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Preface

When I wrote Solubility and pH Calculations nearly 20 years ago, I had in mind
an audience of analytical chemistry students. Long after I finished that book,
I discovered that some of my chief fans were geochemists and environmental
engineers. From their point of view, the most important acid-base and solubility
problems were missing from Solubility and pH. These were tBe equilibria of carbon
dioxide and the solubility of carbonates, which in 1963 I considered too com-
plicated for an elementary course. This book is an attempt to remedy that omission
and to provide enough detail from this important cluster of equilibrium problems
s8 that a diligent student can master its complexities.

Carbon dioxide occupies a central place in the biosphere and in many of the
geological processes that create and erode rocks. Plants, from trees to phyto-
plankton, absorb CO, from the atmosphere and convert it into biomass; res-
piration by terrestrial and aquatic plants and animals returns carbon dioxide to
the atmosphere. Many marine plants and animals corvert CO, into calcium
carbonate, and when they die the mineral portions of their bodies become
reefs, sediment, and limestone. Thus a full understanding of the natural environ-
ment involves a quantitative understanding of the transformations of carbon
dioxide and carbonate minerals. Recent concern has centerea on how rapidly the
the-excess CO, produced by humans burning coal and other fossil fuels can be
assimilated by biological and geochemical processes.

Almost all natural waters contain carbonate and carbon djoxide. Water
conditioning and wastewater treatment must therefore include processes involving
acid-base equilibria of CO, and precipitation or dissolution of CaCO,. These
topics are considered-an essential part of the environmental engineering curric-
ulum, but often are not given a very detailed treatment in engineering textbooks.

This book is about the details of carbonate equilibrium calculations and
how they are applied to oceanography, geochemistry, and environmental engi-
neering. It begins at a level accessible to most students with a sound quantitative
course in general chemistry and a reasonable mastery of algebra at the high=
school level. As the book proceeds, more and more complicated examples are
considered, but I have tried to give correspondingly more detailed discussion.




vi Preface

My intent was to provide a textbook monograph that would be useful in a
variety of courses. These would certainly include the aquatic chemistry courses
of the environmental engineering curriculum, courses in geochemistry and
chemical oceanography, and quite possibly other courses I have not yet imagined.
It is not meant to substitute for a textbook in any of these subjects, but ought to
provide enough supplementary material to satisfy the curiesity (and perhaps
alleviate the confusion) of all but the most advanced students. Indeed, I hope this
book will be useful to students who would find the introductory chapters far too
elementary, but'who need to understand the details of ionic strength corrections
or the quantitative theory behind the lime—soda water softening process.

I have taught much of “this material since 1970 in advanced undergraduate
and graduate courses at Harvard. Every year, my lectures metamorphosed as I
learned new perspectives on what seemed at first to be a straightforward topic.
I hope some of that sense of adventure remains in this book.

I would probably not have considered writing this book if it had not been
for the encouragement of Tom Robbins at Addison-Wesley, and would not have
completed it except for the inspiration given by my colleagues Robert Garrels,
H. D. Holland, Fred Mackenzie, James J. Morgan, Raymond Siever, the late
Lars Gunnar Sillen, Werner Stumm, and Roland Wollast. Christine Lawton and
Cora Bennett typed the manuscript with unusual skill and patience. A lot of my
thinking and writing was done at the Bermuda Biological Station, where carbonate
geochemistry has a long tradition. My wife Rosamond has given me moral support
when no one else could.

Finally, I want to dedicate this book to my friend Conrad D. Gebelein (1944
1978), who taught me much of what I know about the real world of carbonate
geochemistry. His untimely death was a great loss to his friend and to science.

Cambridge, Mass. J.N: B.
December, 1981 :
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CHAPTER
ONE

‘Review of
- Solubility and
pH Calculations

This book is intended to be self-contained, but of course it depends on knowledge
of some chemistry and mathematics. The topics reviewed in this chapter are
presented in more detail, with more examples, in my other books.* My intent here
is only to give a catalog of what you ought to be familiar with for.the rest of this

book.

CONVERTING CHEMICAL MODELS
TO MATHEMATICAL PROBLEMS

If you are going to calculate the equilibrium composition of an aqueous solution,
you must have in mind a “chemical model” of the system. A chemical model
consists of a set of chemical species and the equilibria relating them. This infor-
mation may not be explicitly stated in a problem, and a successful attack on the
problem may require some prior chemical knowledge on your part. Part of the
model, of course, is the set of numerical values for the appropriate equilibrium
constants. In this book, I have tried to make my chemical models explicit.
Equilibrium constant expressions alone are not enough to provide an answer
to most problems, and additional relations between the concentrations of species
are needed. I feel that the method of mass and charge balances is easiest to under-
stand and to generalize, even though it may lead to a little more algebra than other
methods' in some of the simplest examples. The combination of equilibria with
mass and charge balances will give you as many independent equations as you

_* See Butler, J. N. 1964. Solubility and pH Calculations or lonic Equilibrium. Reading, Mass: Addison-

Wesley. I refer to these books throughout; for brevity, they will be cited by their titles only.

t You may have learned a method normally limited to those relations that can be derived from one
balanced chemical reaction. There is also a method that involves minimization of total free energy,
which is the basis of some computer programs but is not feasible for hand calculation.
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have unknown species, and you can then solve this set of simultaneous mathe-
matical equations.

LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Because the numerical values of concentrations in aqueous solutions range from
10 M down to less than 107!% M, logarithmic functions of the variables are
common and graphical representations are usually made on a logarithmic scale.
The function you are probably most familiar with is

pH = —log,o[H* ]y,

where [H™*] is the concentration of hydrogen ion in moles per liter and y. is its
activity coefficient, a correction for non-ideality which is usually between 0.7 and
1.2 but depends on the concentrations of other ions in the solution.*
For some examples in this book, the activity coefficient is approximated by
v+ = 1.0 for simplicity, and i
pH = —log,o[H"].

For other examples, I will show you how to make numerical estimates of the
activity coefficients.

A NOTE ON CALCULATORS

In the numerical work presented in my examples, concentrations are sometimes
written as z =528 - 107%, and sometimes as 10" or z = 10~328 (These are
numerically equal, as you can verify.) You should have a calculator that has both
“log;0x” and “10*” function keys for the most efficient use of these notations.
Practice by doing numerical examples like this:

z = 10—3.28 + 10—3.55 _ 10—4.20 = 10—3.13.

Regardless of your calculator’s logical system, you should be able to evaluate such
expressions without writing down any intermediate answers.

" Note that, if only two decimal places are retained in the logarithms, any terms
at least two orders of magnitude less than the largest can be neglected without
calculation. For example:

10—3428 4 10—5.28 — 10—3.276 ~ 10—3.28.

You can see that addition of the second term affected the answer only in the third
decimal place of the logarithm.

* See Chapter 2; see also Ionic Equilibrium, Chapter 12, or Bates, R. G. Determination of pH : Theory
and Practige, ed. 2. 1973. New York: John Wiley Interscience.




Strong Acids and Bases 3

STRONG ACIDS AND BASES

When water ionizes, a proton (hydrogen ion) is transferred from one water molecule
to another, resulting in a hydrated hydrogen ion and a hydroxyl ion:

H,0 + H,0 = H,0* + OH".

Actually, H,O" is further hydrated by at least three additional water molecules,
and the complexity of the structure increases at lower temperatures. Because this
hydration structure is not normally part of the chemical models discussed in this
book, I write the hydrated proton as H* (a common simplification); but you
should keep the complexities in the back of your mind.

The equilibrium constant expression for the ionization of water in its most
general form would be written

[H*]J[OH ]y.y- = K°[H,0]ly,,

but in dilute solutions the activity coefficients are close to 1.0 (see Chapter 2) and
the concentration of water is nearly constant at [H,O] = 55.5 mole/L. Therefore,
the concentration ion product
0
[H*][OH ] =K, = K0l .y
Y+Y-

is commonly used.* Both the activity of undissociated water and the activity
coefficients of the ions can be included in the equilibrium constant K,,. In dilute
aqueous solutions at 25°C, K,, = 107'%°. In more concentrated solutions, K,
depends on the concentrations of other ions (see Fig. 2.8 for more details).

The second equation required to solve for pH is a charge balance between H*
and OH ~, which states that all positive ions formed must be balanced by an equal
number of negative charges. In pure water,

[H*]=[OH™]. 1.2)
Substitute the ion product of water (1.1) and you get
[H*]?* =K,
Taking the negative logarithm of both sides and setting K,, = 10"'*®and y, =
1.0, you get:*
pH = —log[H*] = —% log K,, = 7.0.

* In some books K, is used for the activity product ayaoy = [H*J[OH "]y, y-. I use K|, for the con-
centration product at finite ionic strength and K, for the activity product, since K9 is equal to the
concentration product K, extrapolated to zero ionic strength. At 25°C, K = 10713999,

t Note that if you set pH = —log([H*]y,) and y, = y_, you will find pH = $pK}, eveniif y, or y_
is not 1.0.
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Addition of acid to pure water will increase [H*]; addition of base will
decrease [H*] and increase [OH ~]. If an acid is fully dissociated into ions it is
called strong; an example is HCl, which yields only H* and CI~ in aqueous
solution.

For a solution containing some constant C molar HCI, two equations are
required besides the ion product of water—a mass balance on chloride (all the
chloride in solution comes from HCI):

[CI"]=C; aa3)
and a charge balance, including chloride as well as hydroxyl ion:
[H*]=[OH ]+ [CI"] (1.4)

Equations (1.1), (1.3), and (1.4) can be solved without approximation. Substitute
from the mass balance (1.3) into the charge balance (1.4) to eliminate [C1™ ], then
_solve the resulting equation for [OH™]:

[OH"]=[H*]-C. 1.5)
Substitute Eq. (1.5) in the ion product (1.1) to obtain a quadratic equation:
[H*]([H*] - €)=K, =107"*° (1.6)

Normally, C is large compared to 1077, and this should encourage you to
neglect [OH "] compared to [Cl7] in the charge balance (1.4) and to try the
approximation*

[H]=[C ]+ =C+""". .7

EXAMPLE Find pH for 107* M HClL. With C = 10~%, approximation (1.7)
gives pH = 4.0. Substitution in the full quadratic (1.6) gives

[H+]([H+] o 10—4.0) — 10—14.0

0 10~ e 0 10 4.0

H*]=10"%"+ ——=—=10"%*°—- 107" =10"""

Here I have substituted the approximate value in the second term on the right,
to show that it was negligible. [ |

You will notice, of course, that when C is small compared to 10~ 7 the result
is pH = 7.0, the same as in pure water.

* The missing term [OH ~] is represented by three dots to remind you that this result is an approxi-
mation. In other examples or approximate equations the quantity represented by “ + - - - may be much
more complicated, and may be either positive or negative. In the example, you see that *+ -+ is
—10-'°, which is negligible compared to 10™*°.
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A strong base (such as NaOH) is completely ionized in solution, and the charge
balance for a solution containing both strong base and strong acid is

[H*]+ [Na*]=[OH™]+[CI"], (1.8)

and the mass balances are

| C,=[C] 19
C,=[Na®], (1.10)
where C, and C, are the molar concentrations of acid and base respectively.

Proceeding as above, you can combine Eqgs. (1.8), (1.9), and (1.10) with the ion
product (1.1) to give the quadratic

[H*)([H*] + G, — C) = K, .1
The same sort of approximations apply. When there is excess strong acid,
[H*]=C,i =€+ "*. 1.12)
When there is excess strong base (C, > C,» [H*]), Eq. (1.1 1) reduces to
K
H*]=—2" IT 1.13
[H'] c-c. ' an

which is what you would derive by setting the hydroxyl ion concentration equal
to the excess of strong base:

[OH ]=C,—Cot+ - 1.14)

and substituting in the ion product (1.1).*

WEAK ACIDS

When an acid does not fully dissociate in solution, it is called “weak,” and de-
scription of such solutions requires the use of the familiar equilibrium between
the undissociated (HA) and dissociated forms:

HA=H" +A",
which gives the following equilibriuni expression:

[H*][A™] = K,[HA]

or
107?H[A"] = K;[HA], (1.15)

e A

* The titration of a strong acid with a strong base, or vice versa, is discussed briefly in Chapter 3 of
this book, and in Jonic Equilibrium, Chapter 4.
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where again the activity coefficients have been included in the equilibrium con-
stant.* The mass balance for total weak-acid concentration C is

C=[HA]+[A7] (1.16)
and the charge balance for pure water containing only the weak acid is
[H*]=[A"]+[OH"]. 1.17)

Equations (1.15), (1.16), and (1.17), together with the ion product of water (1.1),
comprise four equations in four unknowns, and their general solution is straight-
forward (see Solubility and pH Calculations, pp. 46—47 or Ionic Equilibrium,
pp- 116—120).

These equations are easily represented by a logarithmic concentration diagram,
such as shown in Fig. 1.1. This is a plot of the various concentrations as a function
of pH (in the figure,  have set y, = y_ = 1.0):

10
[H*]= = 107 4o e, (1.18)
Y+

+pH

[OH"] =K_w;°_= K 1047 4 - 119)
. CK,
[A7]= 0"+ K. (1.20)
Cc(10~7H)

[HA] = " TK, 1.21)

(Construction of the diagram without numerical work is described in Solubility
and pH Calculations, pp. 48-53 or Ionic Equilibrium, pp. 122-127.) The pH of
the pure weak acid is the pH where the charge balance (1.17) is satisfied, or
approximately

[H*]=[A]+" . 1.22)

On the diagram, this point is given by the intersection of the [H*] and [A™] lines
at pH = 3.0. (You can see from the diagram that at pH = 3.0 you get [OH ] =
10~ !, which is indeed small compared to [A"] = 1073)

To obtain pH algebraically, substitute (1.18) and (1.20) in (1.22) and note that
since pH is a full unit smaller than pK,, 10~ PH js large compared to Kj in the
denominator of (1.20). This gives

1 1
PH = > (pK; —logCy,) + -+ = 3 (PKz —log O) + -+, an)

* Some books use K, for the activity combination [H*][A~]y.7_/[HA]y,, but I use K, for the
concentration combination at finite ionic strength and K2 for the activity combination, which is
numerically equal to K, extrapolated to zero ionic strength. A third notation is the “hybrid” constant
K, =K.y, = K%,/7_, so that K, = 10" ""[A~]/[HA], where 107°" = [H*]y. (see pp. 34-38).
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Half-titration
. pH=pKk, = 4.0
S [HAI\, )l( /

=-2.0

23k [HA]
2 Equivalence point
2 [OH )J=[HA]
= 4 it
3 (H*]=A7) pH =40 ‘[OH™)
oy pH=3.0
o -5 =
0 [A7]
&

-6

7=

-8

bl 1 | | |

\ 1 2 3 4 5 6 7 8 9 10 112 13
pH

Fig. 1.1, Logarithmic concentration diagram for a weak acid with K, = 10~*and
total concentration C = 10”2,

where the approximations y, = 1.0 and y, =y_ were made to simplify the result.
Note, however, that (1.23) applies even if y, and y_ are significantly different from
1.0, so long as they are equal.

If strong acid (with concentration C,) is added, pH decreases, and a term in
[C17] is added to the charge balance:

[H]=[A"]+[OH ] +[C]
or

[H*]=[A"]+[OH ] +C,. (1.24)
As soon as C, is large compared with [A~], it dominates the right-hand side of
Eq. (1.24), which becomes simply [H* ] = C,. ([OH ] is negligible unless C, and
[A~] are both less than 10~".) Looking at the diagram, you can see that, because
[A~] decreases as [H"] increases, this approximation is good to 1% when pH
has decreased by only one unit, from pH = 3.0 to pH = 2.0.

TITRATION WITH STRONG BASE

If strong base is added to a weak acid, pH increases, and a term [Na*]=C,is
added to the charge balance:

[H*]+[Na*]=[A"]+[OH ]+ [CI"]. (1.25)
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Combine (1.15) and (1.16) to obtain an expression for [A~], and use (1.1) to express
[OH "] as a function of [H*]:

. CK, K,
N N CUEY AR

Equation (1.26) can be used to calculate a titration curve (pH versus C,, assuming
v+ = 1.0 and C, = 0), such as the one shown in Fig. 1.2.* Two inflection points
may be noted on Figs. 1.1 and 1.2. The first (minimum slope) is the “half titration
point,” when C, = $C. Provided [H*] and [OH ~] are both small compared to C,
Eq. (1.26) simplifies to

C.— Gy (1.26)

‘CK, 1

mI+K, 2677

~ which can be further simplified to give

[H*]=K,+
or
pPH=pK,+-"-. .27

This is the point (pH = 4.0) on Fig. 1.1 where the [HA] and [A~] curves cross,
at a point equal to $C (— 2.3 log units if C = 10™2), or 0.3 logarithmic units below
the horizontal lines at log C.

The second inflection point (maximum slope on Fig. 1.2) is the equivalence
point, where C, = C. Here [OH ~] can no longer be neglected, but [H*] is normally
small compared with both K,and [OH ~]. This assumption, applied to (1.26), yields

K CK,

[H+] 0= [H+] [H+]+K

—=C +

" K, C[H*]
[H*] [H*] + K

(1.28)

Equation (1.28) is equivalent to [OH "] = [HA]. If[H*] « K,, it reduces to
KK,
s +

(1.29)

* Given C, = 0 and constant values of C = 1072 and K, = 104, choose a series of values for pH,
calculate [H*] = 10~" and from Eq. (1.26) obtain

CK,
(H*]+K, [H—*]

If C, is not zero, replace C, by C, — C,. The slightly more complicated version in terms of titrant
volumes is presented in Jonic Equilibrium, pp. 154—157 (see also Chapter 3).

C= - [H+]




