subsystem, type the letter g and hit the
ENTER key.

We now see a message identifying equat as a program for solving n linear
equations in n unknowns. This program requires a user to view simultaneous



1.3 Log files and print files 3

equations in the matrix—vector form AX = B, so let us recast our simple problem

into that form:
L 1ffx | _|[1
I—=1)[x| |2

Specify the number of equations by entering 2, and then enter the four coef-
ficient matrix values of 1, 1, 1, and —1, followed by the two vector entries
of 1 and 2. Then select the number of decimal places, say 10, by entering the
integer 10. The solution is now displayed to 10 decimal places.

1.3 Log files and print files

Most, but not all, of the computation programs create both a log file and a print
file. If a hypothetical program abc creates a log file, then the file abc . 1og will
be found alongside the hard disk file holding the abc execution code (which
would be abc . exe) as soon as the program abc obtains from you all the data
needed to completely specify your computation problem, and before the program
abc starts a solution run, The abc . 1og file lists each keyboard line you entered,
with a description of what the entered line controls. A log file makes it easy
to modify the problem for another abc run, because you need only change the
abc. log file appropriately (using the PNM form to do this), and then give
the command abc abc instead of the command abc. Whenever there are two
names in a command line that are separated by one or more spaces, the second
name designates a log file that defines the problem. Thus with the command
line abe abe, the program abce (held in the file abc.exe) does not request
keyboard entries. Instead it uses the file abc.log to specify the problem.

If the program abc creates a print file, the file abc.prt, containing a
summary of the problem with a list of the answers obtained, will be found
alongside the file abc.exe, after the program abc completes a solution run
on a problem. The file abc.prt can be sent to your PC’s printer to obtain a
record of the problem’s solution. The PNM form will also do this task.

We now return to the simple example of the preceding section, which we pre-
sume has just been solved by using the program equat. To see the equat . prt
file, obtain the PNM form, click on the Prt menu, and then click on the Open
subsection. The PNM form now holds the contents of the equat.prt file,
although a part is obscured. Click on the right side of the PNM form and extend
it so that the complete contents of the print file are in view. When the Print
subsection of the Prt menu is selected, your printer copies whatever is visible
in the PNM form, so before printing, it is important to adjust the PNM form
size in both dimensions appropriately.



4 1 Introduction

To see the equat. log file, first click on the Log menu, then click on the
Open subsection, and finally click on the single line labeled equat. The PNM
form now holds the contents of the equat. log file.

Let us suppose that immediately after we obtain the solution of our initial
example problem, we find we need to solve the related problem

x+x,=3

X, —x,=4

Here the equation right side values have been changed from their previous values
to 3 and 4. Edit the log file to specify this new problem by changing the two
vector values from 1 and 2 to their new values of 3 and 4, and then click on the
Save subsection of the Log menu.

Our new problem can be solved now by clicking on the Log part of the
Command menu, then clicking on the single line labeled equat. The PNM
caption changes to “Command: equat equat”. Next click on the Go subsection
of the Command menu, and, as usual, go to the Windows command subsection,
type a g and hit the ENTER key. The solution to our new problem is now
displayed.

1.4 More on log files

This section need be read only if you repeatedly use a particular program to
solve a collection of related problems. We continue to use abc as the name of
a hypothetical program creating a log file. The reader can think of abc as being
a computation program (like equat) used earlier to solve some problem.

If the abc.log file already exists and you give the one word command abc,
then after you specify the computation problem, the abc.log file is cleared
and refilled with the new problem’s keyboard lines. An existing abc . log file
can be saved by being renamed. This way the file is not cleared by an abc
command, and the renamed file can still be used as a problem specifier.

To rename the abc log file, the PNM form caption must be either “Command
abc” or “Command abc abc”. If this is not the case, click on the Command menu,
then on the Exe part subsection, and choose abc from the list of programs.
Now with the needed PNM form caption, click on the Log menu, then on the
Open subsection and choose the abc log file from the list of log files. The
PNM form now displays the log file. Next click on the Log menu a second
time, and then on the Save As subsection. There is now a request for an addend
to abc to generate a new log file name. Thus if you specify the addend as 1,
the abc.log file is renamed abcl.log. Later, when you want to rerun the
previous abc problem, give the command abc abcl.



1.5 The tilde notation for printed answers 5

Any alphabetic or numeric characters can be appended to abc to make up
a new log file name. Thus abc123 or abcxyz are both acceptable new log
file names.

1.5 The tilde notation for printed answers

The number of decimal places to which an answer is computed is set by you, the
program caller, and the decimals usually can be specified as either fixed-point or
scientific floating-point. Let us suppose that three fixed-point decimal places are
requested. It is possible with this decimal place choice that a computed answer
is displayed this way:

111.234"

The tilde (7) indicates that the displayed result has a positive error bound.
Nevertheless, the displayed result is correct to the last decimal place shown.
Section 3.4 has a discussion of the meaning of the phrase “correct to the last
decimal place”, but this can be understood here to mean that the magnitude of
the error is no larger than one-half of a unit in the last decimal place, or 5 units
in the decimal place that would follow the last digit displayed. Thus, for the
sample answer just shown, 0.0005 is the error bound on the answer. The tilde
may be mentally converted to i% and so this particular answer also may be
interpreted as

111234+

Here the displayed % is of course to be associated with the terminal digit 4 of
the answer.

Occasionally, when k fixed-point decimal digits are requested, an answer may
appear showing k + 1 decimal digits after the decimal point. Whenever an extra
decimal place appears, the extra decimal digit is always a 5. Thus, continuing
with our supposition that three fixed-point decimal digits are requested, it is
possible that an answer might appear this way

111.23457

Section 3.4 explains why it is necessary sometimes to give an answer to one
more decimal place than requested.

More rarely, when k fixed-point decimal digits are requested, an answer may
appear to k decimal places, but without the tilde. The lack of a tilde indicates
that the displayed answer has a zero error bound, and accordingly the answer is
exact. For instance, continuing with our three fixed-point decimal supposition,
an answer might appear this way:

111.234



