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Overview

The subject dealt with in this book is the mechanical and physical behavior
of composites as influenced by composite geometry. This subject has a high
priority in the general study of composite materials. A better understanding
of the behavior of natural composites, improvement of such materials, and
design of new materials with prescribed properties are just three examples in
modern materials research where more knowledge on geometry versus mate-
rials property is absolutely necessary.

An analysis of various composite properties versus composite geometries
is presented in this book as the result of integrating the results of two sub-
studies:

One study is made on composite properties as these can be related to
composite geometry in general by so-called geometry functions. The second
study is made on geometry functions as these are related to the geometry of
specific composites, such as particulate composites, impregnated materials,
laminated composites, and composites made by compaction of powders.

In other words, global solutions for composite properties are developed
in the first study, which apply for any composite. Final solutions for com-
posites with specific geometries are then obtained from the global solutions
introducing specific geometry functions developed in the second study.

Special composite properties considered are stiffness, shrinkage, hygro-
thermal behavior, viscoelastic behavior, and internal stress states. Other phys-
ical properties considered are thermal and electrical conductivities, diffusion
coefficients, dielectric constants and magnetic permeability. Special attention
is given to the effect of pore shape on the mechanical and physical behavior
of porous materials.

The theories and the methods developed are verified by results obtained
from a FEM-analysis presented, and by experimental and theoretical data
from the composite literature. A number of examples are presented which il-
lustrate the very decisive influence of the internal geometry on the mechanical
and physical properties of composites.
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As a spin-off result the composite theory developed is re-organized to be-
come a “diagnostic tool” with respect to quality control of empirical or semi-
theoretical prediction methods suggested in the field of composite materials.
Aspects of materials design are also considered.

It is emphasized that strength is not considered as a genuine materials
property in this book. It is a phenomenon where discontinuities in the ma-
terials structure suddenly occur as the result of violating local potentials to
carry stress and/or strain for example. As such strength is a “materials prop-
erty” that can be calculated from stress/strain results obtained in this book.
Examples of such strength predictions for composite materials are presented.

Readers Guidance

Roughly speaking the book is divided into two parts. A theoretical part, and
a more applicative part, starting at Chap. 10 where the theories developed
are simplified, adapted, and generalized for most practice. Readers, who are
interested primarily in applications, may start at this chapter. Any problem
considered in Chap. 10 and subsequent chapters can be solved using the soft-
ware package COM-APPL developed for easy composite analysis’.

Lists of notations and references used are presented at the end of the
book. The former list should be consulted frequently. Symbols and notations
used in the book are generally explained only at their first appearance in the
text.

The following superior concept of notations is emphasized: Whenever
needed to distinguish single component properties from composite properties,
subscripts P and S refer to property of component P and property of compo-
nent S respectively while composite property is not subscripted. Usually the
subscripts ¢ and k are used to indicate quantities obtained from — or used
in deviatoric analysis and in volumetric analysis respectively. Formally these
analyses are very often identical. In such cases only the volumetric analysis
is presented with deviatoric results referred to by analogy. Alternatively both
subscripts k and g are dropped when the feature discussed applies in principles
for both volumetric and deviatoric behavior.

A special subscript, Q, is used in conductivity studies to distinguish results
obtained in these studies from similar quantities obtained in the analysis of
elastic behavior.

A number of auxiliary expressions are presented in appendix sections at
the end of the book: Basic information is given on isotropic elasticity and cu-
bical elasticity in Appendix A. A method is presented in Appendix B for the
numerical determination of stresses in ellipsoidal particles in isotropic dilute

1 COM-APPL can be downloaded from http:// www.mat-mek.dk
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suspensions. A generalized version of the so-called SCS-analysis (Self Consis-
tency Scheme) of composite materials is presented in Appendix C. General
viscoelastic models are presented in Appendix D. And finally, models are pre-
sented in Appendix E for volume compositions of hardening Portland cement
paste and concrete.
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Introduction

In the past five decades considerable attention has been devoted to compos-
ite materials. A number of expressions have been suggested by which macro-
scopic properties can be predicted when the properties, geometry, and volume
concentrations of the constituent components are known. Many expressions
are purely empirical or semi-theoretical. Others, however, are theoretically
well founded such as the exact results from the following classical boundary
studies:

Bounds for the elastic moduli of composites made of perfectly coherent
homogeneous, isotropic linear elastic phases have been developed by Paul [1]
and Hansen [2] for unrestricted phase geometry and by Hashin and Shtrikman
[3] for phase geometries, which cause macroscopic homogeneity and isotropy.

The composites dealt with in this book are of the latter type. For two
specific situations (later referred to), Hashin [4] and Hill [5] derived exact so-
lutions for the bulk modulus of such materials. Hashin considered the so-called
Composite Spheres Assemblage (CSA) consisting of tightly packed congruent
composite elements made of spherical particles embedded in concentric ma-
trix shells. Hill considered materials in which both phases have identical shear
moduli.

In the field of predicting the elastic moduli of homogeneous isotropic com-
posite materials in general the exact Hashin and Hill solutions are of theo-
retical interest mainly. Only a few real composites have the geometry defined
by Hashin or the stiffness distribution assumed by Hill. The enormous signif-
icance, however, of the Hashin/Hill solutions is that they represent bounds
which must not be violated by stiffness predicted by any new theory claiming
to consider geometries in general.

For a variety of other composites (than Hashin/Shtrikman/Hill) other the-
oretically well-founded analytical methods have been developed for strictly
defined specific phase geometries. Examples are: Ellipsoidal particles in a
continuous matrix are examined by Christoffersen [6] and Levin [7]. Other
particulate composites are considered in [8-12]. A special particulate com-
posite with compacted spherical particles is examined by Budiansky in [13].
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Special fiber reinforced materials are examined by Stang [14], and so-called
graded composite materials are considered in [15,16].

Early composite theories based on statistically defined phase geometries
are reviewed in [17]. Such approach, using statistical continuum theories, has
been further developed by Torquato in [18,19].

If real geometry and theoretically assumed geometry agree with each other
excellent results can very often be obtained by the methods just mentioned.
Many real composites, however, have geometries, which are substantially dif-
ferent from any of the geometries considered in prediction methods known to
day. Composites geometry will change — not only from type of composite to
another type — but also in composites individually. First of all, it is very likely
that the geometry of material components will vary with phase concentration.
This means, for example, that a method for stiffness prediction applying at one
concentration is not necessarily the right one to use at another concentration.

This feature is illustrated in Fig. 1.1 showing the influence of porosity on
the stiffness of real porous systems such as tile and hardened cement paste.
Very often a final critical porosity of 55-75% is approached where stiffness
becomes zero. Obviously the critical porosity indicates the extreme state of
a continuous process of geometry transformation where the solid phase is in-
creasingly separated and surrounded by an increasing amount of pores. No
model with fixed geometry can be used to predict stiffness of porous mate-
rial. For this reason most relations to day between stiffness of porous mate-
rials and porosity are still the empirical expressions developed in [20-22] for
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Fig. 1.1. Stiffness of isotropic porous materials as related to pore shapes. Dots are
various experimental data reproduced from Chap. 10
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example. Only empirical relations are qualified which do not violate the shaded
area in Fig. 1.1 bounded by the theory of Hashin [4] previously referred to.

In itself the large number of completely different empirical stiffness ex-
pressions suggested for porous materials clearly indicates a need for a more
rational research on composite properties versus composite geometry such as
reported by the present author in a study [23] on porous materials and im-
pregnated materials.

Change of geometry will influence any mechanical/physical behavior of
composites. Stiffness and viscoelasticity (creep and relaxation) will change.
Shrinkage and eigenstress-strain (such as hygro-thermal) properties, and heat
conductivity are other examples of materials behavior, which will change with
geometry.

In order to cope rationally with such changes in composite analysis we must
increase our freedom to choose other analytical models than the specific, non-
variable ones most often used to day. Valuable progress in materials science
can then be achieved in areas, such as a better understanding of the behavior
of natural composites, a more rational improvement of such composites, and
a rational design of new materials.

Some ideas on how to obtain such freedom are presented by the author
in [24] where it is shown that “global” property relations for composites can
be established with geometry considered by independent variables, so-called
shape functions, which can be studied separately with respect to specific
geometries (discrete, continuous, etc).

Aspects of the same problem, how to construct a composite geome-
try such that prescribed properties can be obtained, have been studied by
Milton [25] who introduced the term “inverse homogenization problem” for
such composite analysis. Sigmund [26,27] approaches the problem of inverse
homogenization numerically looking at basic porous material structures made
by trusses and plates. Milton and Cherkaev [28] provide a basis for studying
the problem through analytical studies and construction of so-called extreme
materials.

Modern numerical solution techniques such as Finite Element Methods
(FEM) have had a tremendous impact on the research on composite materi-
als. These techniques introduced into composite analysis in the 1970es [29,30]
have proved themselves to be very efficient tools in handling composite prob-
lems of a complexity (e.g. [31-36]) far beyond what can be treated by analyti-
cal means. Recently, numerical methods have also proved their potentials with
respect to optimization between shape and properties of structures [37,38] and
between geometry and properties of some special orthotropic composites [39].
Such studies are very useful in the research of optimizing composite geom-
etry in general with respect to composite properties. This feature has been
recognized in the works of Sigmund [26,27] previously referred to.
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1.1 Objectives of This Work

In summary, the main objectives of this book are to increase our general
understanding of the influence of composite geometry on composite behavior.
Some good reasons for increasing our knowledge on geometry versus behavior
of composite materials have already been mentioned. Examples are: A better
understanding is obtained on the mechanical/physical behavior of natural
composites, and a more rational basis is achieved for improving such materials.
Geometrical potentials are revealed for the benefit of new materials design
with respect to prescribed properties.

As can be noticed from the literature previously cited, other composite
researchers agree, that research is necessary on the significance of composite
geometry. A number of ways have been applied to approach the problem.
Important works have been reported which are based on very strict descrip-
tions and studies (analytical or FEM) of composite geometries, statistically
defined (as in [18]), or arranged from basic microstructures (as in [26, 28]).
Fine results can be expected from such studies using continuum mechanics on
microstructures the geometries of which are basically fixed.

The author’s approach presented in this book has another point of depar-
ture with respect to “real” composite geometry: It is recognized that varying
phase geometries produced by nature or by man can not in general be de-
scribed (or defined) very precisely. A description must reflect deductions made
from experimental studies primarily, including such, which consider technolo-
gies used to produce composites.

Basically the methods presented are further developments of the ideas
presented in [23,24,40] of predicting the properties of any composite mater-
ial from global expressions with general composite geometries considered by
so-called geometry functions. Such functions are presented with specific com-
posite geometries reflected by so-called shape functions. Geometries quantified
by these functions are shown to be consistent with the overall composite as-
sumptions previously made with respect to macroscopical homogeneity and
isotropy.

Shape functions are developed for a variety of composites including such
with geometries previously considered in the literature. Also considered are
the somewhat self-defining geometries, which appear in so-called SCS-analysis
of composites (Self-Consistency-Scheme).

Special composite problems/properties considered are stiffness, shrinkage,
hygro-thermal behavior, viscoelastic behavior, and internal stress states — as
well as other physical properties of composites such as thermal and electrical
conductivities, diffusion coefficients, dielectric constants and magnetic perme-
abilities.

The theoretical results obtained are verified by a FEM-analysis made by
the author and by theoretical results obtained by other authors. The princi-
pal success criteria, however, for the methods developed are that the results
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predicted comply with data obtained from experiments on real composites as
these data are reproduced from the composite literature.

As a spin-off result the composite theory developed is re-organized to be-
come a “diagnostic tool”, useful in materials design and in quality control
of empirical or semi-theoretical prediction methods suggested in the field of
composite materials (are such methods consistent with “promises” made with
respect to geometry and isotropy).

1.1.1 Summary of Composites Considered

We re-call that the composites primarily considered in this book are per-
fectly coherent two-phase materials with phase geometries causing macro-
scopic homogeneity and isotropy. Both phases are isotropically linear-elastic
(or -viscoelastic).

Flexible phase geometries primarily are considered which can adjust them
selves to form a tight composite. The adjustment can be natural (as in suspen-
sions) or organic (as in bone structures) or it can be the result of compaction
(as in sintered powder composites).

As in most literature on composite materials the terms composite, compos-
ite material, and two-phase material are used synonymously — unless otherwise
indicated as in minor sections of this book where composites in practice do
not behave “theoretically”:

When phase geometries are not flexible (such as in composites made of
stiff particles in a solidifying matrix as concrete for example) air voids are
inevitable at certain concentrations. The two-phase material originally con-
sidered becomes a porous two-phase material. In practice such a material can
be considered as a normal two-phase composite with a porous matrix. This
feature is explained in further details in Sect. 10.4 together with some other
composite “defects” (such as incomplete impregnation and incomplete phase
contact), which can also be considered introducing some simple phase modi-
fications.
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