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Preface

Liquid chromatography is no longer limited to chemical analysis. It has
become an indispensable tool for the preparative- and large-scale purifica-
tions of proteins and other fine chemicals. So far, the scale-up of liquid
chromatography relies mostly on trial and error and a few scaling rules that
are more of a rule-of-thumb nature.

This book provides numerical solutions to a series of general multi-
component rate models for liquid chromatography. The models consider dis-
persion, interfacial film mass transfer, intraparticle diffusion, and nonlinear
multicomponent isotherm, or the second order kinetics. The models can be
used to simulate various chromatographic operations. They provide more
realistic descriptions of preparative- and large-scale liquid chromatography
than the equilibrium theory and plate models because various mass transfer
mechanisms are included.

The applications of the Fortran 77 codes for the models are explained.
Parameter estimation for the models is discussed. The codes should be helpful
in both the understanding of the dynamics of liquid chromatography and its
scale-up. The codes are available to readers upon request by a letter, or pre-
ferably an electronic mail (to guting@ent.ohiou.edu).

Most of this book is based on the theoretical part of the author's Ph.D. thesis
work at Purdue University, West Lafayette, Indiana, U.S.A. I am deeply indebt-
ed to my former advisor, Prof. George T. Tsao of the Laboratory of Renewable
Resources Engineering at Purdue.

Spring 1995 Tingyue Gu
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1 Introduction

High Performance Liquid Chromatography (HPLC) is undoubtedly one of the
most important tools in chemical analysis. It has become increasingly popular
at preparative- and large-scales, especially in purifying proteins. At such
scales, larger particles are often used to pack the columns in order to reduce
column pressure and facilitate column packing. Unlike small scale analytical
HPLC columns that may give near plug flow performances, in large HPLC and
lower pressure liquid chromatographic columns, dispersion and mass trans-
fer effects are often important.

At smaller scales, the scale-up of liquid chromatography columns can
usually be carried out by trial and error. Success depends to a large extent on
the experience of the researcher. A failure is often not detrimental. The
situation changes where large-scale columns are concerned. Such columns
may easily cost thousands of dollars. There is much at stake in scale-up. A
wrong estimation will render a purchased, or self-manufactured column,
unsuitable for a particular application because of either insufficient resolution
or low sample loading capacity. When an appropriate mathematical model is
applied, it can be very helpful in supplementing the researcher’s experience
during scale-up.

There are several kinds of mathematical models for liquid chromatography
with different complexities. A brief review of the models is given in Chap. 2.
The equilibrium theory and plate models are generally not adequate for the
realistic modeling and scale-up of multicomponent liquid chromatography,
because of their inability to detail mass transfer mechanisms involved in
preparative- and large-scale chromatographic separations.

The comprehensive mathematical models for liquid chromatography are
often called the general multicomponent rate models, since they consider
axial dispersion, interfacial mass transfer between the mobile and the station-
ary phases, intraparticle diffusion, and multicomponent isotherms. They pro-
vide an attractive alternative to the equilibrium theory and plate models for
the modeling and scale-up of multicomponent chromatography. In the past,
such a model was difficult to solve numerically on a computer. Due to
tremendous advances in computer hardware, the model can now be solved
using a common minicomputer. Because the general rate model considers
different mass transfer mechanisms in a column, it is suitable for the realistic
modeling of preparative- and large-scale chromatography. Computer simu-
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lation using the model also provides an excellent tool for studying many
chromatographic phenomena without doing actual experiments.

In Chap. 3 of this book, a robust and efficient numerical procedure is pre-
sented to solve a general nonlinear multicomponent rate model that considers
axial dispersion, external film mass transfer, intraparticle diffusion and com-
plicated nonlinear isotherms. It uses quadratic finite elements for the dis-
cretization of the bulk-fluid phase partial differential equation (PDE) and
the orthogonal collocation method for the particle phase PDE in the model,
respectively. The resulting ordinary differential equation (ODE) system is
solved by Gear’s stiff method [1]. The model has been extended to include
second order kinetics and the size exclusion effect. An alternative boundary
condition at the column exit to the Danckwerts boundary condition is also
analyzed.

The theoretical study of mass transfer in liquid chromatography in Chap. 4
points out the effects of mass transfer on multicomponent chromatographic
separations. The influence of mass transfer related dimensionless parameters
in the general multicomponent rate model is demonstrated by simulation.
Also shown is an interesting case in which a component with an unfavorable
isotherm does not show the expected anti-Langmuir peak shape with a
diffused front and sharpened tail. Instead, it gives a peak with a tail more
diffused than the peak front because of slow mass transfer rates.

In Chap. s, a unified approach to a better understanding of multicomponent
interference effects under mass transfer conditions is proposed. It has been
shown that a displacement effect can be used to explain the dominating
interference effects arising from the competition for binding sites among
different components in multicomponent chromatography. It has been
concluded that the concentration profile of a component usually becomes
sharper due to the displacement effect from another component, while the
concentration front of the displacer is often diffused as a consequence. Five
factors stemming from equilibrium isotherms, which tend to escalate the
displacement effect in multicomponent elutions, have been investigated. They
have important implications for interference effects in multicomponent elu-
tions under column-overload conditions.

In multicomponent elutions, competing modifiers are sometimes added to
the mobile phase to compete with sample solutes for binding sites in order
to reduce the retention times of strongly retained sample solutes [2]. Peaks in
the chromatogram corresponding to a modifier are called system peaks [3].
Studies of system peaks may provide useful information on the effect of
modifiers on the sample solutes and interpretation of some chromatograms.
In Chap. 6, system peaks are studied systematically using the general multi-
component rate model. Systems peak patterns have been summarized for
binary elutions with one competing modifier in the mobile phase involving
samples that are either prepared in the mobile phase or in an inert solution.
Binary elutions with two competing modifiers have also been investigated
briefly.
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A methodology is presented in Chap. 7 for the development of kinetic and
isotherm models for multicomponent adsorption systems with uneven
saturation capacities for different components, which are either physically
induced or due to chiral discrimination of binding sites. The extended multi-
component Langmuir isotherm derived with this methodology, which is
thermodynamically consistent, has been used successfully to explain iso-
therm crossovers and to demonstrate the peak reversal phenomenon under
column-overload conditions.

In Chap. 8, the kinetic and mass transfer effects are discussed. The rate-
limiting step in chromatography is investigated. The general multicomponent
rate model has been modified to account for a reaction in the fluid phase
between macromolecules and soluble ligands for the study of affinity chroma-
tography. The adsorption, wash and elution stages in affinity chromatography
have been simulated and analyzed.

Chap. 9 presents a general rate model for multicomponent gradient elution.
The semi-empirical relationship between the modulator concentration and
eluite affinity with the stationary phase developed by Melander et al. [4] is
used in the model. Examples of multicomponent elution with linear and
nonlinear gradients are demonstrated using computer simulation.

A general multicomponent rate model for radial flow chromatography
(RFC) has been solved in Chap. 10 using the same numerical approach as that
for conventional axial flow chromatography (AFC). The radial dispersion and
external film mass transfer coefficients are treated as variables in the model
for AFC. The extension of the general multicomponent rate model for REC to
include second order kinetics, the size exclusion effect and liquid phase
reaction for the study of affinity RFC is also mentioned.

In Chap. 11, methods and correlations useful for the estimation of mass
transfer and isotherm data are reviewed. The general approach and practical
considerations for the scale-up of liquid chromatography using the general
multicomponent rate models have been discussed.

Fortran 77 computer codes for the numerical solutions to all the rate
models discussed in this book are available to the reader by sending a letter
or preferably e-mail (guting@ent.ohiou.edu) to the author. They can be used
with a Unix computer or a high-end IBM-compatible personal computer
with sufficient RAM. The International Mathematical and Statistical Libraries
(IMSL) from IMSL, Inc. (Houston, Texas) is required for the codes. The usage
of the codes is demonstrated where they are first introduced in their
respective chapters. If the IMSL is not available, the user may find a substitute
from a public domain on the Internet for non-commercial applications.
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2.1 Theories for Nonlinear Multicomponent Liquid
Chromatography

Many researchers have contributed to the modeling of liquid chromato-
graphy. There exist a dozen or more theories of different complexities. A
comprehensive review on the dynamics and mathematical modeling of iso-
thermal adsorption and chromatography has been given by Ruthven [5] who
classified models into three general categories: equilibrium theory, plate
models, and rate models.

2.1.1 Equilibrium Theory

According to Ruthven, the equilibrium theory of multicomponent isothermal
adsorption was first developed by Glueckauf [6]. The interference theory by
Helfferich and Klein [7] that is mainly aimed at stoichiometric ion-exchange
systems with constant separation factors, and the mathematically parallel
treatise for systems with multicomponent Langmuir isotherms by Rhee and
coworkers [8, 9] are both extensions of the equilibrium theory.

Equilibrium theory assumes a direct local equilibrium between the mobile
phase and the stationary phase, neglecting axial dispersion and mass trans-
fer resistance. It effectively predicts experimental retention times for chroma-
tographic columns with fast mass transfer rates. It provides general locations,
or retention times of elution peaks, but it fails to describe peak shapes
accurately if mass transfer effects are significant. Equilibrium theory has
been used for the study of multicomponent interference effects [7] and the
ideal displacement development [9]. Many practical applications have been
reported [7, 10-14].

2.1.2 Plate Models
Generally speaking, there are two kinds of plate models. One is directly

analogous to the tanks in series model for nonideal flow systems [5]. In such a
model, the column is divided into a series of small artificial cells, each with
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complete mixing. This gives a set of first order ODEs that describe the ad-
sorption and interfacial mass transfer. Many researchers have contributed to
this kind of plate model [s, 15-17]. However, plate models of this kind are
generally not suitable for multicomponent chromatography since the
equilibrium stages may not be assumed equal for different components.

The other kind of plate model is formulated based on the distribution
factors that determine the equilibrium of each component in each artificial
stage. The model solution involves recursive iterations rather than solving
ODE systems. The most popular are the Craig distribution models. By
considering the so-called blockage effect, the Craig models are applicable to
multicomponent systems. Descriptions of Craig models were given by Eble et
al. (18], Seshadri and Deming [19], and Solms et al. [20]. The Craig models
have been used for the study of column-overload problems [18, 21]. Recently,
Velayudhan and Ladisch [22] used a Craig model with a corrected plate count
to simulate elutions and frontal adsorptions.

2.1.3 Rate Models

Rate models refer to models containing a rate expression, or rate equation,
which describes the interfacial mass transfer between the mobile phase and
the stationary phase. A rate model usually consists of two sets of differential
mass balance equations, one for the bulk-fluid phase, the other for the
particle phase. Different rate models have varying complexities [5].

2.1.3.1 Rate Expressions

The solid film resistance hypothesis was first proposed by Glueckauf and
Coates [23]. It assumes a linear driving force between the equilibrium con-
centrations in the stationary phase (determined from the isotherm) and the
average fictitious concentrations in the stationary phase. This simple rate
expression has been used by many researchers [5, 24-26] because of its
simplicity, but this model cannot provide details of the mass transfer pro-
cesses.

The fluid film mass transfer mechanism with a linear driving force is also
widely used [s5]. The driving force is the concentration difference of a com-
ponent between that on the surface of a particle and that in the surrounding
bulk-fluid. It is assumed that there is a stagnant fluid film between the particle
surface and the bulk-fluid. The fluid film exerts a mass transfer resistance
between the bulk-fluid phase and the particle phase, often called the external
mass transfer resistance. If the concentration gradient inside the particle
phase is ignored, the chromatography model then becomes a lumped particle
model, which has been used by some researchers [27-29]. If the mass transfer
Biot number, which reflects the ratio of the characteristic rate of film mass
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transfer to that of intraparticle diffusion, is much larger than one, the
external film mass transfer resistance can be neglected with respect to
intraparticle diffusion.

In many cases, both the external mass transfer and the intraparticle
diffusion must be considered. A local equilibrium is often assumed between
the concentration in the stagnant fluid phase inside macropores and the solid
phase of the particle. Such a rate mechanism is adequate to describe the
adsorption and mass transfer between the bulk-fluid and particle phases, and
inside the particle phase in most chromatographic processes. The local
equilibrium assumption here is different from that made for the equilibrium
theory. The equilibrium theory assumes a direct equilibrium of concen-
trations in the solid and the liquid phases without any mass transfer re-
sistance.

If the adsorption and desorption rates are not sufficiently high, the local
equilibrium assumption is no longer valid. A kinetic model must be used.
Some kinetic models were reviewed by Ruthven [5] and Lee et al. [30, 31].
Second order kinetics has been widely used in kinetic models for affinity

chromatography [32-39].

2.1.3.2 Governing Equation for the Bulk-Fluid Phase

The governing partial differential equation for the bulk-fluid phase can be
easily obtained from a differential mass balance of the bulk-fluid phase for
each component. Axial dispersion, convection, transient, and the interfacial
flux terms are usually included. Such equations themselves are generally
linear if physical parameters are not concentration dependent. They become
nonlinear when coupled with a rate expression involving nonlinear isotherms
or second order kinetics.

For some rate models, such as models for isothermal, single component
systems with linear isotherms, analytical solutions may be obtained using the
Laplace transform [5, 31]. For more complex systems, especially those involv-
ing nonlinear isotherms, analytical solutions generally cannot be derived [s5].
Numerical methods must be used to obtain solutions to complex rate models
that consider various forms of mass transfer mechanisms [40]. Detailed rate
models are becoming increasingly popular, especially in the study of pre-
parative- and large-scale chromatography.

2.1.3.3 General Multicomponent Rate Models

A rate model that considers axial dispersion, external mass transfer, intra-
particle diffusion and nonlinear isotherms, is called a general multicom-
ponent rate model. Such a model is adequate in most cases to describe the
adsorption and mass transfer processes in multicomponent chromatography.
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In some cases, surface adsorption, size exclusion and adsorption kinetics may
have to be included to give an adequate description of a particular system.
Several groups of researchers have used different numerical procedures to
solve various general multicomponent rate models [40-43].

2.1.3.4 Numerical Solutions

A general multicomponent rate model consists of a coupled PDE system with
two sets of mass balance equations, one for the bulk-fluid and one for the
particle phases for each component, respectively. The finite difference
method is a simple numerical procedure that can be directly applied to the
solution of the entire model [42, 44]. This often requires a huge amount of
computer memory during computation, and its efficiency and accuracy are
not competitive compared with other more advanced numerical methods,
such as the orthogonal collocation (OC), finite element, or the orthogonal
collocation on finite element (OCFE) methods.

For the particle phase governing equation, the OC method is the obvious
choice. It is a very accurate, efficient and simple method for discretization. It
has been widely used with success for many particle problems [45, 46]. The
formulation of the OC method for particles is readily available from Fin-
layson’s book [46].

Unfortunately, concentration gradients in the bulk-fluid phase can be very
steep, thus the OC method is no longer a desirable choice, since global splines
using high order polynomials are very expensive [46] and sometimes un-
stable. The method of OCFE uses linear finite elements for global splines and
collocation points inside each element. No numerical integration for element
matrices is needed because of the use of linear elements. This discretization
method can be used for systems with stiff gradients [46].

The finite element method with higher order of interpolation functions
(typically quadratic, or occasionally cubic) is a very powerful method for stiff
systems. Its highly streamlined structure provides unsurpassed convenience
and versatility. This method is especially useful for systems with variable
physical parameters, as in radial flow chromatography and nonisothermal
adsorption with or without chemical reactions. Chromatography of some
biopolymers also involves a variable axial dispersion coefficient [47].

2.1.3.5 Solution to the ODE System

If the finite element method is used for the discretization of the bulk-fluid
phase PDE and the OC method for the particle phase equations, an ODE
system is produced. The ODE system with initial values can be readily solved
using an ODE solver such as subroutine “IVPAG” of the IMSL [48] software
package, which uses the powerful Gear’s stiff method [40].
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2.2 Scale-Up of Liquid Chromatography

Currently, scale-up of liquid chromatography is carried out largely based on
trial-and-error and experience, with the help of some general scale-up rules
that are not necessarily accurate. Some of these rules were discussed by
Snyder et al. [2], and Pieri et al. [49]. They are mostly empirical or semi-
empirical relationships about particle size, flow rate, column length, and
resolution. The correlations are more of a “rule of thumb” nature when they
are used for scale-up. Knox and Pyper [50] did an extensive study on column-
overload. Some of their results on concentration and volume overload are
also helpful in the scale-up of liquid chromatography. There are many papers
in this area. They are not the focus of this book.

Instead of following these scale-up rules, a rate model can be used to
simulate chromatograms of a larger column before it is built or purchased.
The model uses only a few experimental data from a small column with the
same packing as a large column. Although rate models have great potential
in more accurate scale-up of liquid chromatography, most applications have
been on the simulation of smaller columns to match experimental chroma-
tograms. Practical examples involving larger columns have not been reported
in the literature.



3 A General Multicomponent Rate Model for Column
Liquid Chromatography

3.1 Model Assumptions

For the modeling of multicomponent liquid chromatography, the column is
divided into the bulk-fluid phase and the particle phase. The anatomy of a
fixed-bed axial flow chromatography column is given in Fig. 3.1. To formulate
a general rate model, the following basic assumptions are required.

(1) The chromatographic process is isothermal. There is no temperature
change during a run.

Bulk-Fluid Phase

}—* Z Coir Dyir &

—| Detector |—

G ——

*
Gi

Fig.3.1. Modeling of fixed-bed axial flow chromatography
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(2) The porous particles in the column are spherical and uniform in diameter.

(3) The concentration gradients in the radial direction are negligible.

(4) The fluid inside particle macropores is stagnant, i.e., there is no con-
vective flow inside macropores.

(5) An instantaneous local equilibrium exists between the macropore sur-
faces and the stagnant fluid inside macropores of the particles.

(6) The film mass transfer mechanism can be used to describe the interfacial
mass transfer between the bulk-fluid and particle phases.

(7) The diffusional and mass transfer parameters are constant and inde-
pendent of the mixing effects of the components involved.

3.2 Model Formulation

Based on the assumptions above, the governing equations can be obtained
from differential mass balances of the bulk-fluid phase and the particle phase,
respectively, for component i. The following equations can also be derived
from equations of continuity provided by Bird et al. [51]:

—Dy, a;;;’i +vaaCZbi N aactbi N 3ki£:);:b) (Cbi “Cpi,R=R,,)= 0 (3-1)
with the initial and boundary conditions

t=0, GCpi=GCpi(0,2); Cp, =Cpi(0,R,Z) (3-3,4)

Z=0, %IDLM(CM -Cs(t)) z=1, %ﬂ) (3-5,6)

R=0, %:O; R=R,, %: Ep];;pi (Cbi _Cpi,R:Rp) . (3-7,8)

Defining the following dimensionless constants,
cbi = Chi / Coi»  €pi =Cpi / Cois €pi =Cpi 1 Coi» T=t/L, r=R/R,
z2=Z/L, Pey;=vL/Dy, Bij=kiR,/(e,Dyi), N;=e,DpLl(REV)
Gi =3Biini(1-¢p) /&y

the model equations can be transformed into the following dimensionless
equations:

2
1 J°cp; - dcp 4 dcy,;

Pey 922 0z ot +§i(cbi —cpi),:l):() (3-9)



