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PREFACE

In course of my long career of teaching, research and consultancy work in
Statistics, I had occasions to work with quite a number of applied workers
who are not Statisticians but still employ statistical metheds in their work.
Some of them desired to have an insight into the Statistical methods and
their implications rather than the technique of applying them mechanically.
In my attempt to explain to them the concepts and methods, [ had to start
from fundamentals and build up the concepts and mecthods with proper
link between them so that their inter-connection was not disturbed. To this
end, I had to avoid using masking mathematical terms and concepts if the
same were unsupported by statistical implications. For example, if words
like eigen vectors and eigen values are mentioned these had to be explained
in terms of Statistical concepts they already knew.

In course of such discussions I happened to think about various con-
cepts and methods arising from fundamental concepts. These have been
presented in a manner more appealing to common sense and not introduced
abruptly by definition. These have been suitably linked to ensure inter-
relation of different methods and concepts included in each chapter. While
presenting various topics I have relied on common sense, experience and
intuition and have used minimum of mathematics.

There are seven chapters in the book covering, (i) Probability, (i) Distri-
bution, (iii) Inference, (iv) Linear Estimation, (v) Multivariate distribution
and correlation coefficients, (vi) Least Squares method and analysis of vari-
ance and (vii) Non parametric methods. Numerous illustrations have been
given to clarify different procedures and concepts. A number of new concepts
have also been introduced.

The book is expected to serve the student conmimunity and teachers at
graduate and post-graduate levels. As sophisticated mathematics has been
avoided, the book will be a great help in teaching statistical methods to
people in non-statistical departments as well.

Another chapter on computer programming, with complete programs
for problems requiring relatively lengthy calculations, as in the case of
multiple and partial correlation coeflicients, partial regression coefficients
and their standard errors when the variables are not few, has been
included.
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I owe a great deal to Prof. N. Giri, University of Montreal for the help
he rendered while writing this book. Dr A. Dey, Senior Professor in IASRI,
New Delhi went through the manuscript and made some useful comments
which improved the book. My son, Ashish Das also helped me greatly
through discussion and useful comments while preparing the manuscript of
the book. He also wrote some of the programs included in the last chapter
of the book. But for the interest that my wife, Chitra, took the book could
not have been completed.
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Chapter 1

PROBABILITY

1.1 INTRODUCTION

There arc innumerable happenings in nature and in the realm of human
activity which are associated with uncertainties. Though rising of the Sun
next day can be taken to be certain, appearance of clouds in the sky next
morning is not as certain. The sex of a baby to be born some months
hence is again not known for certain. Each such happening is necessarily
associated with two or more outcomes, because if there is only one out-
come of some happening, there can not be any uncertainty about the out-
come.

Birth of a baby is an outcome. Tossing a six-faced die is another
happening. It is seen that each such happening is associated with several
outcomes. For the happening of birth of a baby the outcomes can be a
male or a femalc baby; the outcome can also be a live or a dead baby.
Thus. for a happening there can be different types of outcomes and under
cach type there are several outcomes. For the toss of a die one type of
outcomes is the appearance of a face with numbers 1,2, 3,4, 5 or 6. There
are, therefore, 6 possible outcomes. Again, another type of outcomes can
be appearance of 2 face with an even number. In this case there are only
two outcomes y/z. appearance of an even numbered or an odd numbered
face. Given a definition of outcomes associated with some happening in
some situation, it may be possible to know what are all the possible out-
comes, but it cannot be known for certain which outcome will materialise
on any given occassion. Thus, the cutcomes are associated with uncer-
tainties. For many happenings such uncertainties of outcomes are not
random or hapbazard. These are secn to obey some rules or laws. Thus,
if a very large number of births is observed, it is expected that the outcome
of half the number of births will be male babies and that of the other half
will be female babies.

The main aim of the Science of Statistics is to arrive at some conclu-
sions regarding such unpredictable happenings, taking into account the
variation among its outcomes and magnitude of uncertainties associated
with them.

For scientific investigation of uncertainty of outcomes, it is first neces-
sary to have a measure of the degree of uncertainty. Intuitively, we can
compare among the degrees of uncertainty of several outcomes. For
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example, if we take the outcome of the happening of baby-birth as the
birth of a live or a dead baby in a modern well-equipped hospital, we can
say with a great deal of confidence or certainty that the baby will be born
alive. Thus these two outcomes have different degrees of uncertainty
associated with them.

Next question is how to attach quantitative measures to the degree of
uncertainty so as to conform to experience regarding confidence to be
placed on individual outcomes. When a baby is born we can measure his
weight which is another type of outcome. The weight measurement has a
scale or unit of measure; it is expressed by positive numbers having certain
limits. There are certain rules for combining the weight measurements of
two or more babies. Likewise, certain conventions have developed regard-
ing measurement of the degree of uncertainty of outcomes. These conven-
tions are in conformity with experiences and expectations and do not lead
to absured consequences or conclusions. Before we actually define a
measure of the degree of uncertainty, it is necessary to formalise the
definition of some concepts we have already introduced.

1.2 SOME DEFINITIONS

1.2.1 Random Experiment

A happening with two or more outcomes is called an experiment.

If the outcomes are associated with uncertainties, the experiment is
called random. A random experiment need not always be a planned human
activity. It may be natural or any other type of happening.

1.2.2 Events

The outcomes are also called events.

1.2.3 Mutually Exclusive and Exhaustive Events

The possible numerable primary outcomes are mutually exclusive and
exhaustive. If, when one outcome occurs no others can occur simul-
taneously, then the events are said to be mutually exclusive. If there can
be no other outcome of a type outside those enumerated, then these events
are said to be exhaustive.

ExAMPLE 1.1: Appearances of a head or a tailin the usual coin tossing
experiment are two exclusive events, because when a head appears, the tail
can not appear simultaneously. These are exhaustive as well because there
is no other possible outcome of this type besides these two.
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1.2.4 Primary Events

The mutually exclusive and exhaustive events usually constitute primary
events.

1.2.5 Derived Events or Event Functions

Two or more primary events can be combined by the conjunction ‘or’.
Such combined events will be called derived events.

ExampLE 1.2: In the experiment of tossing of a die the primary events
are the appearance of 1, 2, 3, 4, 5 or 6. A combined or derived event is

(i) the appearance of the face 1 or 2
and (ii) the appearance of faces having even numbers.

If the primary events are denoted by the symbols, 4, B, C, etc., then
the derived events are written as 4 - B for A or B Using notations of set
algebra, this derived event is written as A B and is read as ‘4 union B’.
Similarly, the event 4 or B or C is denoted by 4 + B+ C or AUBUC, a
set relation. Another derived event is the intersection of, say, 4 and B
denoted by AN B. It consists of events present in both 4 and B.

1.2.6 Degree of Uncertainty of Derived Events

It will be seen that as the primary events are associated with uncertainty,
so also are the derived events. Thus, when a rule has been made to attach
measures of degree of uncertainty to primary events, there should also be
rules to obtain measures of the degree of uncertainty of derived events or
some function of derived events. Such rules have been discussed in the
latter sections.

1.2.7 Complimentary Events

The events ‘Other than A’ is the complementary event of 4. Compli-
mentary event of 4 is usually denoted by A. If appearance of face 1 or 2
in a die experiment is the event A, then appearance of 3, 4 or 5 is 4.

1.2.8 Probability, a Measure of Degree of Uncertainty

A measure of the degree of uncertainty associated with an event is known
as probability measure. Such measures are positive and without any scale
of measurement like percentages. The measure for a sure event is 1 and
that for an impossible event is 0. These can be combined for obtaining a
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measure for derived cvents by the rule of addition of the probabilities of
the primary events constituting the derived event as discussed afterwards.
As the occurrence of any one of all the possible primary events in an
experiment is a certainty, the probability measure of this event is 1. If the
probability of an event is p, then the probability of its complimentary event
is 1—p. These conventions regarding measure of the degree of uncertainty
have been arrived at from experiences gathered from natural happenings and
these do not lead to any absurd conclusions. These form the basis of
Probability Calculus.

The actual probability measures to be associated with different possible
primary events get determined from experience. These can also be suitably
assigned values subject to the above conventions. Such assignments of
probability measures may be mercly theoretical without having anything
to do with experience but only to facilitate mathematical manipulation
theoretically.

Probability measures assigned through experience of manuer of occur-
rences of equally likely events has g¢ivea rise to the frequency concept of
probability measures. If a random experiment is rep-ated a very large
number of, say, n times, a particular out-come, say, 4 out of the possible
equally likely out-comes will occur a certain nuimber of times, say, m,
then we associate the ratio m/n as the probability measure of 4. If one
watches the sex of a very large number of babies, he may find that in
almost half the number of these births male babies were born. Accordingly,
from this experience the probability measure associated with the birth of
a male baby is given as }.

This type of measures is called frequency measure of probability.
When probability measures are assigned from theorctical considerations,
such measures arc called theoretic measures of probability. Discussed
below are some examples of theoretic measures of probability.

ExAMPLE 1.3: Suppose in a pond there is a certain numbers of fish
with known weights on some day. These fish are being caught one by one
through a device which can catch only one fish at a time and it is not
known in advance which fish is going to be caught. After being caught a
fish may be retained or released back into the pond after inspection.

Now, a probability measure to be associated to each fish being caught
and retained may be taken as a positive quantity proportional to its
weight, or it may be proportional to the inverse of its weight. Either
probability measure system may not agrec with any type of previous
experience but such assignment system may serve some purpose so as to
provide guidelines required for certain aspects of fish business.

ExampLE 1.4: We have considered below ancther example of a
random experiment with theoretically associated probubility measures.
Normally, a die has six faces and the appearance of each face in a toss is
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equally likely, that is, with equai probability. But for a game of chance a
manufacturer has prepared a die with six faces but the face areas are uu-
equal and also the difierent faces have metullic sheets attached so that the
probability of appcarance of a particular face in a toss is proportionai to
the number written on the face. As usual the numbers 1, 2, 3,4, 5and 6
are written accordingly on the faces. Thus, the probability measure for
the event, face 4,1is C. 4 where C is the constant of proportionality to be
determined from tie fact that the total probability, that is, the probability
of any onc of the possible primary eventsis 1. The probability measures
for the different primary events arc thus

1.C,2C,3C,4.C,5.Cand 6.C,
The probability of having any one of the faces in a toss is

1IC  2C + 3C 4 4C + 5C + 6C =
Hence,
1

T30
Hence, the actual probability measures associated with each of the primary
events of this experiment are

1 2 3 4 5 6
31> 21> 21 20 31 2 a1
The probability measure of the derived event constituting the appearance
of a face with even number is
2 4 6
I TR TR

C

1.2.9 Generalised Definition of Probability

In carlier sections while defining probability we introduced, (1) random
experiments, (ii) mutually exclusive and equally likely primary events,
(iii) probability measurcs associuted with the cvents, (iv) probability
nieasures are positive and not greater than unity, (v) sum of probabilities
associated with all the primary events is unity and (vi) probability measure
of derived events which are unions of primary events is the sum of the
probabilities of the primary cvents involved in the union.

This definition does ot include many random experiments which are
encountered in nature and many day-to-day happenings. For example, if
we conduct a coin tossing cxperiment with a biased coin, the two outcomes
of head or tail are not equally likely and hence such experiments remain
excluded from the foregoing definition. Thus, while defining probabiiity,
sequally likely cvents’ is an unonecessary limitation. Equally likely events
no doubt provide with ready probability measure (viz. 1/n where n is the
total number of primary cvents) of each of the primary events when n is
finite. Again, a finitz # is uiso a limitation that delimits the scope of
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probability calculus. One can think of many situations where the total
number of possible events of random experiments is infinite. For example,
if we consider the experiment of baby birth in a hospital and the events as
suitable time intervals. The requirement is a measure of probability of birth
in any given time interval. Here the number of time intervals can be un-
countably large approaching infinity.

This example brings forth another aspect viz. the ecvents need not be
discrete, they can be continuous also as time intervals are. In the conti-
nous case as the one here, points do not constitute events but only a set
of points, viz., an interval constitutes an event. Similarly, suitable lengths
of a line can be events but not individual points on a line. Probability to
such events is associated to the sets as a whole and not to individual points
in them.

These examples amply demonstrate inadequacy of the definition of
probability as provided earlier in that this definition does not include many
random experiments which must find place in the calculus of probability.

If we now include all those types of random experiments which may
produce, (i) non-equally likely events, or (ii) infinite number of events, or
(iii) continuous events, association of probabilities to primary events does
not become automatic as in the case of ‘equally likely’ events. This
difficulty is overcome by associating probability to the events by some
unknown but estimable quantitics subject to certain conditions, mainly that
(i) these should be non-negative but not greater than cne and (ii) the sum
of the probabilities associated with all the primary events should add up
to unity.

We have now prepared the ground for a formal symbolic generalised
definition of probability as below:

A random experiment is associated with outcomes or events. Let
collections of these events be called sets. In the discrete case a set may
contain even a single event but in the continuous case a set consists of a range
of the events. If two sets do not contain any common event, these are
called exclusive sets. If there be a number of sets, say, M then these
are mutually exclusive sets, if any sct is exclusive of any other set, that is,
an event contained in a set is not preseat in any other set. For a random
experiment, let there be in all NV sets which are mutually exclusive and
exhaustive. The sizes of these seis need not be equal. Then these sets
form all the primary sets. Here, N can be infiaite also. In other words, if
there be a number of sets such that each of the events in the experiment
is contained in some set or other and no event is included in more than
one set, then these sets form all the primary sets. According to this
definition of primary sets if out of M primary sets in all, M/2 pairs of sets
are formed such that no set is included in more than one pair, then these
M sets, now in pairs are also M/2 primary sets as these are mutually
exclusive and account for all the events in the experiment.



