DATABASE
DESIGN

FUNDAMENTALS

NAPHTALI RISHE

DATABASE DESIGN
FUNDAMENTALS

A STRUCTURED INTRODUCTION
TO DATABASES AND A STRUCTURED
APPLICATION DESIGN METHODOLOGY

NAPHTALI RISHE

Florida International University

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Rishe, Naphtali.
Database design fundamentals.
Bibliography.
Includes index.
1. Data base management. 2. Electronic data processing
—Structured techniques. 1. Title.
QA76.9.D3RS5 1988 005.7 87-11443
ISBN 0-13-196791-6

Editorial/production supervision: Carolyn D. Fellows
Cover design: George Cornell
Cover art: M. C. Escher, Knots, 1966
© M. C. Escher Heirs
c/o Cordon Art
Baarn—Holland
Manufacturing buyer: Gordon Osbourne

To Bella and Rudolf Rishe

= © 1988 by Prentice Hall
= A Division of Simon & Schuster
= Englewood Cliffs, New Jersey 07632

All rights reserved. No,part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 6 54 3 2 1

ISBN 0-13-196791-b 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster of Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

PREFACE

Uses of this book
e an undergraduate course on databases;
e acollege course for future systems analysts and programmers;

e an "updating" course for software engineers, systems analysts, and
programmers;

e suitable for a self-educating professional;
e a supplement for a graduate course on databases;

e a quick-reference manual and glossary of database terminology.

Knowledge to be gained

e the logical aspects ("the externals”) of databases and database
management systems;

e how to design and develop a high-quality database for any given
enterprise;

e how to to select an appropriate database management system,

viii Preface

e how to program in the database environment;

e how to solve information access problems by use of database languages
without programming;

e how to comprehend easily and critically the user manuals of commercial
database management systems.

Most other textbooks devote their primary attention to the "internals" of
database management systems and to theoretical aspects of databases.
Neither of these issues is among the practical goals of the majority of the
students, because they are future users of database management systems.
They are users at the logical level of databases: application software
engineers, systems analysts, and logical database designers, rather than
developers of database management systems or theoreticians. Thus, the most
important issues of the database study are:

e software design methodology for databases and programs, and

e application-world-oriented comprehension of database concepts.

Database design methodology

A novel methodology for logical design of databases is presented in this
textbook. In the first step, a conceptual description of an enterprise is
designed using a semantic binary model. Then, this description is converted
into the relational, network, or hierarchical database design, in a form suitable
for commercial database management systems. A high-quality database is
produced as a result.

Chapter 4 explains why this methodology is significantly easier than and
superior to (produces databases of higher quality) the methodologies based
on the relational database theory, such as the normalization methodology. The
normalization methodology used to be popular in the academic world, but
was not practical enough or advantageous enough to be widely accepted by
the industry.

Database models

The Relational, Network, and Hierarchical database models and languages are
presented in this text as restricted forms of the semantic model in which the
initial conceptual description of the user’s enterprise is done. This reduces
the reader’s effort by minimizing the number of concepts to be learned.
Although the different models have different terminology, the concepts are
similar. After introducing the concepts, the text translates them into the
terminology of each model. Most other textbooks introduce the terminology

Preface ix

of each database model without relation to the other models. That causes
quadruplication of the number of concepts to be understood by the student.

Database languages

Two classes of database languages are studied in detail. They are represented
by two abstracted model-independent languages:

e a fourth-generation structured extension of a structured third-generation
programming language (Pascal taken as an example), and

e anon-procedural language based on Logic.

These abstracted languages are used in all the database models to
comprehend the specific languages of those models and of their database
management systems. Several languages which are not strictly within the
above classes of languages, but yet are very widely used in some database
models, are also presented in this text. These languages are: SQL, Relational
Algebra, and the CODASYL network navigation language. The presentation of
SQL is very extensive. This text can be used as a reference manual and a user
guide for those languages.

Prerequisites

Structured programming is required, preferably in Pascal or a similar language.
Those who do not know Pascal or a similar language may wish to skip the
sections on data manipulation extensions of programming languages. Those
sections are not prerequisite to the other sections, and the other sections do
not use Pascal.

No knowledge is needed of file organization or data structures.

Structure of the book

The book is composed primarily of explanations of concepts and examples.
The examples are offset and boxed, so that the experienced reader or browser
can easily skip them.

The concepts being defined are set in bold face. They are also referenced by
the index.

The examples constitute a continuous case study of one application, for which
databases are designed in different models, application programs are written
in different languages, etc.

Most sections are followed by problems. Many of the problems are solved in
the last chapter of the book. Page-number pointers direct the reader from the
problems to their solutions.

X Preface

If after reading a chapter the reader fails to solve a problem marked
‘Advanced’ or ‘Optional’, it does not mean a lack of understanding of the
chapter. (It rather means the lack of mathematical knowledge or experience,
which is not prerequisite to the reading of this book.)

The sections marked with ‘*’ contain optional, usually advanced, material, and
may be skipped. Optional advanced material within the regular sections is
given in the footnotes.

Acknowledgment

I am grateful to the Computer Science Department of the University of
California, Santa Barbara, for providing facilities and an environment
conducive to writing this book, and to the following students, whose
comments on the manuscript were very helpful: Shih-Chao Chang, Changlin
Chen, Wentsung Chen, Janine Felzer, David Galvin, Lionel Geretz, Alok Jain,
John King, Nina Lewis, Ben Lipkowitz, Ernest Liu, Hemant Madan, Brigit
Prochazka, Eric Rapin, Jack Schwartz, Donald Traub, and Narayanan
Vijaykumar.

I thank the staff of Prentice Hall, especially Valerie Ashton, Carolyn Fellows,
and Cynthia Scheel, for their excellent professional work.

I would like to express my deep gratitude to Professors Allen Reiter and Alan
Konheim, whose guidance and support were of great value in my professional
development.

CONTENTS

PREFACEcouerrrmnnsnmssnssssssssasssasessanss SRR AN—————
DATABASES AND SEMANTIC MODELING [ssanneniis sansvaRTT
1.1. Databases TR e S
1.2. Categories PPN T TR .
1.3. Binary Relations RS .-
1.4. Non-binary Relationships S o GawEE cwwERER
1.5. Instantaneous Databases .uiessessssessssessansssesansnne S S .-
1.6. Semantic Binary Schemas ..c.cescessncas S PR pr— R —
1.7. Graphic Representation of Schemas ..icesses S S TR
1.8. Storage Structure: Abstracted Implementation e.cuussssssseesssssees
1.9. Integrity Constraints amssessenssEsRsmanEs ST
1.10. Quality Of SChEMAS sessssensessnsessansssnsssssnasssnsanssssnnnnnnanssssnsasnnennsns
1.11. Userviews .. anasaseEssmsEssEEeEssssssnenassaBERETES
1.12. Services of DBMS .ccccrececensmmssssnsnensansanss S— S R—— O

1.12.1. Languages nsnannes axpansadTITRREIRRR A

1.12.2. Other services and utilitieS .cieeccessessessssnansenssnnasnsasssnassss

vii

00 B o

14

16
17
21
25
27
33

2.1.
2.2.

2.3.

Contents

DATABASE LANGUAGES tessrsssssssssssnsnssnnennsennans
NOLAtION] sssssssnnssasensusssansssusssninissnsnsnssnsannsnsansnssis T ——
Fourth-generation Extension of Programming Languageeees.
2.2.1. Preview
2.2.2. Specification
2.2.3. A comprehensive example
A Non-procedural Language Based on Predicate Calculus
2.3.1. Preview AP B AS s
2.3.2. First-order predicate calculus eXpressions .iecssssessssnsens
2.3.3. Queries

THE RELATIONAL MODEL

3.1.
3.2,

3.3.

2.3.4. Calculus for integrity constraints ...ceeessess

2.3.5. *Calculus with aggregate operations: sum, count,
average

2.3.6. *Shorthand notation for n-ary relationships ..c.ceseeesesses

2.3.7. *Calculus for the inference rules of userviews ...eccesesees

2.3.8. *Calculus for transactions

2.3.9. *Query forms

Definitions A—
Database Design
3.2.1. Objectives of schema conversion T

3.2.2. Composition and split of relations ..cceescssecencenasensss
3.2.3. Keys
3.2.4. Disjointness of categories
3.2.5. Removal of relations

Relational Languages

3.3.1. A structured extension of Pascal

3.3.2. Calculus
3.3.3. *Relational Alebra

3.3.4. *SQL

3.3.5. Power of relational query languages

55
56

56
57
68
73
73
76
84
86

87
91
92
94
100

105
105
120
120
121
124
131
145
154
154
161
165
173
198

SUMMARY OF DATABASE DESIGN METHODOLOGY ...cc.ceceeessananne 203

4.1.
4.2.
4.3.

The Methodology of This Text
An Alternative Methodology: Normalization
A Comparison of Methodologies

203
205
206

Contents v

5. THE NETWORK MODEL 211
5.1. Definitions 211

5.2. Database Design 222

5.3. Network Languages 228
5.3.1. A structured extension of Pascal 228

5.3.2. Calculus 231

5.3.3. *Navigational extension of Pascal 234

6. THE HIERARCHICAL MODEL 255
6.1. Definitions 255

6.2. Database Design 263

6.3. Hierarchical Languages 268
6.3.1. A structured extension of Pascal 268

6.3.2. Calculus 271

7. COMPARATIVE REVIEW OF THE FOUR MODELS 273
8. SOLVED CASE STUDY PROBLEMS 279
9. *Appendix: Fifth-generation Languages 375
9.1. Limitations of Non-procedural Database Languages uusessssssasas 375

9.2. Prolog-like languages 376

9.3. The Maximal Expressive Power 380

9.4. User-friendly INterfaces wucussessssssssensnsecnemeenannssssansssnanes ssssivainssnss 387
Bibliography easnmansnsmassesnsisEusEREGsERTsHaEess (D00
Index 399

Quick Reference Schemas for the University Case Study 417

DATABASES
AND SEMANTIC MODELING

“Database — From DATA and BASE (adj = low,
mean, vile, etc). A place where data can be
lost in a structured manner.

“DBMS (Database Management System) — The
software needed to set up highly complex
inter-relational data structures, so that files
can be lost in any convenient sequence (e.g.
Index before data; First-in-last-out).”

From a folklore dictionary.

This chapter introduces the basic concepts of databases and logical
representation of real-world information in databases.

1.1. Databases

General-purpose software system — a software system that can serve a
variety of needs of numerous dissimilar enterprises.

2 DATABASES AND SEMANTIC MODELING Chap. 1.

Example 1-1.

A compiler for Pascal.

Application — a software system serving the special needs of an enterprise
or a group of similar enterprises.

Example 1-2.
The registration of students in a university.

Application’s real world — all the information owned by, and subject to
computerization in an enterprise, or all such information which is
relevant to a self-contained application within the enterprise.

Example 1-3.

The examples of this text constitute a case study. Its application
world is the educational activities of a university. The information
contains

e a list of the university’s departments (including all the full and
short names of each department)

e personal data of all the students and their major and minor
departments

e personal data of all the instructors and their work information
(including all the departments in which the instructor works
and all the courses which the instructor teaches)

e the list of courses given in the university catalog
e the history of courses offered by instructors

e the history of student enrollment in courses and the final
grades received

Database — an updatable storage of information of an application’s world
and managing software, that conceals from the user the physical aspects
of information storage and information representation. The information
stored in a database is accessible at a logical level without involving the
physical concepts of implementation.

Sec. 1.1. Databases 3

Example 1-4.

Neither a user nor his program will try to seek the names of
computer science instructors in track 13 of cylinder 5 of a disk or
in "logical" record 225 of file XU17.NAMES.VERSION.12.84. Instead, the
user will communicate with the database using some logical
structure of the application’s information.

Normally, a database should cover all the information of one application:;
there should not be two databases for one application.

Database Management System, DBMS — a general-purpose software system
which can manage databases for a very large class of the possible
application worlds.

Example 1-5.

A DBMS is able to manage our university database and also
completely different databases: an Internal Revenue Service
database, an FBI WANTED database, a UN database on world
geographical data, an Amtrak schedule, etc.

Instantaneous Database — all the information represented in a database at a
given instant of time. This includes the historic information which is still
kept at that time.

The actual information stored in the database changes from day to day.
Most changes are additions of information to the database.

Example 1-6.
A new student, a new instructor, new events of course offerings.

Fewer changes are deletions of information.

Example 1-7.

Historic information past the archival period:
a course offering which was canceled before it was given.

Some changes are replacements: updates; correction of wrongly recorded
information.

4 DATABASES AND SEMANTIC MODELING Chap. 1.

Example 1-8.
Update of the address of a student;

correction of the student’s birth year (previously wrongly
recorded).

Hence the life of a database can be seen as a sequence of instantaneous
databases. The first one in the sequence is often the empty instantaneous
database — it is the state before any information has been entered.

Database Model — a convention of specifying the concepts of the real
worlds in a form understandable by a DBMS. (Technically, it is an
abstract data structure such that every possible instantaneous database
of nearly every application’s world can be logically represented by an
instance of that data structure.)

The following database models will be studied in this text:

e Binary (also called Semantic Binary or Conceptual Binary), in
which the information is represented by logical associations
(relations) between pairs of objects and by classification of
objects into categories;

e Relational, in which the information is represented by a
collection of printable tables;

e Network, in which the information is represented by a directed
graph of records;

e Hierarchical, in which the information is represented as a tree
of records.

The Binary Model is the most natural of the above models. It is the most
convenient for specifying the logical structure of information and for
defining the concepts of an application’s world. In this text, the other
models will be derived from the Binary Model. The Relational, Network,
and Hierarchical models are dominant in today’s commercial market of
database management systems.

1.2. Categories

Object — any item in the real world. It can be either a concrete object or an
abstract object as follows.

Sec. 1.2. Categories 5

Example 1-9.
Consider the application world of a university.

I am an object, if I am of interest to the university. My name is an
object. The Information Systems Department and its name
"Information Systems Department” are two distinct objects.

Value, or Concrete Object — a printable object, such as a number, a
character string, or a date. A value can be roughly considered as
representing itself in the computer, or in any formal system.

Example 1-10.

My name and the name "Computer Science Department” are
concrete objects. The grade 70 which has been given to a student
in a course is also a concrete object.

Abstract Object — a non-value object in the real world. An abstract object
can be, for example, a tangible item (such as a person, a table, a country),
or an event (such as an offering of a course by an instructor), or an idea
(such as a course). Abstract objects cannot be represented directly in the
computer.

This term is also used for a user-transparent representation of such an
object in the Semantic Binary Model.

Example 1-11.

The Management Science Department, the student of the
department whose name is Alex Johnson, and the course named
"Chemistry" are three abstract objects.

Category — any concept of the application’s real world which is a unary
property of objects. At every moment in time such a concept is
descriptive of a set of objects which possess the property at that time.

Unlike the mathematical notion of a set, the category itself does not
depend on its objects: the objects come and go while the meaning of the
category is preserved in time. Conversely, a set does depend on its
members: the meaning of a set changes with the ebb and flow of its
members.

6 DATABASES AND SEMANTIC MODELING Chap. 1.

Categories are usually named by singular nouns.

Example 1-12.

STUDENT is a category of abstract objects. The set of all the
students relevant to the application today is different from such a
set tomorrow, since new students will arrive or will become
relevant. However, the concept STUDENT will remain unaltered.

An object may belong to several categories at the same time.

Example 1-13.

One object may be known as a person, and at the same time as an
instructor and as a student.

Example 1-14.

Some of the categories in the world of our university are:
INSTRUCTOR, PERSON, COURSE, STUDENT, DEPARTMENT.

Disjoint categories — Two categories are disjoint if no object may
simultaneously be a member of both categories. This means that at every
point in time the sets of objects corresponding to two disjoint categories
have empty intersection.

Example 1-15.

The categories STUDENT and COURSE are disjoint; so are COURSE
and DEPARTMENT (even though there may be two different objects,
a course and a department, both named "Physics").

The categories INSTRUCTOR and STUDENT are not disjoint;
neither are INSTRUCTOR and PERSON.

inter-
section

Subcategory — A category is a subcategory of another category if at every
point in time every object of the former category should also belong to

Sec. 1.2. Categories 7

the latter. This means that at every point in time the set of objects
corresponding to a category contains the set of objects corresponding to
any subcategory of the category.

Example 1-16.

The category STUDENT is a subcategory of the category PERSON.
The category INSTRUCTOR is another subcategory of the category
PERSON.

persons

CO

Abstract category — a category whose objects are always abstract.

Concrete category, category of values — a category whose objects are
always concrete. ’

Example 1-17.

STUDENT and COURSE are abstract categories. STRING, NUMBER,
and DIGIT are concrete categories.

Many concrete categories, such as NUMBER, STRING, and BOOLEAN, have
constant-in-time sets of objects. Thus, those concrete categories are
actually indistinguishable from the corresponding sets of all numbers, all
strings, and the Boolean values ({TRUE, FALSE}).

Finite category — A category is finite if at no point in time an infinite set of
objects may correspond to it in the application’s world.

Example 1-18.

The categories STUDENT, COURSE, and DIGIT are finite. The
category NUMBER may be infinite.

