computer-aided

(iatabase design
the DATAID project

edited by a.albane,
v.deantonellis and a.di leva

north-holiand

COMPUTER-AIDED DATABASE DESIGN
The DATAID Project

Edited by
Antonio ALBANO

Universita di Pisa
Italy

Valeria DE ANTONELLIS
Universita diMilano
Italy

and

Antonio DI LEVA

Universitadi Torino
Italy

1985

NORTH-HOLLAND
AMSTERDAM e NEW YORK e OXFORD

©Elsevier Science Publishers B.V., 1985

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the copyright owner.

ISBN: 0444877355

Published by :

ELSEVIER SCIENCE PUBLISHERS B.V.
P.O. Box 1991

1000 BZ Amsterdam

The Netherlands

Soledistributors forthe U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52 Vanderbilt Avenue

New York, N.Y. 10017

US.A.

PRINTED IN THE NETHERLANDS

PREFACE

At present, database is an important area of atudy 4n computer
science. On the one hand, it is in itself an area of interest,
having produced a large number of results on specific topics, like
relational theory, data models, database system architectures,
database programming languages, distributed databases, and physical
file design. Secondly, it is an area where results of other areas of
computer science, such as Programming Languages, Artificial
Intelligence and Software Engineering, have been used to produce new
interesting applications.

In the last few years, there has been a great interest in database
design, where the goal is to combine results from knowledge
representation schemas, software engineering, data semantics,
relational theory and physical file design in order to define: a)
a methodology to go from user requirements to the implementation of
applications using DBMSs, through a sequence of structured steps; b)
an environment of automated tools to assist the designer during the
development process: documentation tools, graphical interfaces,
mapping tools between specifications given at different levels of
abstraction.

This book addresses both the aspects of database design, and
presents a methodology, for centralized and distributed databases,
together with a set of automated tools to support the design
process. The book itself evolved from the experience of researchers
from different Italian universities, industries and research
institutions participating in a joint 5-year project, called DATAID,
supported by the Italian National Research Council, within the
nationwide Progetto Finalizzato Informatica research project.

The book follows a previous one, published two years ago: S. Ceri
(ed.), Methodology and Tools for Database Design (North-Holland,
Amsterdam, 1983). The latter was mainly concerned with the proposed
methodology for centralized databases, although preliminary results
regarding the tools under implementation were also included. This
book, instead, is mainly dedicated to the description of tools in an
advanced stage of implementation and contains the extension of the
methodology . to distributed databases. We have decided to publish
these results because we believe that the DATAID project has
achieved significant contributions to the database design field, and
the two books contain specific solutions to issues of general
interest.

The preparation of the book has covered a period between June and
December 1984.

vi

ACKNOWLEDGEMENTS

This book would not have been possible without the support and the
encouragement from the direction of the Progetto Finalizzato

Informatica, in the persons of Prof. Angelo Raffaele Meo and Dott.
Paolo Bronzoni.

vii

THE DATAID PROJECT

DATAID is a 5-year project financed by the Italian National Research
Council within the Progetto Finalizzato Informatica. The project
started in September 1979 with the participation of several working
groups from both the academic and the industrial environments. The
aim of the project is the development of a computer aided
methodology for database design.

In 1980 a survey was carried out concerning existing methodologies
and related tools, and the architecture of a manual methodology,
called DATAID-1, was defined.

In 1981 a first version of the methodology was released, and the
introduction of automated tools in the design process was
considered.

In 1982 the functional specifications of a first set of tools for
conceptual design have been produced. For the dissemination of the
methodology, several workshops and a first course were held, for
which a training manual was prepared. Experimentation of the
methodology has been initiated in Local and Central Government
applications.

In 1983 and 1984 the methodology has been revised and extended to

include distributed database design. At the same time, prototypes of
the tools have been developed.

At present, the DATAID working groups are

Universities:

Dipartimento di Elettronica, Politecnico di Milano
Dipartimento di Informatica, Universitad di Pisa

Dipartimento di Informatica, Universitd di Torino
Dipartimento di Informatica e Sistemistica, Universita di Roma

Istituto di Cibernetica, Universita di Milano

viii The DATAID Project

Research Centers of Italian National Research Council:

CIOC, Centro di Studio per 1'Interazione Operatore-Calcolatore,
Bologna

CNUCE, Centro per il Calcolo Elettronico, Pisa

IASI, Istituto di Analisi dei Sistemi ed Informatica, Roma

Industries:

CRATI, Consorzio Calabro per 1la Ricerca e 1le Applicazioni nel
Settore dell'Informatica, Rende (Cosenza)

CESELT, Centro Studi e Laboratori Telecomunicazioni, Torino
DATABASE Informatica, SpA, Roma
ELEA, SpA, Olivetti Formazione e Consulenza, Firenze

IPACRI, SpA, Istituto per 1'Automazione delle Casse di Risparmio
Italiane, Roma

Systems & Management, SpA, Torino

Carlo Batini and Antonio Di Leva were coordinators of the project
from 1979 to 1981, while the present coordinators of the project are
Valeria De Antonellis and Antonio Di Leva.

A list of contributions in journals and of papers presented at
conferences as well as technical reports written by project members,
from 1979 to 1985, is given in Appendix. Requests for publications
may be addressed to the aﬂghors.

CONTENTS

Preface
Acknowledgements
The DATAID Project

Computer-Aided Database Design: The DATAID Approach
A. Albano, V. De Antonellis, and A. Di Leva

PART I - TOOLS FOR DATABASE DESIGN

Chapter I
A Tool for Modeling Dynamics in Conceptual Design
V. De Antonellis and B. Zonta

Chapter II

GINCOD: A Graphical Tool for Conceptual Design of Data Base
Applications

C. Batini, E. Nardelli, M. Talamo, and R. Tamassia

Chapter III

A Software Engineering Approach to Database Design:
The Galileo Project

A. Albano and R. Orsini

Chapter IV
A Workbench for Conceptual Design in Galileo
M. Capaccioli and M.E. Occhiuto

Chapter V
The Logical Design in the DATAID Project: The Easymap System
M.N. Bert, G. Ciardo, B. Demo, A. Di Leva, P. Giolito,

C. Iacobelli, and V. Marrone

Chapter VI
Architecture of a Physical Design Tool for Relational DBMSs
D. Maio, C. Sartori, and M.R. Scalas

Chapter VII

Integrated Tools for Physical Database Design in CODASYL
Environment

S. Orlando, P. Rullo, D. Saccd, and W. Staniszkis

17

33

53

77

97

115

131

X Contents

PART II - DATAID METHODOLOGY

Chapter VIII
DATAID-D: Methodology for Distributed Database Design
S. Ceri and B. Pernici

Chapter IX

Dynamics in Logical Database Design
B.G. Demo, A. Di Leva, and P. Giolito
Chapter X

Important Issues in Database Design Methodologies and Tools
S. Navathe

APPENDIX - THE DATAID PUBLICATION LIST

Author Index

157

185

199

213

221

COMPUTER-AIDED DATABASE DESIGN: The DATAID Project
A. Albano, V. De Antonellis, and A. Di Leva (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1985

COMPUTER-AIDED DATABASE DESIGN: THE DATAID APPROACH

Antonio Albano
Dipartimento di Informatica, Universitd di Pisa
Corso Italia, 40 - 56100 Pisa

Valeria De Antonellis
Istituto di Cibernetica, Universitd di Milano
Via Viotti, 5 - 20133 Milano

Antonio Di Leva
Dipartimento di Informatica, Universita di Torino
Via V. Caluso, 37 - 10125 Torino

The approach to the design of applications using centralized
and distributed databases adopted in the DATAID Project is
described, together with the role of the automated tools that
are to be integrated into a database development environment
to support the design methodology.

1. INTRODUCTION

The development of computer technology, and the reduction -of its
costs, continuously increase the use of DBMSs to maintain the data
needed by the functions of an organization. In the early '70s, DBMSs
were used to support basic, independent and structured organizatio-
nal functions. The trend is now toward a global integration of
functions, with DBMSs used to support managers in decision making;
and in the future DBMSs will be integrated with expert systems to
build computerized information systems that will be more effective
for decision makers, and able to assist non-expert users in gaining
access to data and in interpreting them.

The growing use of DBMSs, the complexity of the new applications,
and the need to implement database applications that can be readily
adapted to changes in user requirements, has led to an increasing
demand for environments with an integrated set of automated tools to
support both the design and the maintenance of database
applications. The problem is similar to that of software engineering
and the following strategies have been suggested: a) the definition
of a design methodology composed of a set of structured steps in
which design decisions are considered one at a time to obtain a
satisfactory design; b) the definition of techniques to be used
during the design steps; c) the definition of tools for an. automated
development support system. Database design techniques are required
basically for the following activities:

Data Analysis, to help the users in organizing their information
needs in a structured and stable way to support the evolution of
the applications easily.

. Prototyping, to build an early version of the system to be
implemented that exhibits the essential features of the future
operational system, except for the resource requirements and
performance. A prototype helps the users both to determine

2 A. Albano et al.

whether or not the system in development matches their
requirements before the final implementation begins, and to
improve their perception of organization needs.

» Implementation, to convert the results of analysis and the
prototvpe into an operative system with a satisfactory storage
use and an efficient execution of applications.

The approach to the design of applications using a centralized or a
distributed database adopted in the DATAID Project is described,
together with an overview of the role of the automated tools under
development. Section 2 describes the aspects considered during the
database design process, the proposed abstraction mechanisms and the
diagrammatic representations used. Section 3 presents the DATAID
methodology, and Section 4 describes the automated tools.

2. WHAT TO MODEL AND HOW TO MODEL

Among researchers and practitioners there is general consensus about
the basic aspects that should be modeled during the database design
process:

. Concrete knowledge, that is, the entities of the observed
system, their properties and relationships between them.

‘ Abstract knowledge, that is, the integrity constraints, which
impose restrictions on the legal states of the model of the
observed svstem.

. Procedural knowledge, that is, the basic operations that must be
applied to the concrete knowledge so that the model evolves to
reflect the changes in the observed system.

. Dynamics, that is, how the concrete and procedural knowledge can
be used to model the permissible sequences of events in the
organization's functions (or activities), and communication both
among activities and activities and users.

The approaches to database design can differ about the methodology
adopted in data analysis, the abstraction mechanisms used to model
the above aspects, and the features of the language designed to
support the abstraction mechanisms during requirements specification
and conceptual design /6,7,8/. In the DATAID Project the following
alternatives have been investigated.

Concrete Knowledge

Two data models have been used: an Enriched Entity Relationship
Model (EERM) and a Semantic Data Model (SDM).

EERM provides the analyst with four abstraction mechanisms:
entities, relationships, attributes, and abstraction hierarchies
/9/. The differences between the EERM and the ER model introduced by
P.P. Chen /11/ are:

Abstraction hierarchies. The first type of hierarchy is the 'subset
relationship': an entity E, is a subset of the entity E, if every
occurrence of E, is an occurrence of E, as well. The second type of
hierarchy is th% 'generalization': an ‘entity E is a generalization

Computer-Aided Database Design 3

of the entities E,, ..., E_, if each occurrence of E is also an
occurrence of at most one of the entities E,, ..., E_ (ISA exclusive
hierarchy). The partition over the occurrences of E' is established
by the value of a property of E (underlying attribute). Both in
subset relationships and in generalizations, attributes and
relationships of the entity at the upper level of a hierarchy are
inherited by the entities at the 1lower 1level, which may have
additional attributes and relationships. Abstraction hierarchies are
'complete' if for each occurrence of the upper level entity there
exists a corresponding occurrence of the entity immediately lower in
level.

Aggregates. A set of attributes that can be referred to as a single
property.

Repeating attributes. Attributes that can have more than one value.

Identifiers. An internal identifier is an attribute or a group of
attributes that determine uniquely an entity; entities may also be
identified through other entities associated with them (external
identifiers).

The diagrammatic representation of the EERM abstraction mechanisms
is shown in Table 1.

SDM provides the analyst with at least the following mechanisms:

Classification. The entities being modeled that share common
properties are gathered into classes. The names of the classes
denote the elements present in the database. The elements of a class
are represented uniquely, that is, only one copy of each element is
allowed.

Aggregation. The elements of classes are aggregates, i.e., they are
abstractions having heterogeneous components and may have elements
of other classes as components. Consequently, relationships among
entities are represented by aggregations, rather than with a
separate mechanism as in EERM.

Generalization. Classes themselves can be organized in a hierarchy
through a partial order relationship, often referred to as the ISA
hierarchy: classes in this relationship model entities that play
different roles in the observed system, and may be described with a
different level of detail. If A is a subclass of B, the following
properties hold: a) the elements of A are in every state a subset of
the elements of B; b) the elements of A inherit all the properties
of the B elements.

Other features of a SDM are: a) it supports multi-valued attributes;
b) it allows the definition of procedurally defined information,
such as derived attributes or derived classes; c¢) it provides
special syntax for common constraints, such as ranges for
attributes, cardinality of relationships, identifying attributes,
optional vs. required attributes, modifiable vs. constant attributes
/6,14/.

The diagrammatic representation of the abstraction mechanisms is the
same as that of EERM, with only this difference, that instead of
naming a relationship in a diamond, in the case of SDM the names of
the attributes used to model the relationship with the aggregation
are shown.

A. Albano et al.

CONCEPT

REPRESENTATION

ENTITY

RELATIONSHIP (total/partial)

RELATIONSHIP (1:1 / 1:n / n:m)

ATTRIBUTE (total/partial)

IDENTIFIER (internal/external)

REPEATING ATTRIBUTE

AGGREGATE

GENERALIZATION HIERARCHY
with underlying attribute: a

SUBSET HIERARCHY

COMPLETE HIERARCHY

—30 —+—0
—>>0

Table 1

Computer-Aided Database Design 5

Abstract Knowledge

General constraints, different from those for which a special
syntactic form is provided in the data models, can be stated in
natural language in EERM and in the conceptual language Galileo in
SpM /1/.

Procedural Knowledge

Several forms are provided to define special operations for
manipulating objects in semantically meaningful ways, and to specify
access requirements.

In the requirements collection and analysis phase the procedural
knowledge is described by Operations Glossary. For each operation
(transaction) the following aspects are specified: a natural
language description; operation type (read, insert, delete);
execution type (on-line, batch); frequency of execution; data
involved and their role (input, output, visited) /13/.

In the conceptual design phase, with the approach based on EERM,
operations can be defined at three 1levels of abstraction:
conceptual, navigational and executable. The goal of a conceptual
description is to specify the names and types of the data needed by
an operation to ensure that the operation view is consistent with
the conceptual schema. The goal of a navigational description is to
specify the data needed by an operation, together with: a) the
sequence in which tha data are accessed; b) the type of usage (read,
insert, delete); c) the quantitative information on data usage in a
period of interest (the number of times that an access step is
executed, and an estimate of the number of records accessed by each
such step). Finally, the goal of an executable description is to
give an operational specification. For each level both a textual and
a diagrammatic representation is provided /4/.

With the approach based on SDM, the procedural knowledge is
described for three different purposes using the conceptual language
Galileo. First, to specify derived information, such as derived
attributes and derived classes. Second, to define domain-dependent
operations to manipulate objects in a semantically meaningful way.
The role of these operations is similar to those associated with
abstract data types. Third, to define procedures guaranteed to leave
the database in a consistent state (transactions), providing
moreover facilities for raising and handling exceptions /1/. A
version of Galileo has been defined to specify operational
requirements at different levels of abstraction in a non-executable
language including a construct to specify quantitative data during
the requirements collection and analysis phase /2/.

Dynamics

In the requirements collection and analysis phase, dynamics is
described by Events Glossary, which deals with the following
aspects: precedence relationships among events; data and operations
involved. For each event an Event Specification Form is filled to
give information on the related conditions and operations /13/.

In the conceptual design phase, dynamics is described by means of
Petri Nets or by processes /2,9/. Petri Nets are used with the

6 A. Albano et al.

Condition-Event interpretation and they have been extended with
definitional capabilities to deal with message passing among the
functions to be automated. Processes are modeled in Galileo, which
has been extended with a construct similar to ‘'scripts' of Taxis
/2,3/.

3. THE DATAID METHODOLOGY

The aim of a database design methodology is to transform a
user-oriented linguistic representation of the information needs of
an organization into a DBMS-oriented description. This process is
performed through several phases.

In the requirements collection and analysis phase, user requirements
are translated into a requirements schema which is: user independent
(that 1is, requirements are normalized according to established
standards); and conceptual model independent (that is, no choice is
made at this level regarding the structures of a model used to
represent the information of interest). In the conceptual design
phase, the requirements schema is formalized into a conceptual
schema which is DBMS independent (in that, no choice is made at this
level regarding the implementation structures). Finally, in the
logical and physical design phases, the result is a DBMS dependent
schema, that is, it is a DBMS processable schema.

The DATAID-1 methodology covers all these phases as illustrated in
the following /10/. It assumes that the analysis of the
organization, of its information flows, and the cost-benefit
analysis have already been performed before the actual start of the
database design process.

Inputs of the requirements collection and analysis phase are
informal and heterogeneous descriptions of the observed system. Two
classes of descriptions are considered: natural language sentences
(derived from pre-existing documents, results of interviews or
meetings, paper files); traditional/DBMS files. A recent extension
of DATAID-1 deals with forms analysis as well /5/.

Output of the phase is a collection of glossaries describing data,
operations, and events. To fill in the glossaries, natural language
descriptions are filtered and rewritten in a restricted language;
revised requirements are then classified into different sentence
types (data, operations and events sentences). Intra-glossary and
inter-glossaries checks concerning completeness and consistency are
performed to prevent transmission and amplification of errors.

In the conceptual design phase a conceptual view is built for each
environment of the organization (view modeling); these views are
then integrated to form a global conceptual description of the
database (view integration). The conceptual schema of an environment
is the formalized representation of both the static and dynamic
requiremants. As regards the conceptual model, we have adopted the
EERM for data, constraints and operations modeling, and Petri Nets
for functions modeling.

The design of local views is based on operations modeling. For each
operation, an operation schema is built which describes the required
data. The data schema is built progressively: when an operation
schema is completed, data structures which have been introduced are
aggregated with the previous partial data schema. This process is

Computer-Aided Database Design

iterated for all the operations and, eventually, it produces the
data schema. To start the aggregation process, we consider two
alternative cases. In one case we use a skeleton schema: this
happens when in the organization data are found naturally structured
into entities, attributes and relationships. In the other case, an
initial operation schema is built for the most relevant operation.

The organization functions are analyzed in terms of events, and are
represented by Petri Nets graphs. These graphs show the causal
dependencies/independencies between events (by means of structures
of sequence, conflict and concurrency) and represent the way in
which the functions to be automated must be executed.

In the views integration process, strategies (based on conflict
analysis, merging, enrichment, and restructuring) are provided to
deal with the problem deriving from the fact that objects (and their
properties) which are common to different views have not been
modeled in the same way (i.e. by means of the same name,
classification structures, and integrity constraints structures) in
the different schemata. After the integrated data schema has been
constructed, integrated operation schemata are produced, and the
events schemata are coordinated through communication 1links which
represent message exchanges between functions.

The process of logical design maps from the conceptual schema to a
logical schema of the DBMS chosen for the implementation. Two
classes of DBMS are considered in the present version of the
methodology: relational DBMSs and network (Codasyl-like) DBMSs.

The transformation process is based on two fundamental tasks:

o Simplification of the global conceptual schema: data structures
not directly translatable into the 1logical model (like
generalization hierarchies and multiple relationships) are
converted into simpler ones. This task produces a simplified
schema which contains only entities and binary relationships.

. Refinement of the simplified schema: a set of transformations on
the simplified schema is applied (typically, partitioning of the
entities and replication of attributes); performance measures
are used in order to select, among different alternatives, the
solution which optimizes the execution of the most important
operations.

The aim of the physical design phase is to provide database
designers with a complete framework of design decisions and to guide
them through the design process to select the best physical design.

The physical design decisions for Codasyl-like databases are
subdivided into three broad decision areas:

s Access path support decisions: implementation strategies for
entry point records (LOCATION MODE clause options) and sets (SET
MODE clause options) are considered.

‘ Placement strategy decisions: member records of a set are
dispersed throughout the database area or clustered so that
neighbouring member records tend to be stored in the vicinity.

. Storage allocation decisions: database areas for storage of
records, indexes and pointer array tables are selected; each
area is subdivided into a number of pages and the page length is
fixed.

8 A. Albano et al.

The methodology is based on the evaluation of all possible record
and set implementation strategies from the global processing point
of view. This is accomplished in the following tasks:

. Creation of record usage trees: accesses to a record are
globally described as a tree where the leaf nodes are the
different tvpes of operations performed on the object record.

. Storage allocation: heuristic rules are used for calculating
record length, record allocation in areas, area and page sizes,
and other physical parameters.

" Evaluation of implementation strategies: starting from the
relative costs and frequencies of the operations, implementation
strategies are evaluated.

The main goal of the physical design for relational DBMSs is the
selection of the secondary indexes of the relations of the schema;
the choice of primary indexes (or keys) has already been made in the
logical design phase.

The method is based on the following assumptions, that are quite
realistic in the case of small/medium size DBMSs:

a) The indexes are structured as B+—trees.

b) At most one index per relation can be used to access tuples in
executing an operation.

c) Joins are performed according to the nested loops method.

d) The primary key cannot be updated and an index cannot be used to
access tuples if it is currently modified.

e) The criteria used by the optimizer to evaluate execution costs
are known.

The physical design is then consistent with the choices made by the
optimizer and consists of four tasks:

. Specification of database statistics: these data are obtained
transforming the results of the logical design phase.

. Cost evaluation: it provides a matrix giving the costs of all
operations, each being executed when only one of all possible
indexes is built on the relations.

§ Index comparison: indexes are compared and the less efficient
are eliminated.

. Generation of an efficient set of indexes: the final relational
schema, in which all secondary indexes are determined, is
constructed.

Classification of Methodologies and the DATAID Role

In the following we consider some classification criteria for
methodologies and specify the role of the DATAID-1 methodology with
respect to them. Methodologies can be classified according to
several features.

A first classification distinguishes data-oriented methodologies
which focus on properties of data (to enhance the stability of the
design with respect to changes of the application), and function-

