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Preface

Ten years ago, in 1974, these lectures were given at the
'Instituto de Matematica Pura e~Aplicéda', in Rio de Janeiro. In 1975
the notes of these lectures appeared in the series 'Monografias de
Matematica' as No.22 published by IMPA. From that time on the notes
served as an introductory text for the theory of real fields and its

connections with valuation theory and quadratic form theory.

Since the 'Lectures on formally real fields' have been used in
many publications as a standard reference and since currently they
still seem to be the only introductory text to this theory, I grate-
fully accepted the proposal of C. Camacho to republish them in the
IMPA-Subseries of the 'Lecture Notes in Mathematics'. It seems wise
not to make changes in this new edition apart from correcting misprints
and a few minor errors: The only change made is to replace the term
g-ordering by semiordering, since the latter term turned out to be

almost exclusively used in the recent literature.

For the developments during the last decade in this theory,
particularly in the theory of reduced quadratic forms, I would like to
refer the reader to two publications of T.Y. Lam: his survey article

F
The Theory of Ordered Fields [in Ring Theory and Algebra III (ed. B.

Mc Donald), Lecture Notes in Pure and Applied Math., Vol. 55, Dekker,
,New York, 1980, p. 1-152] and to his expository notes

Orderings, Valuations and Quadratic Forms [Conf. Board of the Math.
Sciences, Regional Conf. Series in Math., No. 52, Providence,R.I.,1983].

Finally I would like to thank Edda Polte for preparing the type-

script of this second edition.

Konstanz, 1984 A. Prestel



Introduction

In mathematics, the following method of generalization has
turned out to be very successful: one §£arts with a given well-known
mathematical structure, singles out the most basic properties of that
structure (axioms) and then considers the class of all structures
satisfying these properties. Finally, one tries to characterize the

original structure among the members of this class.

A well known example of that method is the following: considering
the set € of complex numbers together with the usual (field-)
operations, tﬁe most basic properties are the rules for dealing with
these operations. All these rules are implied by the "axioms" of
fields of characteristic zero. Among this class of fields, C cannot
be characterized completely using‘algebraic properties only. But there
is a subclass consisting of the algebraically closed fields of
characteristic zero which contains € and shares with € all
Yalggbraic properties". This fact is usually called the "Lefschetz-

Principle".

éesides C , the field IR of real numbers is another outstanding
mathematical structure. One of the main differences between C€ and R
is the existence of a so-called "ordering"” on 1R . Now, the most basic
properties are the field axioms together with the rules for dealing
with the ordering "<" . These rules are all implied by the axioms of

a linear order and

DR D de S 158, < YA, <
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A field F together with a linear ordering < satisfying (1) and
(2) is called an ordered field (F,<). Among the class of ordered fields,

IR cannot be characterized completely using only algebraic and order-



theoretical properties, without involving set-theoretical properties
(completeness!). But once more, there is a subclass, the class of
maximally ordered (or real closed) fieids, which shares with R all
algebraic and order-theoretical properties. This fact is usually

called the "Tarski-Principle".

A1l this is contained in § 1 to § 5. To state these "Transfer-
Principles" precisely and to prove them, we need some notions from
model theory (introduced in § 4). The theory presented is self-
contained up to the proof of the main theorem of model theory, the

compactness theorem.

A field F admitting at least one ordering, in general admits
several. The set XF of all orderings of F can be given a topology
in such a way that it becomes a compact and totally disconnected space.

The study of such spaces is contained in § 6 to § 9.

A field admitting at least one ordering is called formally real.
s
These fields are characterized algebraically by the condition: -1 is
not a_sum of squares in F , or equivalently, no quadratic equation

/

of the type

has a non-trivial solution in F . This characterization is one of the
most elementary connections between the theory of formally real fields
and the theory of quadratic forms. More generally, if < is an
ordering of the field F and ajre--say € F are positive with

respect to < , then the quadratic equation
2
(%3, BEe kA X w0
s !

admits no non-trivial solution in F . This is based on the important
consequence

(2 0« X W0
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of (2). Hence, even if a1,...,an 50 and’ < iis a semiordering of F,
i.e. a linear ordering satisfying (1);, (2') and O < 1, then (*) admits

no non-trivial solution-din F .

This observation indicates the usefulness of the study of semi-
orderings in connection with quadratic forms over formally real fields.
Hence, right from the beginning we deal with semiorderings. These turn
out to be of great importance in proving certain "Local-Global

Principles" (see § 8).

One class of fields turns out to be of special interest. It
consists of all fields in which every semiordering is already an
ordering. The space XF of orderings in this case satisfies the
so-called "Strong Approximation Property". Hence these fields are

called SAP-fields. This class will be studied in § 9. In § 10 SAP-

fields will be characterized by their Witt rings of quadratic forms.

?hese notes are based on a course on formally real fields taught
at IMPA during the winter period from April to June 1974. The
author's stay at IMPA took place under the German-Brazilian
4

Cooperation Agreement GMD-CNPqg. The typescript was prepared by

Wilson Gdes. I want to thank him for the fine job he did.

Rio de Janeiro 1975 A. Prestel
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§ 1. ORDERINGS AND SEMIORDERINGS OF FIELDS

Orderings
Let F be a field. An ordering < of F is a binary relation

satisfying

Y (1) asa

Cid) a2ib, bxcwiaxag
(dadd) args by bs-a=sa=>b
(iv) a < b orbx< a

(v) a < brwimaigier<ibitc

(vi) O 80 b= O < ab

The set P = {a € F | O < a} obviously satisfies
(3 +2) (1) P+ PcP
(2) PP c P
{3) PN -p = {0}
(4) PU-P=F.
s
P “is called the positive cone of < (although it includes O). A

,subset P < F satisfying (1) to (4) is called a positive cone of F/ .

It is easy to see that, for a positive cone P,
d < b e bii—- g€ P

defines an ordering on F such that P is its positive cone. Hence
we will sometimes call P an ordering as well. Examples of ordered

fields are @ and R with their usual orderings.

To get an algebraic criterion for fields which admit some
ordering, we generalize the notion of positive cones to pre-positive
cones of fields. But looking forward to §5 we will go one step further

and also consider rings.

Let A be a commutative ring with unit 1 and I a subset of A.



Then we call a subset P of A a pre-positive cone of A if

{4.3) (1) R4 PP
(2) PP P
(3) =18k

(4) 7 e ol T

(1.4) LEMMA Let Po be a pre-positive cone of A . Then there is an

extension P of P_ satisfying in addition:

PU~P=A and P N -P is a prime ideal.

Proof: By Zorn's lemma the set of pre-positive cones extending Po
contains some maximal element. Let P > Po be such a maximal pre-

positive cone. We claim

Px. N (1+P) =0 or -Px N (1+P)

]
ASS

for all x € A . Suppose we have Py x = T g and Ths X = 1+ q,

1
for Some Pq/P5s94:9, € P . Multiplying both equations we obtain

—p{pzxz Y . But thenl =1 €"P  which i1s:a contradiction to (3).

To prove P U -P =A 1let x € A and assume first Px n (1+P) =4@.

For P oa=p - Py we get Pic Plv, =x € P' P 4P =-P' - and

PRl = P' _ If =1 €,;P' = P = Px  then Px N (1+P) ¢ ¢ . Hence P'
is again a pre-positive cone. But by the maximality of P, P' =P .
Hence -x € P . If we assume now -Px N (14+P) = @ we get x € P by
the same argument. It remains to show that Jo e TP ISR Tiiga prime

ddeal of A . From P U.-P = A it follows easily that J is an ideal.
Now let a;-a, € J . We may assume without loss of generality

-ay, —a, ¢ P . But then from the above argument we get Pa1 n (1+4P)+ @
and Pa, n (IR @ . 'Lek pja; = 1 + q and pya, = 1 + q, for
some Py ,Pyr9q:9, € P . Multiplying we obtain PPyaja, € 1[5 s

Hence -1 € P -“PiPya 2, < P+J < P gives a contradiction.
g.e.d.




In case A is a field F , we call P c F a pre-positive cone

of F if it satisfies (1.3) (1) to (4). Obviously any positive cone P
of F is also a pre-positive cone, since for any x € F we have Xx€P
and hence x2 € P or -x.€ P and hence x2 S (rxy(=x) € P 5 BN

particular we have 12 =1 € P , which implies -1 & P .

(1.5) COROLLARY Any pre-positive cone Po of ‘a £ield +FE. can.be

extended to some positive cone P of F .

From the proof of Lemma (1.4) we get another

(1.6) COROLLARY Any pre-positive cone Po of a field F equals the

intersection of all positive cones P extending P0 p

Proof: Obviously Po is included in the intersection. Now let x € Po.
But then P X n (1+Po) =@ , since from px =1 +q and p,q € P
we would get x = (1+q) p(%)2 € Po S AR invthe ‘proofiof " (lid)
P' = PO - X Po is a pre-positive cone extending Po and containing
s

-x ¥ By Corollary (1.5), P' can be extended to a positive cone of F.

Hence x is not in the intersection.
g.e.d;

-

Now let

SF = set of sums of squares of F .

(1.7) PROPOSITION (a) SF is contained in every pre-positive cone of F.

(b) SF is closed under addition.

(c) SF is a multiplicative subgroup of g

Proof: (a) and (b) are trivial.

fey ai + 0 = (X a]2._)_1 = ; ¢

g.e.d.



The following theorem gives an algebraic characterization of
fields which admit some ordering. These fields will be called formally

real or orderable. o :

(1.8), THEOREM For a field F , (a) to (d) are equivalent:

(a). F is formally real

(b) -1 ¢ Sp
(€)= ai =0 = al i
(d) 'F % 8

—
o))
Il

o

Proof: (b) « (c) and (a) = (d) are easy to see.

a2h2 4 -n&h2,

5—)

a € SF for any a € F ;o l.e. SF = F

) - (b): If- -1 € 5., by a=.|

(D) = (a): If --1 ¢ SF’ SF is a pre-positive cone of F , hence by

Corollary (1.5) can be extended to a positive cone of F

g.e.d.
| sy
(1.9) COROLLARY SF = P
P positive cone
Proof: If F is not orderable, S_, = F and the intersection over

F
the empty index set is by definition F . If F is orderable, this

equation is a special case of Corollary (1.6).

g.e.d.

Hence the elements of SF are also called totally positive.

Remark: The characteristic of a formally real field F is obviously
zero. Hence the field @ of rational numbers is isomorphic to a

gubfield of F .,

17 P2 be‘positive cones of a field F .

Then P1 (o= P2 implies P1 = P2

(1.10) PROPOSITION Let P




BrOoof s rLet ix €NP and x € P But *then ii-—xi¢ P, o P gives a

2 e=h 1 2
contradiction.
g.e.d.

(1.11) LEMMA SF 198 positive coneiopf a field F. 1ff F baga

unique ordering.

Proof: "s" Dby Proposition (1.10).
"«<" suppose SF U =S, # Fo . Let X, - =x@ SF . Then by
Corollary (1.9) there are positive cones P1, P2

-x ¢ P2 «cBut - then —+x € P1 e eD gives a contradiction.

%4 P 2

1 ’
g.e.d.

Semiorderings

As we remarked in the introduction there is a certain generali-
zation of positive cones and orderings which is based on the

following observation. Very often one only uses the property

08 = 0% ab2

-

of an ordering together with O < 1 . This is especially the case if
one deals with quadratic forms. Hence we will call a binary relation

< of a field F a semiordering if it satisfies (1:51) 264) ‘€0 () vand

ivil) 0O <1

Qi<ig = 0. < ab2

for all ~a;b € F . The set P = {a € P |0 < al then satisfies

(Y= P +.8 . P

(2) P°-PcP and 1 €EP

(3if P =P

I
o

(4} Polo=P

I
|



Such a set will be called a semicone of F . Obviously a semicone

P c F determinesa semiordering < of F defined by
8 < bz bh—a E P&

Hence we will sometimes call P a semiordering as well.

Any ordering of F is also a semiordering. But there are semi-
orderings < of some fields F which are not orderings (as will be
seen in §6), i.e. there are a,b € E such that 0 < a,b - andiiab < 0.

A semiordering which is not an ordering will be called a proper semi-

ordering.

For semiorderings the statements corresponding to (1.5) to B
also hold. To see this let us first introduce the notion of a pre-
semicone, which is not quite analogous to that of a pre-positive cone.
We call a subset P c F a pre-semicone if it satisfies

G1)s PP € P
R R
(3) P N=P = {0} .

'

Nothing is said about 1. Obviously any semicone is a pre-semicone.

(2) may be replaced by SF'P = P

(1.12) LEMMA If P is a pre-semicone of a formally real field F

and x € P then there is a pre-semicone P' extending P and

containing < =X .

Proof: Let P' =P - x S_ . Obviously P' satisfies (1) and (2) . Let

F
P -Xs € -P'  for some -p €P , 8 € SF + .Then there are Py €P.

83 7€ S such that (p+p1) - x(s+s1) = 0 LE Eeh s, * 0,

el F
X = (p+p1)(s+51)_1 € P gives a contradiction. Hence s + By = Qi

Since F is formally real, s = s; = O by (1.8) (c). Hence p+p, = Q-

But then p € P N =P , which implies p = Py = )/
g.e.d.



1
(1.13) LEMMA Any pre-semicone Po of a formally real)field F '‘can

be extended to some P such that P or -P is a semicone of F .

Proof: By Zorn's lemma the set of pre-semicones extending P, contains
some maximal pre-semicone P . If then x € P , by Lemma (1.12) there
is an extension P' of P such that -x € P'. From the maximality of

P we get -x'€ P, Hence: P U -P =F . Now P or ~-P is a  semicone.

g.e.d.

(1.14) COROLLARY If F is formally real, SF equals the intersection

of all semicones.

Proof: Follows directly from (1.12) and (1.13). Note that SF is a
pre-semicone containing 1 if F is formally real.

g.e.d.

(1.15) COROLLARY F is formally real iff it admits a semiordering.

By the same argument as in (1.10) we get:

‘(1.16) PROPOSITION If P, < P, are both semicones of F , then P, =P,.

(1.17) COROLLARY If F has a unique (semi)ordering, it has no proper

semiordering.

Proof: By the same argument as in (1.11) the assumption implies that
SF forms a positive cone of F . Now any semicone P contains SF -
Hence P = SF by t1-216)

g.e.d.

3 Actually "formally real" is superfluous. For a pre- semicone P_ ,

o
o _
SF & TeEp and hence 1€ SF "



