Problem
solving and
Structured
Programming

l[l;ascal

second Edition

Flliot B. Koffman

Problem Solving
and Structured
Programming in Pascal

SECOND EDITION

ELLIOT B. KOFFMAN

Temple University

A
vy
ADDISON-WESLEY PUBLISHING COMPANY, INC.
Reading, Massachusetts * Menlo Park, California
Don Mills, Ontario * Wokingham, England ¢ Amsterdam ¢
Sydney * Singapore * Tokyo * Mexico City * Bogota ¢
Santiago ¢ San Juan

This book is in the Addison-Wesley Series in Computer Science
James T. DeWolf, Sponsoring Editor

Hugh Crawford, Manufacturing Supervisor

Robert Forget, Art Editor

Fran Palmer Fulton, Production Editor

Karen M. Guardino, Production Manager

Richard Hannus, Hannus Design Associates, Cover Design
Maureen Langer, Text Designer

Library of Congress Cataloging in Publication Data

Koffman, Elliot B.
Problem solving and structured programming in
Pascal.

Includes index.

1. Pascal (Computer program language) 2. Structured
programming. I. Title.
QA76.73.P2K63 1985 001.64'24 84-16811
ISBN 0-201-11736-3

Turbo Pascal™ is a trademark of Borland International, Inc.

Reprinted with corrections, September 1985

Copyright © 1985, 1981 by Addison-Wesley Publishing Company, Inc. All rights re-
served. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in

Canada.

CDEFGHIJ-DO-898765

Reference Guide to Pascal Statements

Statement

Example of Use

program heading

comment

constant declaration
integer
character
string
real

type declaration
enumerated
subrange
string
pointer
record

array
file
set

variable declaration
record
set
text file
file
pointer
array
character
integer

declaring function
with BOOLEAN
result

assignment (BOOLEAN)
set membership

program GUIDE (INPUT, OUTPUT, INFILE, OUTFILE);

{This section shows examples of Pascal statements.]
(* Comments are ignored by Pascal. *)

const
STRINGSIZE = 20;
BLANK = ' ';
SCHOOL = 'TEMPLE UNIVERSITY';
DEANSLIST = 3.5; PROBATION = 1.0;
type
COLLEGE = (BUSINESS, ARTS, EDUCATION, GENERAL);

STUDENTRANGE = 1..100;
STRING = packed array [1l..STRINGSIZE] of CHAR;
CLASSPOINTER = ~STUDENT;
STUDENT = record
NAME : STRING;
GPA : REAL;
INCOLLEGE : COLLEGE;
NEXTSTU : CLASSPOINTER
end; {STUDENT}
MAJORARRAY = array [STUDENTRANGE] of COLLEGE;
STUFILE = file of STUDENT;

GRADESET = set of 'A'..'Z';
var

CURSTU STUDENT ;

GRADES : GRADESET:;

INFILE : TEXT;

OUTFILE STUFILE;

CLASSLIST CLASSPOINTER;

MAJOR : MAJORARRAY;
NEXTCH : CHAR;
I, COUNTPROBATION : INTEGER;

function MEMBER (NEXTCH : CHAR;
TESTSET GRADESET) BOOLEAN;
{Returns TRUE if NEXTCH is a member of TESTSET. |

begin [MEMBER]

MEMBER := NEXTCH in TESTSET (Is NEXTCH in set?}
end; |[MEMBER]

(continued on last page)

Problem Solving
and Structured
Programming in Pascal

SECOND EDITION

To my family—Caryn, Richard, Deborah, and Robin Koffman,
for their constant love and understanding.

To my parents—Edward and Leah Koffman, for all that they
have given me.

Pretace

There have been many changes in the way the first course in Computer
Science is taught since the first edition of this book was published in 1981.
During the past two years I have been the chairman of the ACM Task
Force that has been studying these changes with an eye towards updating
the description of the recommended first course for Computer Science ma-
jors (CS1).! Parallel with this effort, the Educational Testing Service (ETS)
published a set of guidelines for an Advanced Placement course in Com-
puter Science.? The text has been completely revised and reorganized to
conform to both of these guidelines.

This text can be used in any introductory programming course that em-
phasizes a careful, disciplined approach to programming in Pascal. Since
the Advanced Placement course is a full year course, this text covers more
material than would normally be completed in one semester. The addition-
al material on searching and sorting algorithms (Chapter 9) and dynamic
data structures (Chapter 10) are optional advanced topics in CS1 and
would normally be deferred until CS2.

As in the first edition, the primary goal of this text is to illustrate and
teach problem solving through the stepwise development of algorithms. To
facilitate this, procedures are introduced much earlier in this edition.
There are also several large case studies throughout the text that integrate

!'Koffman, E., Miller, P., and Wardle, C. Recommended Curriculum for CS1, 1984. Communications ACM 27,
10 (Oct., 1984), 998-1001.

2 Advanced Placement Program of the College Board, Advanced Placement Course Description: Computer
Science, Educational Testing Service, Princeton, NJ, 1983.

topics and illustrate their application in a substantial programming prob-
lem with multiple procedures. Many new examples and programming as-
signment projects are provided.

Some of the important features of this new edition are:

[I Early introduction of procedures: Procedures without parameters are in-
troduced in Chapter 2 and are used for self-contained operations that re-
quire no global variable access (no side-effects). Procedure parameters
are discussed in Chapter 3. Early coverage of procedures will enable
students to practice the top-down approach from the beginning and to
become more adept at program modularization.

Interactive programming: The emphasis is on modern technology and in-
teractive programming. The majority of examples are written as interac-
tive programs; however, students are shown early how to convert these
programs to run in a batch environment. There are some batch-oriented
examples as well.

] New chapter on recursion: There is a new chapter on recursion that pro-
vides many examples of recursive procedures and functions. Additional
algorithms for searching and sorting arrays are also provided in this
chapter.

| Arrays: Single and multidimensional arrays are covered in one chapter
instead of in two as in the first edition. Similarly, all material on records
is covered in a single chapter.

New expanded case studies: There are a number of new, larger case
studies within the text. The solutions to the case studies are all careful-
ly developed. System structure charts are used to represent the flow of
control and data between modules in a program system.

s Spiral aporoach: A spiral approach is used to preview topics such as the
if statement, for statement, and input/output. Features are introduced

as needed rather than overwhelming a student by providing all the de-

tails at once.

B Pedagogical aids:

m Self-check Exercises are provided at the end of most sections. Solu-
tions to selected exercises are provided at the end of the text.

m Each chapter ends with a Chapter Review section that includes a
summary, a table of new Pascal statements, and review questions.

m Boxed material: Syntax display boxes are used to describe the syn-
tax of each new Pascal statement as it is introduced, while Program
Style boxes discuss the importance of good programming style.

m Error warnings: Each chapter ends with a discussion geared toward
helping students prevent and correct common programming errors.
Several sections discuss debugging techniques.

m Program comments: All programs are carefully commented. Loop in-
variants and assertions are shown for some loops. For easy identifi-
cation, the first and last line of each procedure or program is in blue

type.
New design: The page layout is larger providing more white space and

X PREFACE

the overall tone is more user-friendly. The book has been completely re-
designed with an eye towards making it easier for students to find fig-
ures, examples, programs, and special display boxes. A second color is
used both to improve the appearance of the text and to clarify illustra-
tions.

Pascal dialects: ANSI standard Pascal is covered in the text. Common
extensions are described in appendixes on ISO standard Pascal, UCSD
Pascal and Turbo Pascal.

Reference appendixes: There are also appendixes covering Pascal lan-
guage elements, syntax diagrams, character codes, and error messages.

Complete instructor’s manual: An Instructor’s Manual provides a discus-
sion of how to teach the concepts in each chapter. Sample test questions
will be included as well as answers to all exercises, chapter review
questions, and the Programming Projects found at the end of each chap-
ter.

Transparency masters: A set of 131 transparency masters illustrating im-
portant concepts is available upon request.

Acknowledgments

Many people participated in the development of this text. The principal re-
viewers were most essential in finding errors and suggesting improve-
ments. They include: William Eccles, University of South Carolina; Frank
Friedman, Temple University; David Hannay, Union College; Helen
Holzbaur, Temple University; Abraham Kandel, Florida State University;
Raymond Kirsch, LaSalle College; David Moffat, North Carolina State Uni-
versity; Tom Nelson, North Carolina State University; Richard Rinewalt,
University of Texas at Arlington; Paul Ross, Millersville University of
Pennsylvania; Chris Speth, Western Kentucky University; Caroline
Wardle, Boston University; Charles C. Weems, Jr., University of Massa-
chusetts at Amherst; and Brad Wilson, Western Kentucky University. I am
grateful to all of them for their considerable efforts.

Towards the beginning of this project, several faculty and members of
the Addison-Wesley sales and marketing staffs participated in focus
groups to discuss the first programming course in Pascal. These discus-
sions were helpful in providing direction to the text and clarifying its orga-
nization. The faculty are: Linda Ottenstein, Michigan Tech University;
David Neusse, University of Wisconsin at Eau Claire; Richard Rinewalt,
University of Texas at Arlington; Ruth Barton, Michigan State University;
and Howard Edelman, West Chester State University.

Finally, a number of faculty reviewed and commented on preliminary
sections of the text. These faculty include: Gideon Frieder, University of
Michigan; Gary Ford, University of Colorado; Abraham Kandel, Florida
State University; Paul Hanna, Florida State University; M. Main, Universi-
ty of Colorado; Kent Wooldridge, California State University at Chico;
Richard St. Andre, Central Michigan University; C. E. Wolf, lowa State
University; Angela Wu, American University; Yure Gurevich, University of

PREFACE Xi

xii

PREFACE

Michigan; Amir Foroudi, State University of New York at Fredonia; Morris
Rang, II, Western Illinois University; Peggy R. Ayres, Linn-Benton Commu-
nity College; Muhammed H. Chaudhary, Millersville University of Pennsyl-
vania; Stanley Thomas, Wake Forest University; R.]. Del Zoppo,
Jamestown Community College; David Rosenlof, Sacramento City College;
George Beekman, Oregon State University; George Witter, Western Wash-
ington State University; J. M. Adams, New Mexico State University; John
Lushbough, University of South Dakota; Dave Valentine, State University
of New York at Potsdam; Dennis Martin, State University of New York at
Brockport; Chris]. Dovolis, University of Minnesota; Barbara Smith-
Thomas, University of North Carolina at Greensboro; Barent Johnson, Uni-
versity of Wisconsin at Oshkosh; Carl Wehner, University of Northern
Iowa; Aboalfazl Salimi, Embry-Riddle University; Larry Wilson, Old Do-
minion University; Cary Laxer, Rose-Hulman Institute of Technology; J.
Mailen Kootsey, Duke University; Jerry Waxman, City University of New
York at Queens; Bruce J. Klein, Grand Valley State College; Eris Pas, Duke
University; Gove Effinger, Bates College; Krishna Moorthy, Framingham
State College; Brian Johnson, University of New Hampshire; and John
Goda, Georgia Institute of Technology.

There were also many people involved with the actual production of the
text. From Addison-Wesley, James DeWolf was the sponsoring editor and
recruited reviewers, provided input and suggestions during the writing
stage, and coordinated with the production staff. Bill Gruener also was the
publisher with overall responsibility for the text. Karen Guardino was the
production manager and saw to it that the book was able to meet a very
tight production schedule. Maureen Langer refined the design of the text.
In Philadelphia, Fran Palmer Fulton served as the Production Editor and
coordinated and supervised the typesetting of the manuscript. I am grate-
ful to all of them for their involvement and extra efforts to get this book
published on schedule.

Philadelphia, PA E.B.K.
December 1984

Appendixes

Appendix A
Reserved Words,
Standard Identifiers,
Operators, Functions,
and Procedures

Reserved words

and end nil set
array file not then
begin for of to
case function or type
const goto packed until
div if procedure var
do in program while
downto label record with
else mod repeat

Standard identifiers

Constants:
FALSE,

Types:

INTEGER, BOOLEAN, REAL, CHAR, TEXT

TRUE, MAXINT

Program parameters:
INPUT, OUTPUT

Functions:

ABS, ARCTAN, CHR, COS, EOF, EOLN, EXP, LN, ODD, ORD,
PRED, ROUND, SIN, SQR, SQRT, SUCC, TRUNC

Procedures:

GET, NEW, PACK, PAGE, PUT, READ, READLN, RESET,
REWRITE, UNPACK, WRITE, WRITELN

Ap-1

Ap-2

Table A.1 Table of Operators

Operator Operation Type of Operand(s) Result type
= assignment any type except file
types =
arithmetic:
+ (unary) identity integer or real same as
— (unary) sign inversion operand
+ addition integer or real integer or real
- subtraction
* multiplication
div integer division integer integer
/ real division integer or real real
mod modulus integer integer
relational:
= equality scalar, string, set,
<> inequality or pointer
< less than scalar or string BOOLEAN
> greater than
<= less than or equal scalar or string
-Or-
subset set
>= greater than or equal scalar or string
-0|'-
superset set
in set membership first operand is any
scalar, the second
is its set type
logical:
not negation
or disjunction BOOLEAN BOOLEAN
and conjunction
set:
+ union
- set difference any set type T T
* intersection

APPENDIX A

Table A.2 Standard Functions

Name Description of Computation Argument Result
ABS The absolute value of the real/integer same as argument
argument
EXP The value of e (2.71828) real/integer real
raised to the power of the
argument
LN The logarithm (to the base €) of real/integer real
the argument
SQR The square of the argument real/integer same as argument
SQRT The positive square root of real/integer real
the argument (positive)
ROUND The closest integer value to the real integer
argument
TRUNC The integral part of real integer
the argument
ARCTAN The arc tangent of the argument real/integer real
(radians)
Ccos The cosine of the argument real/integer real
(radians)
SIN The sine of the argument real/integer real
(radians)
CHR Returns the character whose integer CHAR
ordinal number is its argument 1
ODD Returns TRUE if its argument is integer BOOLEAN
an odd number; otherwise returns
FALSE
ORD Returns the ordinal number of its ordinal integer
argument
PRED Returns the predecessor of its ordinal ordinal
argument
succC Returns the successor of its ordinal ordinal
argument
SR e—
APPENDIX A Ap-3

Table A.3 Table of Standard Procedures

Procedure Call

Description

DISPOSE (P)

GET (F)

NEW (P)

PACK (U, I, P)

PAGE (F)

PUT (F)
READ (F, variables)

READLN (F, variables)

RESET (F)

REWRITE (F)

UNPACK (P, U, I)

WRITE (F, outputs)

WRITELN (F, outputs)

Returns the record pointed to by pointer variable P
to free storage.

Advances the file position pointer for file F to its
next component and assigns the value of the
component to F~.

Creates a record of the type pointed to by pointer
P and saves its address in P.

Copies the elements in unpacked array U, starting
with U[I], to packed array P, starting with the
first element.

Advances the printer to a new page before printing
the next line of file F.

Appends the current contents of F~ to file F.

Reads data from file F to satisfy the list of
variables. Only one component of file F can be
read unless F is a text file. If F' is not specified, file
INPUT is read.

Reads data from text file F to satisfy the list of
variables. Skips any characters at the end of the
last line read.

Resets the file position pointer for file F' to the
beginning. File F may then be read.

Resets the file position pointer for file F to the
beginning; any prior contents are lost. File ' may
then be written.

Copies the elements in packed array P, starting
with the first element, to unpacked array U, starting
with U[I].

Writes the data in the order specified by outputs to
file F. Only one output item can be written unless
F is a text file. If F' is not specified, the data are
written to file OUTPUT.

Writes the data in the order specified by oufputs to
text file F. Writes an end-of-line mark after the
data.

APPENDIX A

B.1

Appendix B
Additions and Extensions
to Pascal

Additional Features of ANSI/IEEE Pascal

This appendix describes additional features of the ANSI/IEEE Pascal stan-
dard not covered in the text.

Forward Declarations

Given the procedure declarations below, procedure B can call A, but pro-
cedure A cannot call B. This is because the declaration for procedure B is
not processed until after procedure A is translated.

procedure A (var X : REAL);

procedure B (var Y : REAL);

ooooooooo

If a forward declaration for procedure B is inserted before procedure 3,
then A can also call B.

procedure B (var Y : REAL); FORWARD;

procedure A (var X : REAL);

As shown above, the forward declaration for procedure B consisting of
only the procedure heading comes first, followed by the declaration of
procedure A, and finally the declaration for procedure B. The parameter
list for procedure B appears only in the forward declaration. Now proce-
dure A can call B, and procedure B can call A; so A and B are called mutu-
ally recursive.

Ap-5

Functions and Procedures as Parameters

A procedure or function may be passed as a parameter to another proce-
dure or function. As an example, we may wish to compute the sum below
for the integers 1 through N where f represents a function that is applied
to each integer.

f(1) + f£(2) + £(3) + ... + £(N)
If £ is the function SQR (square), then we wish to compute the sum
a)1+ 22+ 3+ ..+ N2
If £ is the function SQRT (square root), then we wish to compute the sum

b)vi+v2+v3+. +vN
In function SUMINT below, the function F is declared as a function pa-
rameter. The function designator

SUMINT (SQR, 10)

computes sum a) above for N 10; the function designator

SUMINT (SQRT, 10)

computes sum b) above for N = 10.
function SUMINT (function F(X : INTEGER) : REAL;
N : INTEGER) : REAL;
{Computes F(l1) + F(2) + . . . + F(N).J
var
SUM : REAL; {the partial sumj
I : INTEGER; {loop control variable}
begin {SUMINT]
SUM := 0.0; {initialize SUM}]
for I := 1 to N do
SUM := SUM + F(I):;
SUMINT := SUM {define result}

end; ({SUMINT]

The parameter of function F is represented by X in the heading for func-
tion SUMINT; any identifier may be used. F can also represent a user-de-
fined function with one type INTEGER parameter.

GOTO Statements and Labels

The GOTO statement is used to transfer control from one program state-
ment to another. The label (a positive integer) is used to indicate the state-
ment to which control is transferred. Labels must be declared in label dec-
laration statements at the beginning of a block. In function SAMEARRAY
below, the GOTO statement is used to exit a for loop before the specified
number of repetitions (N) are performed.

Ap-6 APPENDIX B

