Vector and Parallel Processors
in Computational Science

/\-—l—.

\ l\
e
t‘ h
NORTH-HOLLAND - AMSTERDAM

§

Vector and Parallel Processors
in Computational Science

Proceedings of the Second International Conference on
Vector and Parallel Processors in Computational Science

Oxford, 28-31 August 1984

Editors

I.S. DUFF
J.K. REID

AERE, Harwell

hGE

1985

NORTH-HOLLAND - AMSTERDAM

© Elsevier Science Publishers B.V., 1985

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of the publisher, Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division), P.O. Box
103, 1000 AC Amsterdam, The Netherlands.

Special regulations for readers in the USA — This publication has been registered with the Copyright Clearance
Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which
photocopies of parts of this publication may be made in the USA. All other copyright questions, including
photocopying outside of the USA, should be referred to the copyright owner, Elsevier Science Publishers B.V., unless
otherwise specified.

ISBN 0 444 86974 3

PUBLISHED BY:

NORTH-HOLLAND PHYSICS PUBLISHING, a division of
Elsevier Science Publishers B.V.

P.O. Box 103

1000 AC Amsterdam, The Netherlands

SOLE DISTRIBUTORS FOR THE USA AND CANADA:
Elsevier Science Publishing Company Inc.

52, Vanderbilt Avenue

New York, N.Y. 10017, USA

REPRINTED FROM COMPUT. PHYS. COMMUN. VOL. 37 (1985) Nos. 1-3

Library of Congress Cataloging-in-Publication Data

International Conference on Vector and Parallel
Processors in Computational Science (2nd : 1984 :
Oxford, Oxfordshire)

Vector and parallel processors in computational
science.

"Reprinted from Computer physics communications,
vol. 37"--T.p. verso.

Includes index.

1. Parallel processing (Electronic computers)--
Congresses. I. Duff, Iain S. II. Reid, John Ker.
III. Computer physics communications. IV. Title.
TKT7885.A1TI564 1985 00k, 35 85-15975
ISBN 0-L44-869Tk-3

Printed in The Netherlands

VECTOR AND PARALLEL PROCESSORS
IN COMPUTATIONAL SCIENCE

vii

PREFACE

In August 1981, a highly successful conference on Vector and Parallel Processors in Computational
Science (VAPP) was held in Chester and Proceedings for this conference were published in Computer
Physics Communications 26 (1982) 217-489 as a special issue. The growth in the design and use of vector
and parallel machines has risen sharply since then and it was felt appropriate to stage VAPP II in August
1984, this time in Oxford. This volume contains papers from most of the invited talks and from several of
the contributed talks and poster sessions. Indeed, out of the 64 presentations at the Conference, 45 are
included in this volume.

As at the previous conference, the programme of talks covered the three areas of hardware/soft-
ware /languages, numerical methods and algorithms, and applications. We have adhered to the same
subdivision in these proceedings, except that some papers which span more than one area have been
grouped as “general papers”.

It is interesting to reflect on the development of the field over the past few years. Although there are a
few more machines on the market (for example, the CRAY X-MP, the FPS 164, the Denelcor HEP, and
vector machines from Fujitsu and Hitachi in Japan), the most noticeable change is in the sophistication of
the software support and the maturity of the user community. In particular, much more is understood
about the design and use of MIMD machines (the X-MP and HEP being examples of these) where quite
independent processes can be performed simultaneously.

The papers in this volume include descriptions of new machines (both research and commercial
machines), languages and software aids, and general discussions of whole classes of machines and their
uses. Numerical methods papers include Monte Carlo algorithms, iterative and direct methods for solving
large systems, finite elements, optimization, random number generation and mathematical software. The
specific applications covered include neutron diffusion calculations, molecular dynamics, weather forecast-
ing, lattice gauge calculations, fluid dynamics, flight simulation, cartography, image processing and
cryptography. Most machines and architecture types are being used by these applications.

The conference itself was truly international with 45% of the delegates from outside the United
Kingdom. The papers reflect this and also the fact that one and a half times as many attendees came from
laboratories and industry as from academe.

The sell-out crowd of nearly 300 illustrated the continuing interest in the area of vector and parallel
processors and the fact that all talks, including those on the last day, were well-attended testified to the
energy and commitment of delegates. Handling a conference of this size requires a considerable administra-
tive effort, and we are indebted to Les Evans, Enid Eakins and Rita Holdbrook of the Education and
Training Centre (AERE Harwell) and to our secretary, Rosemary Rosier, for enabling the smooth
functioning of such a large meeting. We were also greatly aided by the staff of Keble College who readily
adapted to our special requirements and helped make a most pleasant conference atmosphere.

The meeting was sponsored by AERE Harwell and we are grateful tc them for underwriting the meeting
and risking financial embarrassment had our confident prediction of 250 attendees been an overestimate.
Financial support for some of the social events was provided by Cray Research (UK) Ltd and by Floating
Point Systems (UK) Ltd, and we are grateful for their generosity.

Finally, we would like to thank the programme committee both for the organization of such an
attractive programme and for doing the lion’s share of the refereeing for the proceedings, and we would like
to thank Keith Roberts, who was Principal Editor while we were preparing this volume, for being so helpful
with the processing of the papers.

March 1985 [.S. DUFF and J.K. REID

CONTENTS

Preface vil

Contents 1X
Section 1. General papers

Applications of MIMD machines

Buzbee, B.L. 1
High speed vector processors in Japan

Uchida, K. and M. Itoh 7
The use of supercomputers in Europe

Duff, L.S. 15

Section 2. Hardware and languages

An application of program transformation to supercomputer programming

Bossavit, A. and B. Meyer 27
The effect of restructuring compilers on program performance for high-speed computers

Cytron, R., D.J. Kuck and A.V. Veidenbaum 39
The Manchester dataflow machine

Gurd, J.R. 49
Expression of concurrency and parallelism in an MIMD environment

Adelantado, M., D. Comte, P. Siron and Ph. Berger 63
Linear time detection of inherent parallelism in sequential programs

Bird, P.L. 69
Signal processing with transputer arrays (TRAPS)

Harp, J.G., J.B.G. Roberts and J.S. Ward 77
A tightly coupled and hierarchical multiprocessor architecture

Handler, W., A. Bode, G. Fritsch, W. Henning and J. Volkert 87
The RPA — optimising a processor array architecture for implementation using VLSI

Jesshope, C.R. 95
Supervector performance without toil: FORTRAN implemented vector algorithms on the VP-100 /200

Matsuura, T., K. Miura and M. Makino 101
WATERLOOP V2 /64: a highly parallel machine for numerical computation

Ostlund, N.S. 109
Implementing a parallel language on the CRAY-1

Perrott, R.H., D. Crookes and P. Milligan 119

The array features in Fortran 8x with examples of their use
Reid, J.K. and A. Wilson 125

X Contents

Real time signal processing applications of a distributed array processor
Simpson, P. and B.C. Merrifield

SIGMA-1: a dataflow computer for scientific computations
Yuba, T., T. Shimada, K. Hiraki and H. Kashiwagi

Section 3. Numerical methods and algorithms

Computational kernels
Erisman, A.M.

On some parallel algorithms on a ring of processors
Sameh, A.

Implementation of QR factorization on the DAP using Householder transformations
Bowgen, G.S.J. and J.J. Modi

The solution of finite element equations on the floating point systems FPS-164 attached processor
Burton, C.G.

Performance of a subroutine library on vector-processing machines
Daly, C. and J.J. Du Croz

Finite element optimisation on the DAP
Dixon, L.C.W. and P.G. Ducksbury

Cyclic reduction on a binary tree
Johnsson, S.L.

A comparison of conjugate gradient preconditionings for three-dimensional problems on a CRAY-1
Kightley, J.R. and I.P. Jones

Early MIMD experience on the CRAY X-MP
Rhoades, Jr., C.E. and K.G. Stevens, Jr.

Newton-like interval methods for large nonlinear systems of equations on vector computers
Schwandt, H.

Designing PDE software for vector computers as a “data flow algorithm”
Schonauer, W., E. Schnepf and H. Miller

Very high performance pseudo-random number generation on DAP
Smith, K.A., S.F. Reddaway and D.M. Scott

Solving large sets of coupled equations iteratively by vector processing on the Cyber 205 computer
Tolsma, L.D.

Section 4. Applications

Concurrency and parallelism in MC and MD simulations in physics
Pawley, G.S., K.C. Bowler, R.D. Kenway and D.J. Wallace

HEP applications: real time flight simulation
Snelling, D.F.

Structure-from-motion algorithms for computer vision on an SIMD architecture
Buxton, B.F., D.W. Murray, H. Buxton and N.S. Williams

133

141

149

159

167

171

181

187

195

205

215

223

233

239

245

251

261

273

Contents xi

Measured performances on vectorization and multitasking with a Monte Carlo code for neutron
transport problems

Chauvet, Y. 281
Parallelism in computations in quantum and statistical mechanics :

Clementi, E., G. Corongiu and J.H. Detrich 287
Monte Carlo calculations of neutron diffusion on the ICL DAP

Delves, L.M. 295
On some solutions of the Navier—Stokes equations using a parallel processor

Gajjar, J.S.B. 303
The massively parallel processor for problems in fluid dynamics

Gallopoulos, E.J. 311
A production multi-tasking numerical weather prediction model

Gibson, J.K. 317
Particle simulation of 3D galactic hydrodynamics on the ICL DAP

Johns, T.C. and A.H. Nelson 329
The design of special purpose hardware to factor large integers

Poet, R. 337
Many-body simulations using an array processor

Rapaport, D.C. 343
A very high speed Monte Carlo simulation on DAP

Reddaway, S.F., D.M. Scott and K.A. Smith 351
Parallel processing applied to digital terrain matrices

Ruffhead, A. 357
Parallel processing of numerical transport algorithms

Wienke, B.R. and R.E. Hiromoto 363
List of delegates 371
List of contributors 379
Contents to volume 37 380

Author index to volume 37 383

Computer Physics Communications 37 (1985) 1-5
North-Holland, Amsterdam

APPLICATIONS OF MIMD MACHINES

B.L. BUZBEE

Computing and Communications Division, MS B260, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Parallel processing via the application of MIMD machines offers the promise of high performance, and experience with
parallel processing is accumulating rapidly. This paper briefly surveys recent results from three classes of MIMD machines —
shared memory systems, non-shared memory systems, and a dataflow system. This data confirms that rapid progress is being
made in the application of MIMD machines and that parallel processing can yield high performance. It also confirms that

major research issues remain to be addressed.

1. Introduction

We are entering an era in which fundamental
changes to computer architecture seem assured. In
particular, we are about to cross the threshold
from serial computation to parallel computation
via application of MIMD machines. We are moti-
vated to make this transition by basically two
factors.

1. Performance improvements in monoprocessor
systems are deemed unlikely to exceed a few
hundred percent over the next few years.

2. We need to solve a broad spectrum of problems
whose computational complexity far exceeds
the capability of the most powerful computing
systems available.

Parallel processing is by no means guaranteed
to produce the desired performance levels. On the
other hand, it is guaranteed to engender significant
changes in our approach to computation. This
raises the question of what evidence is there that
parallel processing will, in fact, yield high perfor-
mance on a broad spectrum of applications? In
other words, will it be worth the cost of the
changes required to realize it? This paper attempts
to shed some light on these issues by surveying a
portion of the substantial amount of research ex-
perience with parallel processing that has accu-
mulated in the recent past. We will begin with a
short discussion of metrics for evaluating the per-
formance of parallel systems, then we will look at

experiences with two shared memory systems, two
non-shared memory systems, and one dataflow
system. The results confirm that broad and rapid
progress is being made, at the same time major
issues remain to be addressed.

2. Metrics

Our objective for parallel systems is high per-
formance as a function of the parallelism invoked
on a spectrum of applications. Given full-scale
systems we can quickly determine the performance
via direct usage. However, few full-scale systems
exist, and those that do have only modest amounts
of parallelism. On the other hand, relatively slow
research systems exist that contain substantial
parallelism. Thus, we need a metric that measures
the performance as a function of parallelism and
that offers some degree of comparability between
systems. We will use the metric of efficiency. That
is, let

T, = the time required to execute an application
using an optimal serial formulation on a single
processor;

T(p)= the time required to execute the same
application with a parallel formulation and using
P Processors.

Then,

efficiency = 7, /pT(p).

0010-4655 /85 /$03.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

2 B.L. Buzbee / Applications of MIMD machines

Since efficiency usually lies in the unit interval, it
offers comparability independent of absolute
processor speed. However, the metric has one lia-
bility in that it does not clearly illuminate cases
where 7, > T(p).

In general, this writer cannot guarantee that the
efficiencies reported herein use an optimal 7.
Many experimentors measure 7, using parallel
formulation of the application executed on one
processor. Then they attempt to correct for the
additional work introduced by parallel formula-
tion. Some experimentors fail to make even this
correction. On the other hand, we ultimately need
to solve very large problems, and many of the
experiments discussed herein involve relatively
small problems. That difference may more than
compensate for any inaccuracies in the measure-
ment of 7.

3. Shared memory systems

Two full-scale shared memory systems are cur-
rently operational in the field, and experience with
them is accumulating rapidly. These systems are
the Cray X-MP-2 and the Denelcor heterogenous
element processor (HEP).

3.1. Cray X-MP-2

The Cray X-MP-2 is one of the most powerful
state-of-the-art systems. It has two vector
processors sharing 32 banks of memory. One of
the critical issues in the design of high-perform-
ance computers is [/O bandwidth both between
the memories and the processors, as well as be-
tween memories and secondary storage devices.
Careful attention was paid to these issues in the
design of the X-MP-2; thus its overall system
performance will provide a valuable source of
information for future designs.

Some preliminary experiences with parallel
processing on the X-MP-2 are summarized in table
1.

In view of the efficiencies obtained, these re-
sults are encouraging because some of the prob-
lems involved are not especially large. For exam-
ple, the weather forecast application was two-di-

Table 1

Cray X-MP-2 performance

Application Efficiency
Short-term weather forecast [1] 0.95
Plasma simulation [1] 0.93

3D seismic migration [1] 0.95
Linear algebra [2] 0.43-0.9
Aerodynamic simulation [3] 0.8-1.1

mensional with 100 by 192 grid points. The plasma
simulation contains only 37000 particles. The lin-
ear algebra experiments involved matrices of di-
mensions ranging from 50 to 600 (note that an
efficiency of 0.4 implies 7| was less than 7, for
some of the systems).

The operating system for the X-MP-2 supports
invocation of multiple tasks at the job level. Asso-
ciated user-visible software includes library
routines for task creation and scheduling, intertask
communication and synchronization, and protec-
tion of resources shared among tasks. Fortran will
be extending via a “TASK COMMON” capabil-
ity. Associated data will be local to a task and
shared by subroutines executed within the task.

3.2. The Denelcor HEP

The Denelcor HEP attempts to overcome many
of the latencies that have traditionally impaired
the performance of monoprocessor systems. It can
have up to 16 processing element modules (PEMs)
sharing up to 128 memories. Each PEM offers a
second level of concurrency via a particularly in-
novative architecture. A PEM can multitask up to
50 user processes in an 8-stage instruction pipe
that switches tasks every machine cycle. Further,
the PEM architecture incorporates an aspect of
dataflow. Each PEM is a register-to-register ma-
chine. If the requisite operands for a selected task
are not yet available in local registers, then the
instruction is “waved off” and another task is
selected. The architecture also includes facilities
for locking data in units of one memory word.

Computation of the efficiency metric on the
HEP is complicated by the fact that optimal re-
sutlts are usually obtained by multitasking 10 to
15 processes through the 8-stage instruction pipe.

B.L. Buzbee / Applications of MIMD machines 3

Table 2 Table 3

Denelcor HEP performance PAX-32 applications

Application Efficiency Application Efficiency

Plasma simulation [4] =1 “Eulerian™ Monte Carlo not recommended
2D Lagrangian hydro [4] =1 “Lagrangian” Monte Carlo [9] 0.95-0.98
Reactor analysis [4] =1 Gauss—Jordan elimination [9] 0.55-0.88

Linear algebra [5] 0.7-0.9 FFT [9] 0.70-0.85
Quadrature [6] =1

Ordinary differential egs. [7] 0.5-0.8

Linear transport egs. [8] =1

More than eight processes are required to achieve
optimal performance because some instructions
require more than eight cycles to execute, for
example, division and memory references. The ef-
ficiencies reported in table 2 reflect an arbitrary
decision of the author to divide optimal speedups
by the number of stages in the pipe (i.e., eight).

Details of the implementation of these applica-
tions can be obtained from the indicated refer-
ences. From the perspective of this paper the key
point is that high efficiences have been obtained
from the HEP over a fairly broad spectrum of
applications.

The HEP system includes a Fortran compiler
that contains only two extensions to support paral-
lel processing. With the possible exception of de-
bugging it has proved to be remarkably easy to
use. Thus, another significant result obtained from
the HEP is evidence that Fortran can support
parallel processing via a relatively modest set of
language extensions and control structures.

4. Non-shared memory systems

As the number of processors increases in the
system, the problem of sharing memory among
them becomes increasingly complex. Thus, a key
research question is the applicability of non-shared
memory systems. Non-shared memory systems for
which substantial experience is available include
the PAX-32 and the hypercube.

4.1. The PAX-32 system

The PAX system is a two-dimensional rectangu-
lar array of processors. Communication is nearest

neighbor with end around boundaries. Also, a
global bus provides broadcast capabilities to all
processors. An eight by four system (PAX-32) is
operational and larger systems are under develop-
ment. Experience with PAX-32 is summarized in
table 3.

“Eulerian” Monte Carlo is a problem formula-
tion in which physical space is subdivided into
subspaces and each processor processes everything
happening in one or more subspaces. Thus, in a
time-dependent problem, processor loading may
become unbalanced if particles become con-
centrated in a few subspaces. “Lagrangian” Monte
Carlo is a problem formulation in which particles
are divided equally among processors independent
of spatial location, and thus processor loading is
relatively stable over problem time.

One of the most significant results obtained
from the PAX project is a predictive model for this
class of architecture. The model was validated by
accurately predicting the measured efficiences
given in table 3. Using the model, performance of
these applications was extrapolated to a Pax sys-
tem incorporating thousands of high-performance
processors and high-performance communication
technology. These extrapolations predict that high
efficiencies can be sustained for these applications
on systems with up to 10000 processors.

4.2. The hypercube

The hypercube is a non-shared memory archi-
tecture that uses an elegantly simple interprocessor
communications geometry. In an M-processor sys-
tem, each processor is assigned a unique label
from the set of integers zero through M — 1. The
I'th processor is connected to all processors labeled
J such that the binary representation of J differs

4 B.L. Buzbee / Applications of MIMD machines

Table 4
CIT hypercube applications

Efficiency
p=28 p=16 p =064

Application

Laplacian [10]

32x32 grid 0.85 0.70
64 x 64 grid 0.93 0.83
Matrix multiply [10]

32x32 0.82

4D Ising model [10]

12Xx12x12x%12 0.97

from the binary representation of / in just one bit
position. Thus, a key issue for this architecture is
its applicability to a broad spectrum of applica-
tions.

Researchers at California Institute of Technol-
ogy (CIT) have a 64-processor (6-cube) system
operational, and results from it are summarized in
table 4. Once again the efficiencies are impressive,
and there is a high degree of confidence among
many researchers that these efficiencies can be
sustained over much larger systems.

5. Manchester dataflow machine

Dataflow systems have the potential to be the
Rolls Royce of parallel processing systems because
1. The number of processors can be increased

without changing applications code.

2. Computation is deterministic.

3. Parallelization is automatic.

The second of these points is particularly appeal-
ing because on many parallel systems computation
is not necessarily repeatable. That is, successive
executions of the same code using the same data
may not yield identical results. This indeterminacy
of computation reflects the asynchronous character
of MIMD architecture. Indeterminacy is most
painful in debugging, but it also manifests itself in
other ways [11]. Although dataflow architecture
enjoys popular support among computer scientists,
relatively few systems are operational, and thus
relatively little experience is available. A notable
exception is the dataflow machine at the Univer-

Table 5

Manchester dataflow applications

Application Efficiency
Quadrature [12] > 0.70
FFT [12] =1
Laplace eq. [12] =1

Logic simulation [12] =1

Lee Router [12] ~ ~1

sity of Manchester. This machine uses twelve
processors and a tagged token architecture, and
some results from it are summarized in table 5.
When these results are combined with the poten-
tial of dataflow systems to maximize software pro-
ductivity, then one quickly understands the
worldwide interest in these systems.

6. Summary

We began this discussion by noting our need for
higher performance computing systems and by
asking for evidence that parallel processing will
provide it. We then looked at an ensemble of
experiments on three classes of MIMD architec-
ture. Collectively, these experiments suggest the
following:

1. A broad spectrum of scientific computation is
amenable to parallel processing.

2. Significant gains in speed (efficiency) can be
achieved through parallel processing, at least in
systems with a few processors.

3. A small number of control structures may be
adequate to support parallel computation. Fur-
ther, only a small number of extensions to
Fortran may be required (undoubtably, many
extensions are desirable, but only a few appear
to be required).

These are encouraging results. They reflect breadth

and rapid progress in parallel processing research.

They also show the impact and importance of

having equipment available for experimentation.

However, these positive aspects should not be

overestimated because these experiments also ex-

pose some of the difficult issues that remain to be
solved.

1. Software tools. Problem analysis and decom-

B.L. Buzbee / Applications of MIMD machines 5

position for parallel formulation in nontrival.
Debugging can be decidedly difficult because of
nonrepeatability emanating from asynchronous
computation, and new tools for global depend-
ency analysis, graphical representation of flow,
state information, etc., are required.

2. System issues. The research thus far has prop-
erly focused on the fundamental questions of
can scientific computation be parallel processed
and, if so, how well? Now it is time to also
address fundamental system issues such as 1 /O,
secondary storage, interactive graphics support,
and network support.

3. Massively parallel systems. The architectures
developed thus far typically have less than 100
processors. Now we need to measure the perfor-
mance of computational kernels on systems with
hundreds and thousands of processors.

Acknowledgement

This work was performed under the auspices of
the US Department of Energy.

References

[1] S. Chen. in: High Speed Computation, ed. J.S. Kowalik,
NATO ASI Series (Springer. Berlin, 1984) p. 59-67.

[2] S. Chen, J. Dongarra and C. Hsiung, Mathematics and
Computer Science Division Technical Memorandum no.
24, Argonne National Laboratory (February 1984).

(3] K.G. Stevens, presented to the 1984 Oregon Conf. on
Experiences in Applying Parallel Processing to Scientific
Computation.

[4] M. Moore, R. Hirmoto and O. Lubeck. Parallel Com-
puting, in press.

[5] J. Dongarra and R. Hiromoto. Parallel Computing, in
press.

[6] D.H. Grit and J.R. McGraw, Lawrence Livermore Na-
tional Laboratory preprint UCRL-88710 (May 1983).

[7] J.S. Kowalik, R.E. Lord and S.P. Kumar, High-Speed
Computation, ed. J.S. Kowalik., NATO ASI Series
(Springer. Berlin, 1984).

[8] B.R. Wienke and R.E. Hiromoto. Comput. Phys. Com-
mun. 37 (1985) 363.

[9] T. Hoshino. T. Shirakawa. T. Kamimura, S. Sekiguchi. Y.
Oyanagi and T. Kawai, Proc. 1983 Intern. Conf. on Paral-
lel Processing, p. 95.

[10] J. Salmon, presented at the 1984 Oregon Conf. on Expe-
riences in Applying Parallel Processors to Scientific Com-
putation.

[11] P. Frederickson, R. Hiromoto, T. Jordan, B. Smith and T.
Warnock, Parallel Computing, in press.

[12] J. Gurd and I. Watson. Proc. IFIP World Computer
Congress (North-Holland, Amsterdam, 1982) p. 545.

Computer Physics Communications 37 (1985) 7-13
North-Holland, Amsterdam

HIGH SPEED VECTOR PROCESSORS IN JAPAN

Keiichiro UCHIDA and Mikio ITOH

Mainframe Division, Fujitsu Ltd., 1015, Kamiodanaka, Nakahara-Ku, Kawasaki 211, Japan

In 1982-1983. three Japanese companies announced new vector processors. These are Fujitsu’'s FACOM VP-100/VP-200.
Hitachi’s HITAC S-810 MODEL 10/MODEL 20, and NEC’s SX-1/SX-2. Their maximum performance ranges from 250 to

1300 MFLOPS.

This paper describes the state-of-the-art technologies of vector processors in Japan, particularly used in the FACOM VP

system as an example.

1. History and current status of high speed vector
processors in Japan

The first vector processor, in Japan, the Fujitsu
FACOM 230-75 Array Processing Unit was in-
stalled at the National Aerospace laboratory in
1977. In that era, there was little need for vector
processors in Japan, and only two FACOM 230-75
Array Processing Units were shipped. However, a
tremendous amout of experience was gained by
the development of this vector processor, which
has been fully utilized in the development of the
FACOM VP system.

Hitachi and NEC have also developed In-
tegrated Array Processors (IAPs), and attached
them to their large scale general purpose com-
puters.

In 1982 and 1983, Fujitsu, Hitachi and NEC
announced vector processors as supercomputers.
These vector processors are the FACOM VP-100
and VP-200 by Fujitsu, the HITAC S-810/10 and
S-810,/20 by Hitachi, and the NEC SX-1 and SX-2
by NEC.

These Japanese supercomputer manufacturers
share some interesting characteristics.

Firstly, Fujitsu, Hitachi and NEC are also large
semiconductor manufacturers in the world and
can utilize the latest semiconductor technology.

Secondly, these Japanese supercomputer manu-
facturers add the vector architecture to their gen-
eral purpose computer architecture. Especially,

Fujitsu and Hitachi employ and IBM compatible
instruction set for their general purpose com-
puters.

Vector processors manufactured by Fujitsu and
Hitachi have been shipped to major universities in
Japan and are now fully operational. The FACOM
VP-100’s are in use at the Institute of Plasma
Physics at the Nagoya University and the Kyoto
University, and a HITAC S-810,/20 is in use at the
University of Tokyo. In addition, two CRAY 1-S
systems are being used in Japan.

In Japan large scale numerical computations
are primarily required in such areas as nuclear
engineering, aerodynamics, meteorology and
molecular science.

2. Supercomputers in Japan

Table 1 shows the hardware specifications of
supercomputers manufactured by Hitachi, Fujitsu,
NEC and Cray Research. It is to be noted that
Japanese supercomputers have large scale main
storage.

Table 2 shows the performances of Livermore
Kernel on the FACOM VP-200 system, HITAC
S-810,/20 and CRAY X-MP (single CPU) as on
January 1984. The performance of the FACOM
VP-200 was measured by Fujitsu at its Numazu
works. Table 3 summarizes the technologies used
in the FACOM VP system. The performances of

0010-4655 /85 /$03.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

8 K. Uchida, M. ltoh / High speed vector processors in Japan

Table 1

Comparison of hardware specifications

FACOM VP HITAC S-810 NEC CRAY X-MP
100 200 /10 /20 SX-1 SX-2

Announcement 1982 3Q 1982 3Q 1983 2Q 1983 2Q

First 1983 4Q 1983 4Q not yet 1983 4Q
Customer service

Machine 7.5 15 7 6 9.5
cycle (ns)

Peak 250 500 315 630 570 1300 400
performance (MFLOPS)

Vector 32 64 32 64 40 80 8
registers (Kbyte)

Mask 16 word 32 word 128 word 256 word 64 word
register X256 X256 256 word X 8 X8 X8 X8

MSU maximum 128 256 128 256 256 32
capacity (Mbyte)

MSU maxiumum 128 256 512 32
interleave WAY WAY NA WAY WAY

MSU 64 Kbyte 16 Kbyte 64 Kbyte 4 Kbyte
RAM chip MOS SRAM MOS SRAM MOS SRAM BIP

I/0 maximum 96 96 50 224
transfer rate (Mbyte /s)

Number of 16/32 8/16 32 16
channels /24/32

the HITAC S-810/20 and CRAY X-MP are taken
from ref. [6]. The NEC SX system is still in the
development stage and its performance is not
available.

Table 2
Comparison of performance of Livermore kernels (unit=
MFLOPS)

Kernel FACOM **’ HITAC *’ CRAY X *’
VP-200 S-810,/20 CFT 1984
1 3314 228.0 153.0
2 180.4 2394 76.6
3 338.2 211.9 95.8
4 88.1 59.2 41.1
5 10.0 5.4 87
6 9.5 4.6 8.0
7 331.0 232.7 167.9
8 90.4 48.8 95.7
9 260.8 207.6 163.0
10 85.9 49.0 59.9
11 4.8 9.8 3.1
12 115.3 83.0 76.5
13 6.2 4.2 4.8
14 13.8 8.5 6.9
Average 1333 100.2 68.6

*)Ref. [6];**'measured at Numazu works.

3. Design philosophy of the FACOM VP system

Based on the extensive analysis of more than
1000 FORTRAN programs in scientific and en-
gineering applications, the following primary ob-
jectives have been identified during the design
phase of the FACOM VP system:

— To realize a system with high performance for
users’ application programs rather than just the
peak performance.

— To realize a system which is easy to use for

Table 3
Technology used in the FACOM VP system
Logic LSI ECL LSI 400 gate/chip 350 ps delay
ECL LSI 1300 gate/chip 350 ps delay
RAM bipolar 4 Kbit/module 5.5 ns access
MOS static 64 Kbit/chip 55 ns access
PCB MCC 121 LSI/MCC 31X 31 cm?®
14 layers
mem.card 1 Mbyte/PCB 24X 38 cm?
6 layers
Unit MCC stack 13 MCC/stack 41 MCC/VPU

K. Uchida, M. Itoh / High speed vector processors in Japan 9

ordinary programmers in developing application

programs.

In the FACOM VP system, these two objectives

are achieved through the implementation of the

following items in both hardware and software.
For increasing effective performance

— Vectorization of the DO loops including IF
statements.

— Efficient vector edit instructions.

— Flexible definition of vectors.

— Dynamically reconfigurable vector registers.

— High speed scalar unit.

— High data transfer rate in vector load/store
operations.

— Concurrent operations.
For ease of use

— Optimization control lines (OCL).

— Interactive vectorizer.

4. The FACOM VP system hardware
4.1. System configuration

Two models are available in the FACOM VP
system: the VP-200 and the VP-100. Fig. 1 is a
block diagram of the FACOM VP system.

The FACOM VP system consists of a vector
processing unit (VPU), a main storage unit (MSU),
and a channel processing unit (CHP). The VPU
consists of a vector unit (VU) which processes
vector data and a scalar unit (SU) which processes
scalar data.

MASK REGISTERS
KB

MASK
{ADD/
MAIN * LOGICALJ |VECTOR UNIT
STORAGE
“{MULTIPLY
256M8B| 1
proe])
“ < [SCALAR UNIT
ORACE] I ECUTION

Fig. 1. The FACOM VP system block diagram.

4.2. Scalar unit (SU)

The SU has 64 Kbyte of high speed buffer
storage and scalar registers such as 16 general-
purpose registers, 8 floating-point registers. The
scalar unit fetches and decodes all the instructions,
and vector instructions are issued to the vector
units. There is a direct path between the scalar
unit and the vector unit, so that general purpose
registers and floating point registers can be refer-
enced or updated from the vector unit.

4.3. Vector unit (VU)

The VU mainly consists of vector registers
(VR’s), mask registers (MR’s), two load/store
pipelines, a mask operation pipeline, an add /logi-
cal pipeline, a multiply pipeline and a divide pipe-
line.

In the VP-200 system, all the arithmetic and
mask operation pipelines operate with a 7.5 ns
machine cycle, and each pipeline can process 2
elements per cycle. The divide pipeline has 1/7 of
the throughput of the add or the multiply pipeline.
Two load /store pipelines are provided to transfer
data between VR’s and the MSU. In the case of
the FACOM VP-100 system, the throughput of
each pipeline is half of that for the FACOM
VP-200 system.

4.4. Vector registers (VR’s) and mask registers
(MR’s)

The VP-200 system has 64 Kbyte VR’s with the
basic configuration of 8-byte word X 32 elements
X 256 registers. (In the VP-100 system the basic
configuration is 8-byte word X 16 elements X 256
registers). The vector registers are built with bi-
polar RAM’s with 5.5 ns access time.

The VP-200 system has 1 Kbyte MR’s to store
the logical values (“TRUE” /“FALSE”), with the
basic configuration of 1-bit-word X 32 elements
X 256 registers. The MR’s are built with same
bipolar RAM’s as vector registers. The dynamic
reconfiguration feature of these registers is de-
scribed in section 5.4.

