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Modeling Crop Photosynthesis—
from Biochemistry to Canopy



FOREWORD

Photosynthesis is the most important biochemical process in nature. The
rates at which plants fix CO,, under the wide range of conditions found in
nature, determine their productivity and ultimate utility to humans. As scien-
tists have learned more about factors that limit and control this complex
process, new genetic and management strategies have been devised to more
fully exploit and develop its potential.

The models described in the chapters in this volume summarize the state
of knowledge regarding the interactions of environmental and biochemical
factors on crop photosynthesis. These models are not only valuable research
tools but, when integrated into sophisticated crop simulation models, they
become powerful tools to improve the management of crop production sys-
tems. Crop producers must strive to address environmental concerns and
remain economically competitive. Computer models can be immensely
valuable aids.

Crop simulation models need to accurately reflect actual biological hap-
penings under complex and rapidly changing conditions. Such models must
be based on accurate and reliable information regarding the most fundamental
of plant processes — photosynthesis. The authors of this volume have made
significant strides toward this end. Their work is to be commended.

V. L. LECHTENBERG, president
Crop Science Society of America

D. R. NIELSEN, president
American Society of Agronomy
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PREFACE

Explanation and prediction of the growth of managed and natural
ecosystems in response to climatic and soil-related factors are increasingly
important as objectives of our science. Quantitative prediction of complex
systems, however, depends on integrating information through levels of
organization, and the principal approach we have for that is through the con-
struction of simulation models. Simulation of the system’s use and balance
of C, beginning with the input of C from canopy assimilation, forms the
essential core of most simulation models that deal with the growth of
vegetation.

It is now more than 40 yr since the first detailed model of canopy light
interception was reported by Monsi and Saeki (1948). That work was fol-
lowed by more advanced geometrical and physiological models of foliage
canopies by de Wit (1965), the Estonian group (summarized by Ross, 1981),
and Duncan et al. (1967). The sophistication of the models for canopy light
interception was not matched in the area of models for biochemistry-
physiology of photosynthesis until the past 10 yr, when the Glasshouse Crops
Group in England (Acock, Ch. 3 in this book) and Farquhar and von Caem-
merer (1982) began to publish advanced approaches to that problem.

Parallel progress was made in the development of dynamic simulation
models of the growth of crops. Crop model development was stimulated by
Forrester’s (1961) state-variable approach to system simulation and by access
to mainframe computers and, more recently, powerful microcomputers. Of
necessity, early crop models employed simple, summary approaches to the
simulation of photosynthesis. Presently, simulation studies are no longer
limited by one’s mainframe budgets, and quite complicated models are
processed quickly on microcomputers. It is now appropriate to determine
whether more sophisticated approaches for light interception, photosynthetic
biochemistry, and canopy photosynthesis can be incorporated into crop
models, and to determine the utility of adding such sophisticated approaches
in contrast to refining summary approaches.

In this publication, the contributing authors have summarized some of
the approaches now used to predict leaf and canopy photosynthesis. Most
of these models can stand alone for studies of photosynthesis, or they can
be incorporated into crop growth models. Models for single-leaf response
to light, CO,, and temperature are succinctly described in the first two chap-
ters (Evans and Farquhar, Ch. 1; Harley and Tenhunen, Ch. 2). Norman
and Arkebauer (Ch. 5) and Gutschick (Ch. 4) illustrate how numerical,
layered-canopy, simulation models describing complete radiation, energy,
water vapor, and CO, balances among leaf strata can be used to predict
whole-canopy assimilation response to light, CO,, wind speed, humidity,
and temperature. Gutschick shows how it is possible to reduce a complex
numerical model into a summary model that provides important insights for
agricultural production and water-use efficiency. Acock (Ch. 3) introduces
alternative approaches for predicting whole-canopy response to light, CO,,

ix



X PREFACE
and temperature. Sinclair’s chapter (Ch. 6) contributes an important advance
in simple canopy models, particularly incorporation of the effects of leaf
N content on canopy assimilation. Lastly, Boote and Loomis (Ch. 7) review
the approaches taken by the various authors to describe leaf and canopy
assimilation processes, and then present simplified equations for predicting
canopy assimilation response to light, leaf area index, and incomplete hedge-
row canopy coverage.
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1 Modeling Candpy Photosynthesis
from the Biochemistry of the C;
Chloroplast

John R. Evans and Graham D. Farquhar

Australian National University
Canberra, Australia

Photosynthesis involves the interception of light energy and its conversion
to chemical energy in intermediates of high chemical potential, which are
then used to drive the catalytic fixation of CO, into sugars and other
compounds. Hundreds of different proteins are involved along the way but,
despite this complexity, there are several key factors that allow simplifica-
tion in our model of the system. Attention can be focused on the principal
COZ fixing enzyme nbulose 1,5- blsphosphate (RuBP) carboxylase-
oxygenase, Rubisco, whigiimttmiiams g Bundai, AChieve

adequate rates of CO, adjinila n
pn re 4
g e ee j

it has a low affinity for (g0
able metabolic effort byfithe cell is re ulred to recover the C sk eton in

also catalyzes the compet]

phosphoglycolate that is flo produce RUblSCO nzyme,
with respect to its substrages RuBP, and®; enc@ass a largejpropor-
tion of the photosynthet properti a led¥ We present the basic

equations that have be¢ 3 . Fatquhar &
von Caemmerer, 1982), with pamcular empha515 on how they apply to canopy
photosynthesis. Since the publication of the model by Farquhar et al. (1980),
considerable experimental evidence has been obtained that substantiates much
of the theory and has enriched the detail of the underlying biochemical
mechanisms of the model.

In order to gain CO,, the leaf loses water to the atmosphere. The
amount of water lost per C gained depends, firstly, on the water vapor-
pressure difference between the leaf and the air. Second, it depends on the
intercellular partial pressure of CO,, pCO,. Conventional methods of
assessing the transpiration-use efficiency, W (amount of C gained per water
used), involve careful measurements of soil moisture by either weighing pots
or using neutron probes. This has proved rather impractical on the scale neces-
sary for plant breeding programs. A new technique that involves the
determination of the '*C/'2C ratio of the plant can be used to assess the

Copyright © 1991 American Society of Agronomy and Crop Science Society of America, 677
S. Segoe Rd., Madison, WI 53711, USA. Modeling Crop Photosynthesis—from Biochemistry
to Canopy. CSSA Special Publication no. 19.
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2 EVANS & FARQUHAR

integrated value of intercellular pCO, and this enables transpiration-use
efficiency to become a selection criterion. The underlying theory (Farquhar
et al., 1982) is currently being evaluated in the context of plant breeding with
several crops (e.g., wheat [Triticum aestivum L.], Farquhar & Richards, 1984;
Condon et al., 1987; and peanut [Arachis hypogaea L.], Hubick et al., 1986.
See also Farquhar et al., 1988). The basic equations will be presented here
because this technique offers an exciting new avenue for plant improvement
where yield is limited by the availability of water.

RATE OF CARBON DIOXIDE ASSIMILATION

The absorption of light by the pigments in the chloroplast membranes
leads to the transfer of electrons from H,O to nicotinamide adenine
dinucleotide phosphate (NADP *) to make NADPH, and the buildup of
protons in the lumen of the thylakoids. The protons drive the regeneration
of the high-energy compound adenosine triphosphate (ATP), catalyzed by
the coupling factor. These two high-potential intermediates, NADPH and
ATP, are used in the reactions of the C-reduction cycle to regenerate the
substrate for CO, fixation, RuBP. Because of the high concentration of
Rubisco in the chloroplast, the kinetics of the enzyme with respect to its
substrate RuBP do not follow normal Michaelis-Menten kinetics (Farquhar,
1979). Rather, we think of Rubisco as either being limited by RuBP or not.
The pool size of RuBP is small, and without continuous regeneration would
be consumed within seconds. Since RuBP regeneration is closely coupled to
the rate of electron transport and photophosphorylation, the RuBP-limited
Rubisco velocity closely reflects the rate of electron transport. When RuBP
is saturating, the photosynthetic properties reflect the affinity of Rubisco
for CO, and the relative rates of oxygenation and carboxylation. The
potential rate of electron transport declines at lower temperatures to a greater
extent than does Rubisco activity; thus, the balance between the two capacities
changes with temperature. In some low-temperature situations, phosphate
recycling to the chloroplast prevents the potential rate of electron transport
from being reached (Sharkey, 1985; Sage & Sharkey, 1987; Labate & Leegood,
1988). We will focus on the electron-transport properties, because the
photosynthetic rate of many crop canopies is primarily light limited.

IRRADIANCE RESPONSE CURVES

The many steps between light absorption and RuBP regeneration, in
combination with the complexity of the optics of the leaf, mean that a precise
theoretical justification for Eq. [1] is not possible at present. However, the
following equation can describe very precisely the relationship between
potential electron transport rate, J, and the irradiance usefully absorbed by
Photosystem II, I,:

GJZ - (12 + Jmax)-] + 12Jmax =0 [1]



MODELING AT THE CHLOROPLAST LEVEL 3

which can be solved for J as follows:
J ={IZ + Jmax - [(12 + Jmax)2 - 4612‘,max]]/2}/29 [2]

where 7, is related to the incident irradiance (400-700 nm), I, as follows:
L =1I,1 — f/)(1 — r)/2. The factor f corrects for the spectral imbalance
of the light (~0.15, see Evans, 1987a), r is the reflectance plus any small
transmittance of the leaf or crop to photosynthetically active radiation
(~0.12); I, is divided by 2 because light is absorbed by both Photosystem
II and Photosystem I to drive one electron from H,O to NADP™*. The
maximum rate of electron transport, J,,.,, is @ property of the thylakoids
that varies depending on growth conditions. The factor © is a curvature
factor, 0 < © =< 1, which determines how quickly the transition is made
from the region of maximum quantum yield to the light-saturated rate. When
© = 0, the equation degenerates to a rectangular hyperbola, while 6 = 1
describes the Blackman response of two straight lines representing
light-dependent and light-saturated rates.

The region of maximum quantum yield is found at low irradiance, where
the rate of photosynthesis is linearly related to the irradiance. No significant
variation is seen across a broad range of C; plants in the quantum yield
measured as O, evolution in saturating CO,, when expressed on an
absorbed-light basis (Bjérkman & Demmig, 1987; Evans, 1987a). The
absolute value of the quantum yield depends on the wavelength or spectral
composition of the light (McCree, 1972; Inada, 1976). For sunlight, the
quantum yield is about 15% below the maximum, which occurs with 600-nm
light (Evans, 1987a). To correct for this, the incident irradiance is multiplied
by the term (1 — f).

The light-saturated rate of electron transport per unit leaf area is
determined primarily by two factors. First, the capacity scales in proportion
with the chlorophyll content per unit leaf area (Fig. 1-1A). This reflects the
amount of photosynthetic apparatus in a given leaf area. Leaves that develop
with a restricted N supply contain less N per unit leaf area. This corresponds
to smaller protein contents in all fractions of the leaf. A similar situation
can be reached during senescence, where N is progressively remobilized from
the leaf.

The second determinant of the electron-transport capacity relates to the
irradiance during growth of the leaf. The electron-transport capacity per unit
of chlorophyll is less in leaves acclimated to low irradiance (Fig. 1-1B). This
reflects the altered composition of the thylakoid membranes. When
acclimated to low irradiance, thylakoid membranes are enriched in the
light-harvesting chlorophyll a/b protein complex and depleted in Photosystem
II reaction-center complexes, plastoquinone, cytochrome b/f complexes,
coupling factor, and ferredoxin NADP reductase (Anderson, 1986). The
electron-transport capacity increases as the relative abundance of plastoqui-
none, cytochrome f, coupling factor, and ferredoxin NADP reductase
increases (Evans, 1987b; Terashima & Evans, 1988). The value of J,,
correlates strongly with the cytochrome f content of the leaf (Terashima &
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Fig. 1-1. Irradiance response curves of spinach leaves measured in a leaf-disk, O, electrode
(Delieu & Walker, 1981) at 25° C and 1% CO,, expressed on the basis of (A) leaf area or
(B) chlorophyll content. Plants were grown under full (=2 mmol quanta m ~2s ~!) or partial
sunlight with different NO; nutrition, which caused the leaf chlorophyll content to vary.
Lines were calculated using Eq. [2], with J_,,, = 500, 210, and 143 mmol e~ (mol Chl)~!
s~ ! for the 100, 30, and 15% irradiance treatments, respectively, © = 0.69 and f = 0.15.
(Data from Evans & Terashima, 1987; Terashima & Evans, 1988).

Evans, 1988; Evans, 1988). Two of the curves in Fig. 1-1A are from leaves
with the same chlorophyll content (0.48 mmol Chl m ~2), but the leaf for
the lower curve was grown at 15% of full sunlight. The effect of N content
can be separated from the effect of growth irradiance by expressing both
axes on the basis of chlorophyll rather than leaf area (Fig. 1-1B). The upper
curve represents leaves grown at 100% sunlight and, although their
chlorophyll contents differed by a factor of 2.7, the same curve describes
them all. The lower two curves represent leaves grown at 30 and 15% of full
sunlight. They have the same quantum yield but lower electron-transport
capacities per unit of chlorophyll.

The values for J,,, calculated from gas-exchange characteristics have
been compared with the corresponding in vitro uncoupled, light-saturated
electron-transport activities for leaves of common bean (Phaseolus vulgaris
L.) (von Caemmerer & Farquhar, 1981) and spinach (Spinacia oleracea L.)
(Evans & Terashima, 1988). Variation in J,,, was obtained by varying the
N nutrition or irradiance during growth. In both species, good correlations
were found, although the in vitro electron-transport activities were too
small to account for the calculated J,,. This may simply reflect the
incomplete extraction of leaves, damage to the thylakoids, or suboptimal
assay conditions. It is frequently observed that Rubisco activity is also barely
sufficient to account for the observed rates of CO, assimilation by
leaves. As discussed below (Fig. 1-2A), the electron-transport and
Rubisco capacities co-vary such that, for leaves at high irradiance and at
ambient pCO,, electron-transport and Rubisco capacities co-limit the rate
of CO, assimilation.



