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Dedicated to Professor O. Stasiw

PREFACE

Much progress has been made during the last two decades in the theoretical
understanding of dynamical properties of solids, especially of disordered and
anharmonic solids. This progress is based on the application of new effective
analytical and numerical methods, such as the Green funetion method and
the molecular dynamies technique. The Green function method, for example,
renders it possible to study solids with arbitrary defect concentrations and
even, with fair success, to study solids with glass-like disorder. The Green
function method is also a powerful tool for investigating anharmonic solids,
including strongly anharmonic solids which cannot be treated by perturbation
theory. A

Among the problems of lattice dynamics having attracted particular interest
in recent years are dynamical properties of disordered solids (localization
of vibrational states, breakdown of quasi-momentum selection rules, role of
short-range order) and anharmonic solids (strong anharmonicity, phonon
hydrodynamics), dynamical aspeets of anharmonicity and electron-phonon
driven phase transitions (phonon softening, lattice solitons) and the develop-
ment of a microscopic theory of lattice dynamics.

On a ‘quick trip through lattice dynamies’ I present here basic ideas and
theoretical methods which have been developed in recent years for describing
dynamical properties of solids, in particular, of disordered and anharmonic
solids. 1 hope that this book will help the researcher in lattice dynamics to
make himself acquainted with recent advances in ficlds which are sémewhat
remote from his special field of research. But I believe that the present book
may also serve as introductory texthook to the theory of lattice vibrations.
To a large extent, the book is based on lectures T gave for advanced students
from 1972 to 1979 in Berlin at the Humboldt University.

Chapter 1 contains a concise compilation of basic clements of the theory of
lattice dynamics knowledge of which is a necessary prorequisite for an under-
standing of the following chapters. This chapter also contains the microscopic
approach to lattice dynamics which is based on a study of the response of the
crystal electrons to the field produced by the vibrating ions (diclectric function
approach).

Chapter 2 is devoted to compositionally disordered systems, including
solids with single isolated defects. In this chapter the main emphasis is on the
introduction of the Green function technique and on the use of this technique
for evaluating configuration averaged quantities.
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Chapter 3 is devoted to structurally disordered systems. Using the (reen
function method, in this chapter the problem of localized and plane-wave-like
states is studied. Owing to the lack of a periodic reference lattice, the in-
vestigation of structurally disordered solids turns out to be in general much
more complicated than that of compositionally disordered solids.

Chapter 4 is devoted to anharmonic systems and systems exhibiting struc-
tural phase transitions. Perturbation theory is developed for weakly an-
harmonic solids, and a self-consistent harmonic approximation for strongly
anharmonic solids. Further topics treated in this chapter are lattice solitons,
the Peierls transition and incommensurate structures.

Some topics with more formal character (appiication of group theory to
lattice dynamics, response of crystal electrons to an electromagnetic field,
calculation of experimental quantities) are given in the appendix.

It should be noted that in order to bring this book up-to-date 1 also in-
cluded some problems (such as phonon-like excitations in structurally dis-
ordered solids, certain problems of incommensurate systems, ete.) where no
full consensus is evident from present literature. Furthermore, the choice of
the material presented here is to some extent arbitrary. Some fields (such as
vibrational properties of surfaces, interaction of phonons with other elementary
excitations, etc.) I have completely ignored.

The list of references is not complete. It contains, above all, only review
articles and more recent original papers.

This book was written while 1 was at the Zentralinstitut fiir Elektronen-
physik of the Academy of Sciences of the GDR in Berlin. I would like to thank
my former colleagues Dr. M. Giehler, Dr. E. Jahne, Dr. P. Kleinert, R. Leih-
kauf, Dr. W. Ulrici and Dr. D. Wruck for helpful conversations. Furthermore.
I am indepted to Prof. W. Kuhn for valuable suggestions, to Dr. T. Nattermann
for critical remarks concerning section 4.4., to B. Giirtner for critically reading
the manuscript, and to Mrs. Trautmann, Akademie-Verlag, for cfficient co-
operation. Finally, I wish to thank my wife who gave me enormous help with
the preparation of the manuseript.

H. BOTTGER
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CHAPTER 1

BASIC ELEMENTS OF THE THEORIE
OF LATTICE DYNAMICS

This chapter is an introductory one. We sununarize here some eletents of the
theory of lattice dynamics which will be needed in the following chapters.
We describe the phenomenological approach to lattice dynamies!. This approach
is based on the idea that the motion of the atoms in a solid is governed hy foree
constants which may be regarded as parameters resulting from experimental
data. Furthermore, we outline the microscopic approach to lattice dyvnamics.
This approach is based on a microscopic examination of the forces hetween the
ions. It provides a useful tool for studying the relationship ‘between the dif-
ferent force constant models used in the phenomenological theory of lattice
dynamics.

1.1. The adiabatic approximation

According to Born and Oppenheimer in a solid the dynamical aspects of
nuclear and electron motions may be decoupled (Borx and OPPENHEIMER,
1927, see also Bory and Huaxe, 1954). This decoupling is equivalent to the
assumption that the eleéctrons see the nuclei as being fixed in position at any
given moment, since they move much more rapidly than the nuclei due to
their smaller masses.

It is easy to visualize the electronic charge distribution of the ion core
moving with the nucleus as it vibrates. However, snch behaviour is less
evident for the valence electrons. Nevertheless, it turns out that something
like that also occurs for the valence electrons. )

According to the Born-Oppenheiner or adiabatic approximation in a solid
there exists a many-body potential @ governing the motions of the atoms.
A calculation of @ requires that we freeze the ions in each instantancous con-
figuration, and calculate the energy of the electrons. @ is then, in essence,
this energy plus the electrostatic energy of the ion-ion interaction. The pheno-
menological theory of Jattice dynamics is based on the cxistence of @. But also
the microscopic theory of lattice dynamics often uses the adiabatic approxima-"
tion. Moreover, the adiabatic approximation is an important tool on describing
the dynamical response of a lattice to external radiation (see appendix 3). Tt
© seems therefore reasonable to outline this approximation here.

! Here we closely follow the standard monograplss on lattice dynamics by BOrN and
Huane (1954) and MARADUDIX et al. (1971) (see also, e. g., BRUEscH, 1982).
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To do this we start from the following total Hamiltonian for a crystal
containing ions and (valence) electrons:

'f f - Tel + I/vel + /jviou + Vion _‘\_ }]ml~ (11]) .

Here 7', is the kinetic energy of the electrons, 17, is the Coulomb energy of
the electrons, T, is the kinetic energy oi the lons, Jion is the interaction
energy of the ions and H,,, describes the interaction between the electrons
and the ions.

From the Hamiltonian (1.1.1) we abstract an electronic part

Ilel =T + Vea + an + Hinb (11.2)

depending parametrically through Vi, and 1, on the ionic coordinates R.
Now we expand the solution ¥ of the full Schridinger equation

HY =EV (1.1.3)
in terms of the solutions y of
IIeW’n = En"/’n' (114\

That is, we seek a solution of (1.1.3) in the form
W(r! R) - 2 XH(R) V’n(ra R)’ (115)
n

where r denotes the electronic coordinates. y,(R) is a function only of R and
is to be determined. L

Substituting (1.1.5) into (1.1.3), and using (1.1.4) and the orthonormality
of the y’s we obtain : -

(Tlon + En) In + 2 CmuZm == (an; (1.16)
where
(jnm — Anm + Bnm (117)
with
o 0 0
— v 2 [ ar (ox0r, B =% yo(r, B)) =
Amn - le dr ('Pn (r, R) 8Rl 'QUm(". - )) ’dR( s ,
- 7 2 (1.1.8)
= )
3 = — 3 i *(r 4 ] i3 \
Bum 5ot dr (% (r, R) R? vm(w,R,),

where M, and R, denote the mass and the position of the Ith ion, respectively.
In absence of a magnetic field the y’s can be chosen to be real, i.e. we have
A, = 0, since the functions y,(r, R) have been assumed to be normalized to
unity for all R.
When the terms involving nondiagonal elements of 4 and B (i.e. A, and
B, for n=m) are dropped, the vibrational wave function is determined hy
the properties of the nth electronic state only, and no electronic transitions
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, accompany the ionic moticn. In this case (1.1.6) becomes
(Tion + £ + Cn) Xne — H\‘(/nv}.'nv: (1.1.9)

where €, = C,, = B,,. In this equation » can be regarded as a vibrational
quantum number. Adopting (1.1.9) the wave function of the combined system
of electrons and ions reads for a state with energy ¢ ,,

Wo(r, R) = yuo(R) yo(r, R). (1.1.10)

The first factor of the wave function (1.1.10) describes the ionic motion, and
the second factor shows that during the ionic motion the electrons move as
if the ions were fixed in their instantaneous positions. The electrons are saicl
to follow adiabatically the motion of the ions. The approximation (1.1.10) for
the total wave function is called adiabatic approximation.

To see what the adiabatic approximation implies we use the Born-Oppen-
heimer expansion in the following. We hegin by writing

R, = R + xu,, (1.1.11)

where R,° denotes the equilibrium position of the Ith ion, a; the displacement
of the Ith ion, and x the expansion parameter. In the limiting case M — co
(M denotes a characteristic mass of an ion) we must have » — 0. Since x is a
dimensionless parameter, this suggests x = (m/M)* with x > 0, where m
denotes the electronic mass.

To determine the exponent «, the Hamiltonian (1.1.2) is expanded formally
in powers of the ionic displacements

He(r, R) = Hyy(r, R + xu) = ) "H(r, RY), (1.1.12)
! 8

where H{(r, R?) is a homogeneous function of degree s in u. We can fix « by
noting that if x = 1/4, x2H{) is of the same order in x as

Tion = —xM=1=2 37 (MM ) (h2[2m) V3, = =t/0=2]] (). (1.1.13)
4

As will be shown below, to this order we have a harmonic Hamiltonian.

Expanding the wave function y,(r, R) = y,(r, R - >) as a series in xu,
it can be readily seen from (1.1.8) that A4,, begins with a term O(»?), while
B, begins with a term O(x%). Thus the operator ', in (1.1.9) begins with a
constant term O(x*).

In the adiabatic approximation the wave function (1.1.10) turns out to be
exact to O(x?) and the energy ¢, to O(x%). To see this we expand ,, in terms
of the functions

Tm =2, € ™y (1.1.14)
v

When this expansion is substituted int (1.1.6) and use is made of (1.1.9) we

obtain the following equation for ¢,(™:
(Eme— E) '™ + 3 3 (mw| Oy 00"y ¢ =0, (1.1.15)

n(+m) v
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On iterating (1.1.15) all the ¢!’ 's (" == mv) may be expressed by ¢, In this

v
manner we obtain to the lowest order of approximation

£ = Em+ B3 (0] Copn 1007 (00| Crg ) (Ey — Ee)+ (1.1.16)

n(#+m) v’

The second term on the right hand side of this equation describes the change
of the energy due to Cp, (n = m), Le. due to transitions between different
electronic states. Since C,,, is at least of O(x%), this term begins with O(x®),
i.e. &,, is the exact energy to O(x°).

For a state with the energy (1.1.16) it holds ¢} ~ 1 and for the elements
¢t (n 4= m) we obtain from (1.1.15)

e = (nv'| U (MO)[(Emy — Eny) - (1.1.17)

Since Cpy is of O(x%), Cpyy yields a contribution to z, of O(x%). Accordingly,
¥my from (1.1.9) describes the ionic motion exact to O(x*).

Hence, in the Born-Oppenheimer expansion non-adiabatic terms appear
only in a relatively high order in x — (m/ M)V, As x never exceeds 1/10, the
expansion may be expected to converge quickly.

As stated above, the expansion of ', begins with a constant term of O(x*).
1t follows a term of O(x%) linear in u. Thus, to O(x*) in the adiabatic approxi-
mation the ionic motion is governed solely by the electronic energy K, (R).
An account of terms of O(x?) gives a contribution linear in w arising from O,
but the motion remains adiabatic.

Now let us solve (1.1.9) by perturbation theory. To this end we expand £,
Znps and &, in a series using x as small parameter. We use the same notation
as in (1.1.12), i.e. au expansion coefficient of sth order is labelled by an upper
index s. Note that & is a constant, while £, is a quantity of sth degree
in u. Comparing the expression resulting from (1.1.9) term by term we obtain

69 — B, O(RY), (1.1.18)
gV = E,0 =Y (aEn(R)ﬁ‘aR,),,o w, — 0. (1.1.19)
{

The identical vanishing of £, results from the fact that & i1s independent
of w. From (1.1.19) follows that in the nth electronic state the equilibrium
configuration R? is defined by

(6EL(R)[GR g = 0. (1.1.20
On account of (1.1.19) we obtain from the sccond order cxpression
(H, + E,® — ER 40 =0 (1.1.21)

or

, . &K, i
[[irm + («*2) % W (W)m wr — x“tv‘,fu'] 2 = 0. (1.1.22)
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(1.1.22) obviously describes harmonic vibrations of the ions about their
equilibrium positions. The corresponding approximation is called the harmonic
approximation. To this approximation the wave function of the crystal reads

Yo (r, w) = i (w) paO(r, RO) (1.1.23)
and the corresponding eigenvalue is given by »
En = BLO(Ry) + #4615 (1.1.24)

The latter two equations have been obtained by substituting (1.1.10) into
(1.1.3), accounting for (1.1.4), and expanding the quantities with respect to x.
We see that the harmonic approximation is a special case of the adiabatic
approximation. When we continue the expansion procedure beyond the second
order, anharmonic terms occur in (1.1.9).

Concluding this section, let us briefly discuss the validity of the adiabatic
approximation. A corresponding criterion may be obtained from (1.1.17) by
requiring that || < 1 for n = m. Using (1.1.8), the virial theorem, and the
fact that in a solid the mean square amplitude of an atom is proportional
to w=! (w — characteristic vibrational frequenoy; cf. (1.4.51)), we obtain
the criterion Aw/|&my — Eny| << 1. This criterion is quite well satisfied in the
case of insulators and semiconductors due to the large gaps in the electronic
spectra. Non-adiabatic effects have been found in narrow gap semiconductors
(SHERRINGTON, 1971). The above criterion is violated in metals. Nevertheless,
it turns out that in metals in general the adiabatic approximation is valid
(see BRovMAN and KacaxN, 1974). Non-adiabaticity is governed in metals by
the parameter hw/ep (ep — Fermi energy). Note that there is some indication
that non-adiabaticity may occur in materials with strong electron correlation
(ef. Koxpo and YamapJr, 1977).

1.2. Force constants and their properties

In the preceding section we found that the motion of the atoms in a solid
may be described in general by a many-body potential depending on the
instantaneous atomic positions.

On dissociating the instantaneous position R(/) of the lth atom into a rest
position x(l) and a displacement u(l) according to

R(l) = x(l) + u(l) ' (1.2.1)

we can formally expand @ in powers of the displacements:

® 1 :
R A L R ATNA RN (1.2.2)
n=1 *age..dp

fyreiliy .
Here u,(l) is the ath cartesian component of u(l), @, the potential energy of
the static lattice and

o

Puvenlly ) = Gy Ty e () o

(1.2.3)
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where the subscript 0 means that the derivatives are evaluated with all the
atoms in their rest positions.

From (1.2.3) it follows that the coefficients @, . (I, ...{,) are completely
symmetric in the indices I;x,, l,x,, ....

On eonsidering the force acting on the (th atom in x-direction

F.(l) = —o0[ou,(l)

: 1
D) — ) X = Bl ) () e U (l) (1.2:4)

the physical meaning of the coefficients @, . (I;...1,) becomes evident:
—@,(1) i8s the force in a-direction acting on the (th atom when it and the other
atoms in the crystal are in their rest positions, —@,, (1) is, to the first order
of accuracy, the a-component of the force on the Ith atom due to a unit dis-
placement of the /;th atom in x,-direction, etc. Consequently, the coctficients
D), Pua,(ll))) Pasyarllily), ... are called atomic force constants of the first,
second, third, ... order, respectively.

If the rest positions of the atoms are also equilibrium positions, the first
order force constant @,(I) vanishes identically. While in a finite crystal the
absence of a net force acting on any atom, i.e. @,(7) = 0, is the only condition
for a coincidence of the rest and equilibrium positions, in an infinite crystal
the equilibrium condition is two-fold (Bory and Huaxe, 1954, section 23;
see also SARKAR and SENGUPTA, 1977): (i) @,({) = 0 for any atom, (ii) the con-
figuration corresponds to vanishing stresses. In a finite crystal the latter con-
dition is automatically fulfilled, if the former one is satisfied (for any atom
including those near the surface).

For the study of certain problems, e.g. of effects cansed by external stresses
or strains on dynamical properties of a crystal, it is convenient to expand the
lattice potential around rest positions which differ from equilibrium positions
(see also section 4.2.).

Apart from specific features characterizing a special lattice, the force con-
stants @, . (l;.../,) are subjected to a number of general restrictions
resulting from certain invariance conditions every solid must obey. There
are two types of such restrictions. The first type follows from the invariance
of the lattice potential and its derivatives with respect to the atomic displace-
ments, when the lattice is subjected to infinitesimal rigid displacements (trans-
lations, rotations). The second type is connected with the symmetry and struc-
ture of a particular crystal.

If the lattice as a whole is subjected to an infinitesimal rigid body displace-
ment ¢ the lattice potential and its derivatives must remain unchanged. On
replacing in (1.2.2) u by #» this condition yields

XDy ol L) vy, =0 (n=1,2,.., (1.2.5)

Tiosilh

where v, is the a-component of ». Since (1.2.5) must hold for all values of v,



