

The MUS
Computer
System v

Derrick Morris
Roland N. Ibbett

Department‘gf Computer Science,
University of Manchester

© Derrick Morris and Roland N. Ibbett 1979

All rights reserved. No part of this publication may be reproduced or transmitted,
in any form or by any means, without permission.

First published 1979 by

THE MACMILLAN PRESS LTD

London and Basingstoke

Associated companies in Delhi Dublin
Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo

Printed in Great Britain by Bell and Bain Ltd.,
Glasgow

British Library Cataloguing in Publication Data

Morris, Derrick
The MUS5 computer system.—(Macmillan
computer science series).
1. MU5 (Computer system)
I. Title II. Ibbett, Roland N
001.6'4044 QA76.5

ISBN 0-333-25749-9
ISBN 0-333-25750-2 Pbk

This book is sold subject to the standard conditions of the Net Book Agreement.

The paperback edition of this book is sold subject to the condition that it shall
not, by way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser.

The MUS Computer System

Macmillan Computer Science Series

Consulting Editor
Professor F. H. Sumner, University of Manchester

G. M. Birtwistle, Discrete Event Modelling on Simula

J. K. Buckle, The ICL 2900 Series

Derek Coleman, A Structured Programming Approach to Data*

Andrew J. T. Colin, Programming and Problem-solving in Algol 68*

S. M. Deen, Fundamentals of Data Base Systems*

David Hopkin and Barbara Moss, Automata*

A. Learner and A.J. Powell, An Introduction to Algol 68 through Problems*
A. M. Lister, Fundamentals of Operating Systems*

Brian Meek, Fortran, PL/I and the Algols :

* Derrick Morris and Roland N. Ibbett, The MUS Compu;er’szstem

‘1. R. Wilson and A. M. Addyman, 4 Practical Introduction to Pascal

*The titles marked with an asterisk were prepared during the Consulting Editorship of
Professor J. S. Rohl, University of Western Australia.

This book is dedicated to all those
who contributed to the MUS Project

Contents

10

1

Introduction

The Architecture of the MU5 Prdgcesso#
Technological Implementation

The Primary Instruction Pipeline

The Secondary Instruction Pipeliné
Store Organisation

The Execution Units

The Software tools

The MU5 Operating System Structure

A Usér's View of MUS

Performance

Appendix 1 Summary of the Order Code

Appendix 2 Summary of the Operating System Commands

36

57

84
108
141
167
189
212
228
251

254

1 Introduction

MU5 is the fifth computer system to be designed and built at
the University of Manchester. The development of the systems
leading up to MU5 is described by Lavington [1]. This book is
concerned with the design, implementation and performance of
MU5. It covers both hardware and software as these have been
designed as an integrated system by a closely knit group of
'Engineers' and 'Programmers'. No attempt is made to assign
individual credit. :

A precise starting date for the project is difficult to
pinpoint. Many of the ideas it embodies grew out of the
previous Atlas Project. The records show that talks with ICT
(later to become ICL) aimed at obtaining their assistance and
supporf began in 1966. An application for a research grant was
submitted to the Science Research Council in mid-1967, and a
sum of &£630 U446 spread over 5 years became available in
January 1968. In 1968 an outline proposal for the system was
presented at the IFIP 68 conference [2]. The feasibility of
constructing a big computer system for the amount of the grant
relied upon the availability of production facilities, at
works cost price, at the nearby ICT West Gorton Works. Even
so, the finance was a limiting factor, and it was accepted
that the hardware produced would only be a small version of
the potentially large system that was to be designed.

The level of staffing may be of some interest. In 1968 a
group of 20 people was involved in the design, made up as
follows

i 11 Department of Computer Science staff
' 5 Seconded ICT staff
4 SRC Supported staff

The peak level of staffing was in 1971 when the numbers,
including research students, rose to 60. This fell during the
commissioning period to U40. In the evaluation stage, from
1973, only 25 people were involved.

Motivation for the project was twofold. First there was the
desire to continue the tradition of designing and building

1

advanced systems, pioneering ideas which could be exploited by
the computer industry. In addition there was a requirement for
a system to support the research school of the Department of
Computer Science. Significant expansion of this research
school was planned beginning with the first year of the
Computer Science graduates in 1968. Experience had shown that
research into hardware/system software could not be carried
out on a computing service machine. It is excluded by both the
nature of the work and by the excessive computing requirements
of the simulation studies, and the automation of hardware and
software design which dominate the research.

The design objectives are best covered by the following
quotations from the grant application to the Science Research
Council dated May 1967. It was felt that a computer should be
provided 'off the shelf' to initiate the project.

'The computer required is an ICT 1905E specially fitted
with a 750 ns store ... The 1905E will be transformed into
a multi (initially 2) computer system by the addition of a
completely new high-performance computer with a , target
throughput of 20 times that of Atlas ... It will be
constructed by ICT (their agreement has been obtained) and
will be charged at works cost price ... The 1905E, with
the proposed modifications in view, will provide a vehicle
which permits an immediate start on software developments
aimed at the full system programs of the multi-computer
system. The system programs will be written in a modular
way to facilitate changes and extensions when these are
required as the hardware develops.'

Thus the emphasis was on a multi-computer system containing
at least one new high-performance machine having a target
throughput 20 times that of Atlas.

'This factor will be achieved as follows

(1) Integrated circuits and interconnection techniques
will give a basic computing speed of seven times

Atlas.

(2) A 250 ns core store will be used, this is eight
times the speed of the Atlas store.

(3) The design will include
Fast operand registers
Register to register arithmetic

Multiple arithmetic units

2

Items (1) to (3) will give a factor of about
ten, indeed the time for the inner loop of a scalar
product is expected to be 1 us as compared with 12
us on Atlas.

(4) An 1instruction set will be provided which will
permit the generation of more efficient object code
by the compilers. Particular attention will be
given to the techniques for computing the addresses
of array elements. Array bound checking will be
provided as a hardware feature.

(5) The efficiency of the Atlas supervisor is
approximately 60%. The provision of special
hardware and the information obtained from a
detailed study of the Atlas system over the past
two years will permit this efficiency to be
significantly increased. '

Items (4) and (5) will give at least a further
factor of two.'

Clearly, performance was to be measured in terms of system
throughput rather than raw machine speed. Significant factors
were to be sought from optimising the hardware to meet the
software requirements and an available production technology
was to be used. Indeed the chosen technology was that to be
used in the construction of ICT 1906As. However, it was
anticipated that associative storage would play a significant
role in the system design [3] and that suitable integrated
circuit elements would be developed for this purpose.

On the hardware side this book is mainly concerned with the
design and implementation of the MU5 processor. However, the
design was intended for a range of machines and the actual
processor built is one example, which is towards the top of
the range, with a scientific bias. The range was intended to
go from machines of about PDP-11 cost to a multi-computer
system incorporating several MU5s with differing biases at the
to}S of the range. Thus the MU5 built has an 'Exchange' to
which reference is made in several places. This is the
hardware unit which connects the various computers of the
total system. The software description takes into account both
the range and the multi-computer aspects.

Although the design team had set themselves the task of
designing a range of machines which could be marketed, it had
no formal commitment to the computer industry. The ICT
involvement was through the secondment of individual members
of ICT to the University Team. Nevertheless, it could hardly

3

be fortuitous that the design of the ICL 2900 is so similar to
MU5 that in 1969 the possibility of MU5 being marketed as an
early member of the 2900 range was seriously considered. After
a three-month 'convergence' exercise in early 1970, when the
designs were drawn even closer together, the idea was
abandoned because of ICL's fear that the cost of maintaining
compatibility would outweigh any advantage of early
availability. During this period some changes were made to the
detailed design of MU5 in the name of compromise, not all of
which have been beneficial. Although there has been no attempt
to maintain compatibility since that time the MU5 operating
system and compilers can be transferred to 2900 with ease. The
converse is not true. j

Software plans for the project were geared as much to the
MU5 ,multi-computer system and the range concept as to the MU5
processor.

'The initial operating system will be for a single
computer system but it will be extended to accommodate
additional computers whose structures and order codes are
different from those of the 1905E. It will be modular and
easily changed in order to accommodate future hardware and
software developments. The detailed design .of the
operating system has not been completed.” However, it will
have the following features

(1) Some form of file storage and on-line access

(2) Job queueing and scheduling for base load jobs

(3) Priority routes through the system for urgent jobs

(4) The basic supervisor will be kept to a minimum and
most of the operating system facilities will run as
non-privileged programs.'

Compilers were to be produced using ideas developed from
the Atlas Compiler Compiler. The emphasis was to be on
efficiency, compactness and machine independence.

These initial objectives remained as the project developed

and the reader will judge the extent to which they have been
achieved.

2 The Architecture of the
MUJ5 Processor

The design of the MU5 processor was approached through its
order code, this being the natural interface between software
requirements and hardware organisation. Full interplay between
the two aspects was considered vital throughout the design.
Efficient processing of high-level language programs was the
prime target. In 'number crunching' applications, this meant a
fast execution rate for the high-level language programs.
However, the system envisaged would be interactive, and to
combat the system overheads this entails, it was considered
important to produce small compilers and compiled programs.
Thus, an order code was sought which satisfied the following
conditions

(1) Generation of efficient code by compilers must be easy
(2) Programs must be compact

(3) The instruction set must allow a pipeline organisation
of the CPU ledading to a fast execution rate

(4) Inférmation on the nature of operands (scalar or array
element, for example) should be available to allow
optimal buffering of operands.

In this chapter the order code of MU5 is examined from the
point of view of its use and implementation. However, a large
part of the order code of such a highly structured system is
concerned with address generation, and before discussing this
it is appropriate to establish the policy relating to address
vélidation, the mechanism which protects one wuser from
another.

2.1 INTERPRETATION OF ADDRESSES

The most far reaching decision in the design of an order code
is whether the addresses it generates are real or virtual. If
real addresses are generated they will be used directly to
access the store. Therefore the address must have been
previougly validated, as it was being computed, say. The
alternative offered by the IBM system, of tagging store blocks

5

to indicate ownership, was not considered flexible enough for
a multi-access system in which the core allocation would be
constantly changing. In effect, the real address based systems
considered require that all address words contain an origin
and a limit, and hence relate to bounded contiguous sections
of store. Also the CPU must know which words in the store are
address words. It then checks that each operand address is
calculated from an address word, and that it falls within the
specified limits. Since all address words are known to the
system, out-of-use information can be moved out of main store
until next required, provided the address words involved are
appropriately marked and updated. A classic example of this
type of machine is the Basic Language Machine [4], although it
has never progressed beyond the prototype stage. Also the
Burroughs machines since the 5000 series have had a similar
type of controlled address formation, and currently the
'capability machines' promote a similar idea. Alternatively,
if the order code generates virtual addresses, then special
hardware is needed between the CPU and the store to validate
the address and translate it into a real address. Sometimes
the address will relate to information not in the main store,
and the hardware will detect this and initiate its transfer,
usually with software assistance. This special hardware may be
a single datum and 1limit as for example in ICL's 1900, or
multiple datum and limit as for example in .the PDP-11, or a
paging system as in Atlas.

The real address based systems have several attractions.
Perhaps foremost from the performance point of view is the
fact that the address generated by the CPU can be presented
directly to the store, thus avoiding the time delay inherent
in paging systems. Also the units of information delimited by
address words, which would be the units the system might
automatically move from one level of store to another, would
be complete 1logical entities (procedures or arrays, for
example). It can be argued that this is more efficient than
moving fixed-size pages which represent arbitrary fragments of
a program and its workspace [5]. The other side of this
argument is that the problems of allocating and retrieving
store in variable sized areas lead to some store not being
utilised, for example because the empty areas may be too
small. This has to be offset against the paging problem in
which, even when all pages are in use, some will be partially
occupied by unwanted information. It is by no means clear
where the balance lies.

Two additional considerations led to the choice of virtual
addressing for MU5. First it was felt that the most
significant task of the operating system was store management,
the dominant part of which is concerned with the automatic

6

movement of information between levels of store. Such movement
requires that the real addresses of the information moved be
changed. If these real addresses are allowed to scatter
through each program's private store, this task becomes
complex. For example, the address words that require changing
because of movement of information between levels of store are
themselves subject to moving. Also, the same address might
appear in several places. It was felt to be a cleaner solution
to hold all information relating to the way a program maps
into real store in a separate data structure outside the
program and entirely under operating system control.

The second consideration was that a program should not be
constrained in the way it might build a data structure within
its own workspace by the mechanism for address validation.
Close examination of, for example, the system proposed by
Iliffe [4] will reveal the awkward constraint that arrays must
be homogeneous.

Once the decision to base the system on virtual addressing
had been taken, it was not difficult to reject the single
datum and limit approach. Although such a system leads to an
extremely simple organisation within the operating system, the
entire program must be placed in a contiguous area of store
each time the CPU is assigned to it. In contrast, one of the
main attractions of Atlas had been the large virtual address
space available to every user job, which could be used
sparsely without. significant penalty. For example, the
compilers and operating system used the top half of the
virtual store, user code was compiled into the bottom quarter,
and the next quarter was used for the stack work space. Other
smaller entities such as input and output buffers were fitted
into the gaps in between. From this informal partitioning of
the store on Atlas ‘grew the idea of formalising the division
into a segmented virtual store, which is also exploited in the
Multics system [6].

In MU5 the final decision was to use a large virtual
address, and to subdivide it into a segment number and a
dﬂsplacement within the segment. It was anticipated that large
systems would be paged, but that small ones might employ
multiple datum and limit registers (one per segment) .

2.2 THE ORDER CODE
2.2.1 Choice of Instruction Format
The first step in choosing an instruction format is to decide

how many operand addresses an instruction will have. Obviously
this is influenced by the size of an operand address. If the

7

instruction contains only register addresses, so that main
store is addressed indirectly through registers, several
addresses can be accommodated. If full store addresses are to
be used, then one is wusually the 1limit, although some
machines, for example the PDP-11, have variable sized
instructions and allow up to two full store addresses to occur
in the long instructions.

It was decided from the start of the MU5 design that in
order to comply with condition (1) above, there would be an
address form corresponding to each form of operand permitted
by high-level languages. Furthermore it was felt that to have
more than one such operand per instruction would conflict with
conditions (2) and (3). Only one facet of high-level languagg
programs caused concern on account of this decision. This was
the known high rate of usage of simple instructions such as

I :=1I+1

Clearly, three instructions would be required to implement
this in a one address code. However, the high execution rate
expected of these simple orders and the possibility of them
overlapping with adjacent orders was thought to compensate.
For other reasons the possibility of using addressable fast
registers for frequently used operands .or addresses was
rejected in favour of hardware optimisation using associative
memory. First there was the desire to simplify the software by
eliminating the need for optimising compilers. Equally
important though was the desire to have fast procedure entry
and exit, unfettered by the need to dump and restore
registers. Thus through general design considerations the
choice of format was restricted to the zero address (stacking
machine) type or some form of one address code.

From a compiler point of view the stacking machine is
attractive. The simple algorithm for translating from Algol to
Reverse Polish (and hence to stacking machine code) which
forms the basis of the 'Burroughs Compilogram' is a convincing
demonstration of this. Its simplicity stems from the fact that
operands carry directly over to Reverse Polish without any
relative change of position and a simple push down stack is
all that is required to sort the operators into correct
sequence. Consider for example

(A+B)® ((C+D)/ (E+F))
which in Reverse Polish becomes

AB + CD + EF + / ®

8

There were two arguments which steered the MUS5 design away
from the stacking machine form. The first is related to
efficiency of hand-coding, which is something of a paradox
since MU5 is a high-level 1language machine. However,
observations on Atlas indicated that while high-level language
programs were running, the CPU typically spent half its time
executing in a small set of library procedures concerned with
I/0 handling, mathematical functions, etc. This basic library
would be hand-coded. Thus from the performance point of view,
this small amount of hand-coded software was just as important
as all the compiler generated code. Unfortunately most of the
hand-coded sequences worked out worse in stacking machine code
than in single address code. This was because the main
calculation, the address calculations and the control
counting, tended to interfere with each other on the stack.
The problems are illustrated by the following example of a
simple move sequence, although either machine could have a
single function for this purpose.

Single Address Code Stacking Machine Code
LOAD MODIFIER STACK MODIFIER
X: ACC = SOURCE[MODIFIER] X: DUPLICATE
ACC => DEST[MODIFIER] DUPLICATE
INC AND TEST MODIFIER STACK SOURCE[TOP OF STACK]
IF NOT END BRANCH X SWOP
STORE DEST[TOP OF STACK]
STACK 1
SUBTRACT

K IF NOT END BRANCH X
The , point being made is that a single stack is under

pressure when it has to support all the functions involved in
counting, address ‘calculation and main calculation. In any
given context, detailed changes to the specification of
instructions would ease the problem, but only at the expense
of it recurring in a different context. A machine with several
stacks would have worked better, for example
f a control stack
' an index stack

an address stack

the main stack

This sort of arrangement would also fit the pipeline
requirement better since the stacks could be distributed along
the pipeline.

fhe second argument against the stacking machine would
apply equally to a multi-stack organisation. Consider the

9

example
A :=B+C

For the two types of instruction format under consideration it
would be coded as follows

ACC = B STACK B

ACC + C STACK C
ADD

ACC => A STORE A

If the operands normally come from main store the execution
times of each of the above sequences would be about the samé,
since they will be controlled by the access times for A, B and
C. However, if an operand buffering scheme is utilised, giving
a high hit-rate (say > 90%) for operands such as A, B and C,
the access time to the stack becomes important. On MU5 the
stack and the operand buffers would be the same speed, and the
above example would have caused six stack accesses in addition
to the three operand accesses. Some, but not all, ~of the
accegsses could have been overlapped.

§

The instruction format eventually chosen for MUS
represented a merger of single address and stacking machine
concepts. All the arithmetic and logical functions take one
operand from an accumulator and the other operand is specified
in the instruction address. Thus a sequence such as

ACC = B
ACC + C
ACC => A

typifies the style of simple calculations. However, there is a
stack, and a variant of the load order (%*=z) causes the
accumulator to be stacked before being re-loaded. Also a
special address form exists (STACK) which unstacks the last
stacked quantity. Thus, the above example could be written in
MU5 code in a form approximating to Reverse Polish, as
follows

ACC = B
ACC *= C
ACC + STACK
ACC => A

A more realistic use of the stack is in conjunction with
parenthesised subexpressions. For example, the expression

(A +B) ¥ ((C+D)/ (E+F))

10

