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Preface

The 5th International Conference on Unconventional Computation, UC 2006,
organized under the auspices of the EATCS by the Centre for Discrete Mathe-
matics and Theoretical Computer Science of the University of Auckland, and the
Department of Computer Science of the University of York, was held in York,
UK, September 4-8, 2006.

York combines evidence of a history going back to Roman times with a
bustling modern city center. The Minster, built on the foundations of the Roman
city and an earlier Norman cathedral, is among the finest Gothic cathedrals, and
dominates the city. Romans, Vikings, and more recent history are commemorated
in a number of top-class museums, as well as being apparent in the architecture
of the city.

The series of International Conferences on Unconventional Computation (UC),
https://wuw.cs.auckland.ac -nz/CDMTCS/conferences/uc/, is devoted to all
aspects of unconventional computation, theory as well as experiments and
applications. Typical, but not exclusive, topics are: natural computing includ-
ing quantum, cellular, molecular, neural and evolutionary computing; chaos and
dynamical systems-based computing; and various proposals for computations that
go beyond the Turing model.

The first venue of the Unconventional Computation Conference (formerly
called Unconventional Models of Computation) was Auckland, New Zealand in
1998; subsequent sites of the conference were Brussels, Belgium in 2000, Kobe,
Japan in 2002, and Seville, Spain in 2005.

The titles of volumes of the past UC conferences are the following:

1. C.S. Calude, J. Casti, M.J. Dinneen (eds.). Unconventional Models of Com-
putation, Springer, Singapore, 1998, viii + 426 pp. ISBN: 981-3083-69-7.

2. I. Antoniou, C.S. Calude, M.J. Dinneen (eds.). Unconventional Models of
Computation, UMC’2K, Springer, London, December 2000, xi + 301 pPp-
ISBN 1-85233-417-0.

3. C.S. Calude, M.J. Dinneen, F. Peper (eds.). Third International Confer-
ence, UMC 2002, Proceedings Lecture Notes in Computer Science, Vol. 2509,
Springer, Heidelberg, 2002, vii + 331 pp. ISBN: 3-540-44311-8.

4. C.S. Calude, M.J. Dinneen, M.J. Pérez-Jiménez, Gh. Piun, G. Rozenberg
(eds.). Proc. 4th International Conference Unconventional Computation,
Lecture Notes in Computer Science, Vol. 3699, Springer, Heidelberg, 2005,
xi + 267 pp. ISBN: 3-540-29100-8.

The Steering Committee of the series of International Conferences on Uncon-
ventional Computation includes T. Back (Leiden, The Netherlands), C.S. Calude
(Auckland, New Zealand, Co-chair), L.K. Grover (Murray Hill, NJ, USA), J. van
Leeuwen (Utrecht, The Netherlands), S. Lloyd (Cambridge, MA, USA), Gh. Piun
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(Bucharest, Romania, and Seville, Spain), T. Toffoli (Boston, MA, USA), C. Tor-
ras (Barcelona, Spain), G. Rozenberg (Leiden, The Netherlands, and Boulder,
Colorado, USA, Co-chair), A. Salomaa (Turku, Finland).

The five key-note speakers of the conference were:

1. Gerard Dreyfus (ESPCI, Paris, France): Graph Machines and Their Appli-
cations to Computer-Aided Drug Design: A New Approach to Learning from
Structured Data

2. Michael C. Mozer (Department of Computer Science, and Institute of Cogn-

tive Science, University of Colorado, USA): Rational Models of Cognitive

Control

Reidun Twarock (University of York, UK): Self-Assembly in Viruses

4. Erik Winfree (Computer Science and Computation & Neural Systems, Cal-
ifornia Institute of Technology): Fault-Tolerance in Biochemical Systems

5. Damien Woods (University College Cork, Ireland): Optical Computing and
Computational Complexity

@

UC 2006 included the following tutorials:

1. Andrew Adamatzky, Benjamin De Lacy Costello, Tetsuya Asai (Computing,
Engineering and Mathematical Sciences, University of the West of England,
Bristol, UK): Reaction-Diffusion Computers

2. Cristian S. Calude (University of Auckland, New Zealand): Computing with
Randomness

3. NataSa Jonoska (University of South Florida, USA), and Darko Stefanovic
(University of New Mexico, USA): Biomolecular Automata

4. Viv Kendon (University of Leeds, UK): Quantum Computing

5. Joseé del R. Millin (Institute for Systems, Informatics and Safety Joint
Research Centre, Ispra, Italy): Brain Signal Analysis

6. Christof Teuscher (LANL, USA): To Compute, or not to Compute

The workshop “From Utopian to Genuine Unconventional Computers” was
part of this year’s conference.

The Programme Committee thanks the much appreciated work done by the
paper reviewers for the conference. These experts were: Nevil Brownlee, Sam
Braunstein, Douglas S. Bridges, Matteo Cavaliere, Cristian S. Calude, S. Barry
Cooper, Jack Copeland, David Corne, Gabor Csardi, Erzsebet Csuhaj-Varju,
Michael J. Dinneen, Peter Erdi, Marian Gheorghe, Georgy Gimel’farb, James
Goodman, Jozef Gruska, Oscar H. Ibarra, Mario de Jesus Pérez-Jiménez, Natasa
Jonoska, Jarko Kari, Jan van Leeuwen, Chang Li, Rossella Lupacchini, Joseé del
R. Milldn, Pablo Moscato, Andrei Piun, Gheorghe Paun, Ion Petre, Vladimir
Rogojin, Ulrich Speidel, Susan Stepney, Karl Svozil, Carme Torras, Christof
Teuscher, Hiroshi Umeo.

The Programme Committee consisting of J.-P. Banatre (Rennes, France),
S. Braunstein (York, UK), C.S. Calude (Auckland, New Zealand, Co-chair),
B. Cooper (Leeds, UK), D. Corne (Exeter, UK), M.J. Dinneen (Auckland, New
Zealand, Secretary), P. Erdi (Kalamazoo, MI, USA), E. Goles (Santiago, Chile),
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N. Jonoska (Tampa, FL, USA), J. Kari (Turku, Finland), J. van Leeuwen
(Utrecht, Netherlands), R. Lupacchini (Bologna, Italy), J. del R. Millan (Ispra,
Italy), Gh. Paun (Bucharest, Romania, and Seville, Spain, Co-chair), M.J. Pérez-
Jiménez (Seville, Spain), I. Petre (Turku, Finland), P. Prusinkiewicz (Calgary,
Canada), C. Teuscher (LANL, Los Alamos, USA), C. Torras (Barcelona, Spain),
H. Umeo (Osaka, Japan), S. Stepney (York, UK), K. Svozil (Vienna, Austria),
selected 17 papers (out of 36) to be presented as regular contributions.

We extend our thanks to all members of the Conference Committee, particu-
larly to L. Caves, E. Clark, K. Clegg, G. Danks, O. Leyser (Co-chair), F. Polack,
S. Stepney (Co-chair), J. Timmis, H. Turner, A. Weeks, J. Wright, for their
invaluable organizational work.

We thank the University of York and the Centre for Discrete Mathematics
of the University of Auckland for their technical support. The hospitality of our
hosts, the Department of Computer Science of the University of York, is much
appreciated.

The conference was partially supported by the Department of Biology of the
University of York, the Enterprise and Innovation office of of the University
of York, Microsoft Research, EPSRC, and the University consortium “White
Rose”; we extend to all our gratitude.

It is a great pleasure to acknowledge the fine cooperation with the Lecture
Notes in Computer Science team of Springer for producing this volume in time
for the conference.

June 2006 C.S. Calude
M.J. Dinneen

Gh. Paun

G. Rozenberg

S. Stepney
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Graph Machines and Their Applications to
Computer-Aided Drug Design: A New Approach to
Learning from Structured Data

Aurélie Goulon', Arthur Duprat" %, and Gérard Dreyfus'

' Laboratoire d’Electronique,
2 Laboratoire de Chimie Organique, (CNRS UMR 7084)
Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris
(ESPCI-ParisTech)
10 rue Vauquelin, 75005 PARIS, France
Aurelie.Goulon@espci.fr, Arthur. Duprat@espci.fr,
Gerard.Dreyfus@espci.fr

Abstract. The recent developments of statistical learning focused on vector
machines, which learn from examples that are described by vectors of features.
However, there are many fields where structured data must be handled:; there-
fore, it would be desirable to learn from examples described by graphs. Graph
machines learn real numbers from graphs. Basically, for each graph, a separate
learning machine is built, whose algebraic structure contains the same informa-
tion as the graph. We describe the training of such machines, and show that
virtual leave-one-out, a powerful method for assessing the generalization
capabilities of conventional vector machines, can be extended to graph ma-
chines. Academic examples are described, together with applications to the pre-
diction of pharmaceutical activities of molecules and to the classification of
properties; the potential of graph machines for computer-aided drug design are
highlighted.

1 Introduction

Whether neural networks still fall in the category of “unconventional” computational
methods is a debatable question, since that technique is well understood and widely
used at present; its advantages over conventional regression methods are well docu-
mented and mathematically proven. Neural networks are indeed conventional in that
they learn from vector data: typically, the variables of the neural model are in the
form of a vector of numbers. Therefore, before applying learning techniques to neural
networks, or any other conventional learning machine (Support Vector Machine,
polynomial, multilinear model, etc.), the available data must be turned into a vector of
variables; the learning machine then performs a mapping of a set of input vectors to a
set of output vectors. In most cases, the output is actually a scalar, so that the mapping

is from R" to R, where 7 is the dimension of the input vectors. When modeling a

physical process for instance, the factors that have an influence on the quantity to be
modeled are known from prior analysis, so that the construction of the vector of
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variables is straightforward, requiring simply normalization, and possibly variable se-
lection by statistical methods.

In many cases of interest, however, encoding the data into a vector cannot be per-
formed without information loss. Such is the case whenever the information to be
learnt from is structured, i.e. is naturally encoded into a graph. In scene analysis for
instance, a scene can be encoded into a graph that describes the relationships between
the different parts of the scene. In computer-aided drug design, the purpose of learn-
ing is a mapping of the space of molecules to the space of pharmaceutical activities;
in most cases, the structure of the molecule explains, to a large extent, its activity.
Since molecular structures are readily described by graphs, QSAR (Quantitative
Structure-Activity Relationships) aims at mapping the space of the graphs of molecu-
lar structures to the space of molecular activities or properties.

In the present paper, we describe an approach to learning that can be termed uncon-
ventional insofar as its purpose is a mapping of graphs to real numbers (or vectors) in-
stead of a mapping of vectors to real numbers. The latter quantities may be either real-
valued (graph regression) or binary (graph classification). The idea of learning from
graphs (and generally structured data) can be traced back to the early days of machine
learning, when Recursive Auto-Associative Memories (RAAMs) were designed for
providing compact representations of trees [1]. It evolved subsequently to Labeled
RAAMs [2], recursive networks [3], and graph machines (for a review of the develop-
ment of numerical machine-learning from structured data, see [4]).

The first part of the paper is devoted to a description of graph machines and of
some didactic, toy problems. It will also be shown that model selection methods that
are proved to be efficient for conventional machine learning can be extended to graph
machines. The second part of the paper will describe novel applications of graph ma-
chines to the prediction and classification of the properties or activities of molecules,
a research area known as QSAR/QSPR (Quantitative Structure-Activity/Structure-
Property Relationships). We show that graph machines are particularly powerful in
that area, because they avoid a major problem of that field: the design, computation
and selection of molecular descriptors.

2 Graph Machines

We first provide the definitions and notations for handling acyclic graphs, and the
construction of graph machines from general graphs (possibly cyclic). Academic
problems are described as illustrations. It is shown that the training and model selec-
tion methods developed for vector machines can be extended to graph machines.

2.1 Handling Directed Acyclic Graphs

Definitions: we consider the mapping from a set of acyclic graphs G to a set of real-
valued numbers.

For each acyclic graph G; of G, a parameterized function g R” — R is constructed,

which is intended (i) to encode the structure of the graph [5], and (ii) to provide a pre-
diction of the quantity of interest, e.g. a property or an activity of the molecule, from
G;. It is constructed as follows. A parameterized function fy (“node function”) is
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associated to each node. © denotes the vector of parameters of the node function. All
nodes, except the root node, have the same node function fo; those functions are com-
bined in such a way that g’ has the same structure as graph G;: if an edge from node k
to node [ exists in the graph, then the value of the node function associated to node k
is a variable of the node function associated to node [. The root node may be assigned
a different function, denoted by Fg, where © is the vector of parameters of Fg. If the
node functions are neural networks, the g"’s are termed recursive neural networks [3].

Notations: the following notations are used throughout the paper.

We denote by x; the (optional) vector of labels that provide information about node j
of graph G;. The size of the label vector is denoted by X;; it is the same for all nodes
of a given graph. Therefore, the parameterized function associated to G; will be de-

noted as g;,e (x],xz,...,xv ) where V; is the number of nodes of graph G;. If no spe-

cific information about the node is necessary, gée has no variable: its value depends

only on the structure of graph G..

We denote by z; the vector of variables of the node function fg(z;) of the non-root
node j of graph G;. Denoting by d; the in-degree of non-root node j, and defining
M = arg max dj , the size of vector z; is equal to D; = M; + X; + 1. The vectors of vari-

J
ables of the node functions fg(z;) are constructed as follows: for all j, the first compo-

nent z? is equal to 1 (the “bias” if fy(z;) is a neural network, the constant term if fg(z))

" : 5 - d
is an affine function); for node j, of in-degree d;, components z; to z,/ are the values

of the node functions assigned to the parent nodes of node j; if d; < M;, components
d.+1
i

node j.

M 5 M +1 M
to z;' are equal to zero; if X; # 0, components z; " to z; X

are the labels of
We denote by y; the vector of variables of the node function F (yi) of the root
node of graph G;. The size of y; is 4; = d, + X, + 1, where d, denotes the in-degree of
the root node and X, the size of its vector of labels. yf’ is equal to 1 (bias), yl.l to ylfi'
are the values of the node functions assigned to the parent nodes of the root node,

d, +1

Vi

d+X,

to y, are the labels assigned to the root node.

As an example, Fig. 1 shows an acyclic graph G, with maximum in-degree M, = 2;
the corresponding graph machine is:

Hee ("1”‘2""”‘8) = Fe(y,)= Fo (xs’fo(xv’/;(Ze)’o)’f;("s’fe(zfa)’j%(xl’ﬁ (ZZ)’fe (z,)))) (D

If no information about the nodes is required by the problem at hand (X; = 0), one
has D = 3, and:

0)1.,13:(1 j;(zl) fe(zz))T,
\oz = A=) o) v=( A(z) A=)

zl=zz=z4=z6=(1

3

PN
—_
N
w
N——
BN
——
N
IS
— {2}

z,=(1
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‘ 2

Graph G, Graph machine
Fig. 1. An acyclic graph and its graph machine

2.2 Cyclic Graphs

Graph machines handle cyclic graphs and parallel edges. To that effect, the initial
graph is preprocessed by deleting a number of edges equal to the number of cycles,
and all parallel edges but one; moreover, a label is assigned to each node: it is equal to
the degree of the node, thereby retaining the information about the original graph
structure. Finally, a root node is chosen and the edges are assigned orientations, ac-
cording to an algorithm described in [6].

2.3 The Training of Graph Machines

Graph machines are trained in the usual framework of empirical risk minimization. A
cost function J(®,8) is defined, and its minimum with respect to the parameters is
sought, given the available training data. The cost function takes into account the dis-
crepancy between the predictions of the models and the observations present in the
training set, and may include regularization terms, e.g.:

Moo 2
J(0.8)=3(y" ~250) + A6+ 2,]e]. @)

i=1

i
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where N is the size of the training set, yi is the value of the i-th observation of the
quantity to be modeled, and 4, and 4, are suitably chosen regularization constants.

Since the parameter vectors © and © must be identical within each function g’ and
across all those functions, one must resort to the so-called shared weight trick; the
k-th component of the gradient of the cost function can be written as

07(6,8) = 3

s N ﬁ

i=1
where J' is the contribution of example i to the cost function. We denote by n; the
k

number of occurrences of parameter 6 in acyclic graph G;; if the root is assigned the
same parameterized function as the other nodes, then n; is equal to the number of
k

nodes in graph G;. The shared weight trick consists in setting

VAR <A

i 4
6, =96, ™

so that one has finally:

N "o i
Eﬂ(ﬁ,@)___zzi. )

96, i=1 j=1 ae"j
Relation (5) is subsequently used for minimizing cost function (2) by any suitable
gradient descent algorithm (Levenberg-Marquardt, BFGS, conjugate gradient, ...).

If functions fy and Fe are neural networks, the usual backpropagation algorithm
may be conveniently used for computing the gradient; otherwise, one resorts to nu-
merical estimations thereof.

2.4 Didactic Examples: Learning the Number of Nodes and the Number of
Cycles of a Graph

In the present section, two simple examples are provided, whose solutions can be
worked out analytically because they are linear. In both cases, we consider the train-
ing set made of three graphs, shown on Fig. 2.

Learning the number of nodes of a graph: first, assume that it is desired to learn,
from examples, the number of nodes of a graph. Then the desired mapping is: G,—4;
G,—8; G3—9. Moreover, generalization should be performed by using the node
functions thus obtained in any other graph machine, i.e. to compute the number of
nodes of any graph.

The first step consists in constructing directed acyclic graphs (DAGs) from the ini-
tial graphs. The construction of the DAGs is obvious for G, and G,. Since graph G;
has four cycles, four edges must be deleted. Fig. 3 shows the directed acyclic graphs
on which the graph machines will be based.
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Fig. 2. A training set

D-1
The node function fg is sought in the family of affine functions fy (z) = ZB}.Z}. 5
Jj=0

and Fg is taken identical to fy. Since the presence or absence of an edge is irrelevant
for the computation of the number of nodes, no label is necessary: X, = X, = X5 = 0.
The node functions being the same for all graphs of the training set, we take

D =max M,+1=35. Since all edges are equivalent, one has 6, = 6, = 6, = 6, = 6.

Therefore, there are actually two independent parameters only.
The obvious solution is & = = 1. For graph G, for instance, one has:

gt;,e(xl’xz’x3’x4)=fe(l’fe(zl)’fe(zz)’fo(zz)’o)=90+3990:4’
wherez]=zz=z3:(1 0 00 O)T.
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Graph G, Graph G, Graph G,

Fig. 3. The acyclic graphs derived from the training set shown on Fig. 2



