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Preface

This volume contains a selection of papers presented at LOPSTR, 2005, the 15th
International Symposium on Logic-Based Program Synthesis and Transforma-
tion, held September 7-9, 2005.

The aim of the LOPSTR series is to stimulate and promote international
research and collaboration on logic-based program development. Previous LOP-
STR events have been held in Manchester, UK (1991, 1992, 1998), Louvain-la-
Neuve, Belgium (1993), Pisa, Italy (1994), Arnhem, The Netherlands (1995),
Stockholm, Sweden (1996), Leuven, Belgium (1997), Venice, Italy (1999), Lon-
don, UK (2000), Paphos, Cyprus (2001), Madrid, Spain (2002), Uppsala, Sweden
(2003), Verona, Italy (2004). Since 1994 the proceedings have been published in
the LNCS series of Springer.

We would like to thank all those who submitted papers to LOPSTR. Overall,
we received 33 submissions (full papers and extended abstracts). Each submis-
sion was reviewed by at least three people. The committee decided to accept
17 of these papers for presentation and for inclusion in the pre-conference pro-
ceedings. This volume contains a selection of revised full versions of ten of these
papers. Thanks to all the authors of the accepted papers for the versions printed
here and their presentations of these papers at LOPSTR 2005. We would like to
thank Frangois Fages for agreeing to give an invited talk and his contribution of
a short paper included in these proceedings.

I am very grateful to the Program Committee as well as all the external
reviewers for the reviewing of the submitted papers and invaluable help in the
selection of these papers for presentation.

The submission, reviewing, electronic Program Committee meeting and prepa-
ration of the pre-conference proceedings and these proceedings were greatly sim-
plified by the use of EasyChair (see http://www.easychair.org/). Special thanks
are therefore due to Andrei Voronkov, who developed and supports this system.

LOPSTR 2005 was held concurrently with SAS 2005, the Symposium on
Static Analysis in Imperial College, University of London. I would like to thank
the SAS 2005 organizers, and, particularly, Chris Hankin, who took on all the
hard work of the overall planning of the events.

LOPSTR 2005 was sponsored by ALP, the Association for Logic Program-
ming.

December 2005 Patricia M. Hill
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Temporal Logic Constraints in the
Biochemical Abstract Machine BIOCHAM

Frangois Fages

INRIA Rocquencourt, France
Francois.FagesQinria.fr

Abstract. Recent progress in Biology and data-production technolo-
gies push research toward a new interdisciplinary field, named Systems
Biology, where the challenge is to break the complexity walls for reason-
ing about large biomolecular interaction systems. Pioneered by Regev,
Silverman and Shapiro, the application of process calculi to the descrip-
tion of biological processes has been a source of inspiration for many
researchers coming from the programming language community.

In this presentation, we give an overview of the Biochemical Abstract
Machine (BIOCHAM), in which biochemical systems are modeled using
a simple language of reaction rules, and the biological properties of the
system, known from experiments, are formalized in temporal logic. In
this setting, the biological validation of a model can be done by model-
checking, both qualitatively and quantitatively. Moreover, the temporal
properties can be turned into specifications for learning modifications or
refinements of the model, when incorporating new biological knowledge.

1 Introduction

Systems biology is a cross-disciplinary domain involving biology, computer sci-
ence, mathematics, and physics, aiming at elucidating the high-level functions
of the cell from their biochemical bases at the molecular level. At the end of
the Nineties, research in Bioinformatics evolved, passing from the analysis of
the genomic sequence to the analysis of post-genomic data and interaction net-
works (expression of RNA and proteins, protein-protein interactions, etc). The
complexity of these networks requires a large research effort to develop symbolic
notations and analysis tools applicable to biological processes and data.

Our objective with the design of the Biochemical Abstract Machine
BIOCHAM [1,2] is to offer a software environment for modeling complex cell
processes, making simulations (i.e. “In silico experiments”), formalizing the bi-
ological properties of the system known from real experiments, checking them
and using them as specification when refining a model. The most original aspect
of our approach can be summarized by the following identifications:

biological model = transition system,
biological property = temporal logic formula,
biological validation = model-checking.

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 1-5, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 F. Fages

2 Syntax of Biomolecular Interaction Rules

The objects manipulated in BIOCHAM represent molecular compounds, ranging
from small molecules to proteins and genes. The syntax of objects and reaction
rules is given by the following grammar:

object = molecule | molecule : : location

molecule = name | molecule-molecule |molecule™{name,...,name}
reaction = solution => solution | kinetics for solution => solution
solution = _ | object | number*object | solution+solution

The objects can be localized in space with the operator “:” followed by a
location name, such as the membrane, the cytoplasm, the nucleus, etc. The
binding operator - is used to represent the binding of a molecule on a gene,
the complexation of two proteins, and any form of intermolecular bindings. The
alteration operator “~” is used to attach a set of modifications to a protein,
like for instance the set of its phosphorylated sites (as long as they impact its
activity).

Reaction rules express elementary biochemical interactions. There are essen-
tially seven main rule schemas :

— G => G + A for the synthesis of A by gene G,

— A => _ for the degradation of A,

— A + B => A-B for the complexation of two proteins A and B,

A-B => A + B for the reversed decomplexation,

— A + B => A”{p} + B for the phosphorylation of protein A at site p catalyzed
by B,

— A7{p} + B => A + B for the reversed dephosphorylation,

— A::L => A::L’ for the transport of A from location L to L’.

The reaction rules can also be given with a kinetic expression, like for instance
0.1x[A][B] for A + B => A-B where a mass action law kinetics with constant
rate 0.1 is specified for the formation of the complex.

This rule-based language is used to model biochemical systems at three ab-
straction levels which correspond to three formal semantics: boolean, concentra-
tion (continuous dynamics) and population (stochastic dynamics).

A second language based on Temporal Logic (3] is used in BIOCHAM to
formalize the biological properties of the system, and validate a model by model-
checking [4, 5]. More precisely, symbolic and numerical model-checking tools are
used respectively for CTL in the boolean semantics, for LTL with constraints
over real numbers in the concentration semantics, and for PCTL with constraints
over integers in the stochastic semantics.

3 Boolean Semantics

The most abstract semantics is the boolean semantics which ignores kinetic ex-
pressions. In that semantics, a boolean variable is associated to each BIOCHAM
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object, representing simply its presence or absence in the system. Reaction rules
are then interpreted as an asynchronous transition system over states defined by
the vector of boolean variables (similarly to the term rewriting formalism used in
[6]). A rulesuchas A + B => C + D defines four possible state transitions corre-
sponding to the possible consumption of the reactants: AAB — AANBACAD,
AAB —- -AANBACAD,AANB - AN-BANCAD, ANB - -AN-BACAD.
In that semantics, the choice of asynchrony and non-determinism is important
to represent basic biological phenomena such as competitive inhibition, where a
reaction “hides” another one because it consumes the reactants before the other
reaction can occur. Formally, the boolean semantics of a set of BIOCHAM rules
is defined by a Kripke structure K = (S, R) where S is the set of states defined
by the vector of boolean variables, and R C S x S is the transition relation
between states.

In that boolean semantics, Computation Tree Logic (CTL) formulae are used
to formalize the known biological properties of the system, and to query such
properties in a model. Given an initial state specifying the biological conditions
of the property, typical CTL formulae used in this context are :

— EF(P), abbreviated as reachable(P), stating that the organism is able to
produce molecule P;

— E(-Q U P), abbreviated as checkpoint (Q,P), stating that Q is a checkpoint
for producing P;

— EG(P), abbreviated as steady(P), stating that the system can remain in-
finitely in a set of states described by formula P;

— AG(P), abbreviated as stable(P), stating that the system remains infinitely
in P and cannot escape;

— AG((P = EF —P) A (—P = EF P)), abbreviated as oscil(P), a necessary
(vet not sufficient without strong fairness assumption) consition for oscilla-
tions w.r.t. the presence of molecule P;

— AG((P = EF Q) A(Q = EF P)), abbreviated as loop(P,Q), a necessary
condition for the alternance between states P and Q.

BIOCHAM evaluates CTL properties through an interface to the OBDD-based
symbolic model checker NuSMV [7]. This technology makes it possible to check
or query large models, like the model of the cell cycle control involving 165
proteins and genes, 500 variables and 800 reaction rules reported in [5].

4 Concentration Semantics

Basically the same scheme is applied to quantitative models, where each rule
is given with a kinetic expression. The concentration semantics associates to
each BIOCHAM object a real number representing its concentration. A set of
BIOCHAM reaction rules E={e; for S;=S};—1, . n with variables {z1, ..., Z,},
is then interpreted by the following set of (non-linear) ordinary differential equa-
tions (ODE) :

dzy/dt = Zn(rk) * e — Z Li(zk) * e;

i=1 j=1
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where 7;(zk) (resp. l;) is the stoichiometric coefficient of zy, in the right (resp. left)
member of rule 7. Given an initial state, i.e. initial concentrations for each of the
objects, the evolution of the system is deterministic and numerical integration
methods compute discrete time series (i.e. linear Kripke structures) describing
the evolution of the concentrations over time.

The concentration semantics being deterministic, Linear Time Logic (LTL) is
used here to formalize the temporal properties. A first-order fragment of LTL is
used to express numerical constraints on the concentrations of the molecules, or
on their derivatives. For instance, F([A]>10) expresses that the concentration
of A eventually gets above the threshold value 10. Oscillation properties, abbre-
viated as oscil(M,K), are defined here as a change of sign of the derivative of
M at least K times. These LTL formulae with constraints are checked with an
ad-hoc model-checker implemented in Prolog, using the trace of the numerical
integration of the ODEs associated to the rules.

5 Population Semantics

The population semantics is the most realistic semantics. It associates to each
BIOCHAM object an integer representing the number of molecules in the system,
and interprets reaction rules as a continuous time Markov chain. The kinetic
expression e; for the reaction i is converted into a transition rate ; (giving a
transition probability after normalization) as follows [8]:

m
7= e; X (V; x K)0~Zkailize) H(!li(wk))
k=1

where [; is the stoichiometric coefficient of the reactant ;. in the reaction rule i.
Stochastic simulation techniques [9] compute realizations of the process. They
are generally noisy versions of those obtained with the concentration semantics,
however qualitatively different behaviors may also appear when small number of
molecules are considered, which justifies the use of a stochastic dynamics.

In this setting, LTL formulae can be evaluated with their probability using a
Monte Carlo method, which has proved to be more efficient than existing model-
checkers for the probabilistic temporal logic PCTL. However, both the stochastic
simulation and the model-checking are computationally more expensive than in
the concentration semantics.

6 Learning Reaction Rules from Temporal Properties

Beyond making simulations, and checking properties of the models, the tem-
poral properties can also be turned into specifications and temporal logic con-
straints for automatically searching and learning modifications or refinements
of the model, when incorporating new biological knowledge. This is implemented
in BIOCHAM by a combination of model-checking and search in the three
abstraction levels.
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This methodology is currently investigated with models of the cell cycle con-
trol (which regulates cell division) for the learning of kinetic parameter values
from LTL properties in the concentration semantics [10], and for the learning
of reaction rules from CTL properties in the boolean semantics [11]. A coupled
model of the cell cycle and the circadian cycle is under development along these
lines in BIOCHAM with applications to cancer chronotherapies.
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Abstract. We propose an extension of functional logic languages that allows the
definition of operations with patterns containing other defined operation symbols.
Such “function patterns” have many advantages over traditional constructor pat-
terns. They allow a direct representation of specifications as declarative programs,
provide better abstractions of patterns as first-class objects, and support the high-
level programming of queries and transformation of complex structures. More-
over, they avoid known problems that occur in traditional programs using strict
equality. We define their semantics via a transformation into standard functional
logic programs. Since this transformation might introduce an infinite number of
rules, we suggest an implementation that can be easily integrated with existing
functional logic programming systems.

1 Motivation

Functional logic languages (see [16] for a survey) integrate the most important fea-
tures of functional and logic languages to provide a variety of programming concepts to
the programmer. For instance, the concepts of demand-driven evaluation, higher-order
functions, and polymorphic typing from functional programming are combined with
logic programming features like computing with partial information (logic variables),
constraint solving, and non-deterministic search for solutions. This combination, sup-
ported by optimal evaluation strategies [6] and new design patterns [8], leads to better
abstractions in application programs such as implementing graphical user interfaces
[18] or programming dynamic web pages [19].

A functional logic program consists of a set of datatype definitions and a set of
functions or operations, defined by equations or rules, that operate on these types. For
instance, the concatenation operation “++” on lists can be defined by the following
two rules, where “[]” denotes the empty list and “x :xs” the non-empty list with first
element x and tail xs:

] ++ ys = ys

(x:x8) ++ ys = x : xs++ys
Expressions are evaluated by rewriting with rules of this kind. For instance, [1,2]
++[3] evaluates to [1,2,3], where [z1,z2,...,2,] denotes z;:Z2: . ..:2,: [],in
three rewrite steps:

* This work was partially supported by the German Research Council (DFG) under grant Ha
2457/5-1 and the NSF under grant CCR-0218224.

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 6-22, 2006.
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[1,2)++[3] - L:CE214+[8]0 . .2:(2:([1++E31)) . .- [1;2,8]

Beyond such functional-like evaluations, functional logic languages also compute with
unknowns (logic variables). For instance, a functional logic language is able to solve an
equation like xs++[x] =:= [1,2,3] (where xs and x are logic variables) by guessing
the bindings [1,2] and 3 for xs and x, respectively.

This constraint solving capability can be exploited to define new operations using
already defined functions. For instance, the operation last, which yields the last ele-
ment of a list, can be defined as follows (the “where. . .free” clause declares logic
variables in rules):

last 1 | xs++[x]=:=1 = x where xs,x free (lastl)

In general, a conditional equation has the form [ | ¢ = r and is applicable for rewriting
if its condition ¢ has been solved. A subtle point is the meaning of the symbol “=:="
used to denote equational constraints. Since modern functional logic languages, like
Curry [17,22] or Toy [25], are based on a non-strict semantics [6, 14] that supports lazy
evaluation and infinite structures, it is challenging to compare arbitrary, in particular
infinite, objects. Thus, the equality symbol “=:="in a condition is usually interpreted as
strict equality—the equation t; =:=t; is satisfied iff ¢; and ¢4 are reducible to the same
constructor term (see [13] for a more detailed discussion on this topic). A constructor
term is a fully evaluated expression; a formal definition appears in Section 3.

Strict equality evaluates both its operands to a constructor term to prove the validity
of the condition. For this reason, the strict equation “x =:=head []1” does not hold for
any x. The operation head is defined by the single rule head (x:xs) = x. Therefore,
the evaluation of head [] fails to obtain a constructor term. While the behavior of “=: ="
is natural and intuitive in this example, it is less so in the following example.

A consequence of the strict equality in the definition of last in Display (last!) is
that the list argument of 1ast is fully evaluated. In particular, last [failed, 2], where
failed is an operation whose evaluation fails, has no result. This outcome is unnatural
and counterintuitive. In fact, the usual functional recursive definition of last would
produce the expected result, 2, for the same argument. Thus, strict equality is harmful
in this example (further examples will be shown later) since it evaluates more than one
intuitively requires and, thus, reduces the inherent laziness of the computation.

There are good reasons for the usual definition of strict equality [13]; we will see
that just dropping the strictness requirements in equational conditions leads to a non-
intuitive behavior. Therefore, we propose in this paper an extension of functional logic
languages with a new concept that solves all these problems: function patterns. Tra-
ditional patterns (i.e., the arguments of the left-hand sides of rules) are required to be
constructor terms. Function patterns can also contain defined operation symbols so that
the operation last is simply defined as

last (xs++[x]) = x

This definition leads not only to concise specifications, but also to a “lazier” behavior.
Since the pattern variables xs and x are matched against the actual (possibly unevalu-
ated) parameters, with this new definition of last, the expression last [failed, 2]
evaluates to 2.



