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Preface

In current statistical practice, both exploratory data analysis and robust and
resistant methods have gained important roles. To apply such methods most
effectively, the user needs to understand why they are needed and how they
work—and can be helped by some insight into how they were devised. This
book provides conceptual, logical, and, sometimes, mathematical support
for the simpler of these new techniques.

The techniques of exploratory data analysis, particularly as embodied in
the book of that title by Tukey (Addison—Wesley, 1977), may seem to have
sprung from nowhere and to be supported only by anecdote. The attitudes
underlying exploration, though long used by skilled data analysts, have been
little exposed to public view. Many of the purposes parallel those of more
conventional techniques. Indeed, we can express some of the justifications
for particular techniques by using the concepts of classical statistical theory.
This book explains and illustrates such connections.

The robust and resistant techniques that we discuss have considerable
support in the statistical research literature, both at a highly abstract
mathematical level and in extensive Monte Carlo studies. The book provides
the basis for an adequate understanding of these techniques using examples
and a much reduced level of mathematical sophistication.

By studying this book the user will become more effective in handling
robust and exploratory techniques, the student better able to understand
them, and the teacher better able to explain them.

Robust and resistant techniques and those of exploratory data analysis
have arisen mainly under the guidance of experience, skilled insight, empiri-
cal studies of performance, and even analogy with classical techniques.
Today these techniques, in part because of this diversity of guidance, do not
seem to follow naturally from any unifying structure. Nevertheless, the
connections with classical theory do enable us to explain many of the
grounds for choosing techniques.

vil



viii PREFACE

Classical theory emphasizes large-sample notions of consistency, asymp-
totic variance, and asymptotic relative efficiency. Knowing the behavior of a
statistic as the sample becomes large has some utility when, as so frequently
happens, large-sample behavior is simpler than small-sample behavior.
Above all, we need to recognize that data sets are usually small and that
their behavior often lacks the simplicity of large samples. Useful examina-
tion of a technique will, therefore, often require new small-sample studies of
its performance. Several of these studies, whose results we include, have
formed part of the research leading to this volume.

Large-sample considerations can provide a unifying structure for some
robust and resistant techniques. The strongest unifying theme underlying
exploratory data analysis is expressed in “Look at the data and think about
what you are doing.” Proceeding largely from these bases, we provide a
broad overview of the simpler aspects of data analysis, emphasizing explora-
tory and robust techniques.

Our intent is that each chapter be reasonably self-contained except for a
few generally applicable techniques from the early chapters. Thus, we
explain each method in conjunction with an example or two. We continue to
use these examples when we describe variations on the technique, explain
connections with other techniques (both classical and exploratory), and
present results on performance.

Examples are generally small, and almost all rely on real data. They help
introduce the reader to techniques and illustrate why and when one method
is preferable to another. Through them we give some empirical evidence for
the efficacy of each technique in a concrete application.

A brief collection of exercises at the end of each chapter enables the
reader to participate more directly in applying the techniques to other sets
of data, establishing their properties, or extending them to new situations.

Although our presentation does not generally involve a great deal of
mathematics or theoretical argument, we do use them where they seem
appropriate. Sometimes, when more formal approaches are unrewarding, we
have recourse to numerical simulation. The mathematical arguments we
employ are of three types: (a) a proof that a technique meets some desirable
objective, (b) an argument that a certain property of a given technique is
valuable, and (c) mathematical analogy to extend a technique.

Books in the mathematical sciences may be pitched at various levels and
written using different plans. One plan assumes that readers have a particu-
lar level of mathematical background and then consistently maintains this
level. The advantages are clear—reader and author have a definite contract.
Against it, note that some not so well prepared readers who might benefit
from parts of the work can be frozen out because they cannot meet the level
chosen. Some almost accessible ideas may then have to be held back for
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reasons only of level. Another plan uses different levels in different parts of
a work, with the intention of keeping as many readers as possible in touch
with each part.

This latter plan, which we have adopted, requires tolerance on the part of
the readers: The well prepared need to appreciate that they are not being
talked down to, whereas the less well prepared must be willing to skip along
when too much background is required. Such a plan can produce seemingly
inconsistent writing, such as defining a factorial and yet seeming to assume
that the same reader finds the gamma function an old friend. The approach
we take also means that rigor, when available, may sometimes be de-
liberately sacrificed in order to communicate the main idea to more readers.

The mathematical prerequisite for the reader is not high for most
chapters. At the same time, mathematical sophistication is matched to the
requirement for explaining each technique, and so the level rises especially
in Chapters 8 and 11. These we have marked by a star (*) before the chapter
aumber in the table of contents. The reader may omit the starred chapters
at first reading with no loss of continuity.

Many of the techniques we discuss also appear in Exploratory Data
Analysis by John W. Tukey and Data Analysis and Regression by Frederick
Mosteller and John W. Tukey (Addison—-Wesley, 1977). In the present book,
the emphasis is more on the rationale and development of the methods, and
less on illustrating their use. Our exposition is self-contained, but a reader
wishing to see more examples and different applications may find profit in
referring to one or both of the books just mentioned or to Applications,
Basics, and Computing of Exploratory Data Analysis by Paul F. Velleman
and David C. Hoaglin (Duxbury Press, 1981).

We are preparing a further volume to provide a similar rationale for
additional techniques of exploratory data analysis and other robust and
resistant methods.

DaviD C. HOAGLIN
FREDERICK MOSTELLER
JoHN W. TUKEY

Saconesset Hills, Massachusetts
July 1982
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Introduction

The classical statistical techniques are designed to be the best possible when
stringent assumptions apply. However, experience and further research have
forced us to recognize that classical techniques can behave badly when the
practical situation departs from the ideal described by such assumptions.
The more recently developed robust and exploratory methods are broaden-
ing the effectiveness of statistical analyses.

The techniques of exploratory data analysis help us to cope with a set of
data in a fairly informal way, guiding us toward structure relatively quickly
and easily. Good statistical practitioners have always looked in detail at the
data before producing summary statistics and tests of hypotheses. Explora-
tory data analysis provides us with an extensive repertoire of methods for
the detailed study of a set of data. The emphasis is on flexible probing of
the data, often before comparing them to any probabilistic model.

Robust and resistant methods, instead of being the best possible in a
narrowly defined situation, are “best” compromises for a broad range of
situations and, surprisingly often, are close to “best” for each situation
alone. Whereas distribution-free methods treat all distributions equally,
robust and resistant methods discriminate between those that are more and
less plausible.

Broad Phases of Data Analysis

One description of the general steps and operations that make up practical
data analysis identifies two broad phases: exploratory and confirmatory.
Exploratory data analysis isolates patterns and features of the data and
reveals these forcefully to the analyst. It often provides the first contact with
the data, preceding any firm choice of models for either structural or
stochastic components, and it also serves to uncover unexpected departures
from familiar models. An important element of the exploratory approach is
flexibility, both in tailoring the analysis to the structure of the data and in
responding to patterns that successive steps of analysis uncover.

1



9 INTRODUCTION

Confirmatory data analysis assesses the reproducibility of the observed
patterns or effects. Its role is closer to that of traditional statistical inference
in providing statements of significance and confidence; but the confirma-
tory phase often includes steps such as (a) incorporating information from
an analysis of another, closely related body of data and (b) validating a
result by collecting and analyzing new data.

In brief, exploratory data analysis emphasizes flexible searching for clues
and evidence, whereas confirmatory data analysis stresses evaluating the
available evidence.

A cycle of alternating uses of exploratory and confirmatory techniques,
either on successive smaller bodies of data or on a single substantial one, is
not uncommon and is often very desirable.

Four Themes

Throughout exploratory data analysis, four main themes appear and often
combine. These are resistance, residuals, re-expression, and revelation.

Resistance provides insensitivity to localized misbehavior in data. A
resistant method produces results that change only slightly when a small
part of the data is replaced by new numbers, possibly very different from
the original ones. Resistant methods pay much attention to the main body
of the data and little to outliers. The median is a resistant statistic, whereas
the sample mean is not. Attention to resistance reflects the understanding
that “good” data seldom contain less than a few percent of gross errors or
blunders, so that protection against the adverse effects of such errors should
always be available.

In theoretical discussions, one seeks to limit the effect of any “small”
change in the sample. In this sense, small changes include minor perturba-
tions in all the data, drastic shifts in a small fraction of the data, and
numerous possibilities between these two extremes. In a particular instance,
we may need to be concerned with only some of the possible small changes.
Thus we might speak of “resistance to wild values” or “resistance to
rounding and grouping.” Most commonly, because their presence can so
easily produce serious distortion, we have wild values in mind when we
discuss resistance. Also, it is generally easier to overcome the lesser difficul-
ties that arise when an estimator, such as the sample median, is not resistant
to rounding and grouping.

We distinguish between resistance and the related notion of robustness.
Robustness generally implies insensitivity to departures from assumptions
surrounding an underlying probabilistic model. (Some discussions regard
resistance as one aspect of “qualitative robustness.”)

In summarizing the location of a sample, the median is highly resistant.
A number of exploratory techniques for more structured forms of data
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provide resistance because they are based on the median. In terms of
efficiency, the median, for all its resistance, is not highly robust because
other estimators achieve appreciably greater efficiency across a broader
range of distributions. By contrast, the mean is both badly nonresistant and
badly nonrobust.

Residuals are what remain after a summary or fitted model has been
subtracted out of the data according to the schematic equation

residual = data — fit.

For example, if the data are the pairs (x,, y,) and the fit is the line
$, = a + bx,, then the residuals are r, = y, — J.

A key attitude of exploratory data analysis asserts that an analysis of a
set of data is not complete without a careful examination of the residuals.
This analysis can and should take advantage of the tendency of resistant
analyses to provide a clear separation between dominant behavior and
unusual behavior in the data. When the bulk of the data follows a consistent
pattern, that pattern determines a resistant fit. The resistant residuals then
contain any drastic departures from the pattern, as well as chance fluctua-
tions. Unusual residuals call for a check on the details of how the corre-
sponding observations were made and handled. As in more traditional
practice, the residuals-—properly analyzed and displayed-—can warn of
important systematic aspects of data behavior that may need attention, such
as curvature, nonadditivity, and nonconstancy of variability.

Re-expression involves finding what scale (e.g., logarithmic or square
root) would simplify the analysis of the data. Exploratory data analysis
emphasizes the benefits of considering, at an early stage, whether the orig-
inal scale of measurement for the data is satisfactory. If not, a re-expression
into another scale may help to promote symmetry, constancy of variability,
straightness of relationship, or additivity of effect, depending on the struc-
ture of the data. A view that the original scale of measurement has a
preferred status may cause reluctance to consider re-expression. That view
will often not stand examination. True, the physicist sometimes has a cogent
theoretical basis for deciding whether to work with volts or (volts)?. How-
ever, in circumstances where cogent theory does not guide the choice, the
original scale of measurement does not have a similar claim to preferred
status. Thus the response of an animal’s liver to some treatment may be no
more naturally reflected in w, the weight, than in log w or yw, at least until
quantitative understanding has advanced.

Revelation through displays meets the analyst’s need to see behavior—of
data, of fits, of diagnostic measures, and of residuals—and thus to grasp the
unexpected features as well as the familiar regularities. Emphasis on visual
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displays, including many new graphical techniques, has been a major
contribution of exploratory data analysis.

Terminology

Readers who have become acquainted with exploratory data analysis (EDA)
after studying traditional statistical methods may wonder why relatively few
of the traditional technical terms carry over. Because this book often makes
connections between EDA and existing background in statistics, the new
words and the familiar ones frequently appear almost side by side. Although
such passages may help to clarify how EDA terms relate to traditional ones,
they do not always attempt to explain the need for new words. We now
offer a few of the more general reasons for the EDA terminology.

First, EDA is more concerned with earlier stages in the overall process of
working on data and with different operations and emphases. New tech-
niques often require new technical terms. Stem-and-leaf displays, letter
values, and boxplots all illustrate this fact.

Second, some EDA terms are related to, but not equivalent to, more
traditional notions. Here the preferred approach is to avoid disturbing the
definitions already embedded in the literature. For example, the “hinge” or
“fourth” is not exactly a “quartile,” and “batch” does not include the
assumptions of independence and identical distribution usually associated
with “sample.”

Third, gains may come from avoiding misleading words. A primary
example is “normal,” as used in “normal distribution” and in “normal
equations” (in least-squares regression), which conflict with this word’s
usage in normal parlance. Thus we frequently refer to the “Gaussian
distribution,” rather than the “normal distribution,” to avoid any sugges-
tion that this shape customarily underlies actual data.

Finally, some terms, although perhaps unfamiliar, are standard in a
particular area of statistics whose results are related to EDA. Some exam-
ples in Chapters 9 through 12 come from the field of robustness, where a
spurt of research in recent years has established new concepts and many
valuable theoretical results.

Estimation

When we engage in a careful discussion of estimation, as in Chapters 9
through 12, we often need to distinguish between the procedure (which we
would apply to any sample) and the numerical value (which we obtain by
applying the procedure to a particular sample). We use “estimator” for the
procedure and “estimate” for the value, and we have tried to maintain this
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usage throughout the book. On occasion we use “estimand” for the value
that an estimator would produce if it were applied, conceptually, to an
entire theoretical distribution. Often the estimand is a familiar parameter of
the distribution, but we would also use the term for other quantitative
descriptions of what an estimator seems to be estimating.

Sampling Situations

Some of the data sources assembled to challenge proposed robust estimators
are technically not distributions. For example, sets of 20 observations in
which exactly 19 always come from the standard Gaussian distribution and
exactly one always comes from a Gaussian distribution with a larger
variance are not samples from either of these two distributions or from a
mixture distribution. When we must be careful about this distinction (as in
Chapters 10 and 11), we refer to such a data source as a “situation.”

Iteration

Resistant and robust techniques more often involve iteration than do
classical ones. Thus instead of finding a solution in a single step, we often
take an initial value and successively refine it, bringing it closer and closer
to the final answer.

In this book the main examples are the three-group resistant line (Chapter
5), median polish (Chapter 6), and the M-estimators of location (Chapter
11). The resistant line procedure defines the slope of the fitted line in terms
of the residuals in a way that requires calculating the residuals from a
preliminary fit and then adjusting the preliminary slope if necessary.
Similarly, in two-way tables, the process of adjusting a preliminary row
effect may leave some column medians nonzero. Here, median polish makes
alternate adjustments of row and column effects. In doing this, it seeks a
two-way table of residuals whose rows and columns all have their medians
equal to zero, although we conventionally stop after taking only a few steps
toward this goal. In general, the calculations for an M-estimator involve
solving, again usually approximately, a nonlinear equation in which the
previous estimate enters through the definition of the corresponding residu-
als.

Often, a certain amount of iteration is to be expected as part of the price
of resistance or robustness; the procedures that yield a fit or an estimate
without iteration may not be adequately resistant or robust. Happily, the
iterative adjustment procedures in this book are simple, and they seldom
require many steps.
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