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Preface

This text grew out of an attempt to modernize my Elements of Numerical
Analysis which first appeared in 1964. However, a new book has resulted. The
treatment of the difference calculus has been eliminated. There now are substan-
tial chapters on numerical linear algebra and on numerical Fourier analysis. The
chapter on approximation has been enriched by sections on Hermite interpola-
tion and on spline functions. A chapter on discrete computation, emphasizing
such concepts as the numerical stability of an algorithm and the condition of a
problem, now forms the basis of the whole work.

In addition, the number of numerical examples has been greatly increased.
All examples, or demonstrations as they are called here, have been calculated on
programmable pocket calculators. The numerous computational problems also
are designed to be solved by means of such calculators. The majority of the
demonstrations and problems can be performed on a calculator of the size of the
HP-33E; a few (marked by the symbol ®) require the capacity of the HP-34C.
Specific calculators are rarely mentioned in the text; however, in order to make
the demonstrations more easily reproducible for the student and to encourage
further experimentation, companion booklets will be available for some current
calculators which contain fully documented programs for virtually all demon-
strations and for selected computational problems. In this pragmatic manner, a
student working with this book will not only acquire firsthand experience with

- the joys and pitfalls of numerical computation, but will also learn some rudi-
ments of scientific computer programming.

The methods of numerical analysis are, of course, largely independent of
the computing equipment on hand. In this sense, the book may serve as a
general introduction to numerical analysis and may be used in conjunction with
any computing system. The emphasis on pocket calculators serves to free the
teaching of numerical analysis from the organizational constraints of a comput-
ing center, and to enable the student to do experimental work in a relaxed
atmosphere without having the next student who is waiting for a turn at the
terminal breathing down his neck.

The prerequisites for this book are modest. They include calculus (includ-
ing functions of several variables), plus a smattering of linear algebra and of
differential equations. Courses covering most of the material of the Chapters 1
through 6 are regularly taught at the Swiss Federal Institute of Technology to
first-year students of electrical engineering, geodesy, earth sciences, physics, and
mathematics. I am grateful for having been allowed in the fall of 1978 to teach
this course to a similar audience of junior-level students at Stanford University
in California.

A glance at the table of contents will show that I am not trying to teach, or
to allude to, everything that is known in numerical analysis. Something must be
left to more advanced courses. Thus, the important topics of eigenvalue prob-
lems (differential and algebraic), iterative methods in linear algebra, and partial
differential equations are totally absent. Even within the compass of topics that 1
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am trying to do justice to, I prefer to treat a few methods and algorithms in
reasonable depth rather than to superficially mention a large number of methods
without adequate discussion. My judgement of what is most useful and pedagog-
ically feasible has usually dictated my choice of topics. In a few instances, when
such considerations did not point strongly in any particular direction, I have
given preference to methods that have small memory requirements, and thus are
suitable for pocket calculators.

While restricting the number of algorithms treated, I have taken pains, as I
did in my Elements, to emphasize the connection of numerical analysis with
certain topics of theoretical analysis that are in danger of being slighted in the
structure-oriented treatment of mathematics which has become fashionable.
Some examples are the emphasis on the asymptotic behavior of sequences
throughout the book; the allusion to the calculus of variations in the treatment
of splines in Chapter S; the Euler-Maclaurin sum formula in Chapter 6; and the
introduction to Fourier series from a least squares point of view in Chapter 7. In
all these instances, an effort has been made to preserve an elementary and
relaxed level of presentation.

In the Introduction I try to make clear that I regard numerical analysis as
an essential tool of applied mathematics. To stress this fact I have often at-
tempted, especially in the problem sections, to embed the numerical problem
under study in an applied environment. I realize that even much more should be
done in this direction. As anyone involved in the teaching of elementary courses
knows, however, there is the difficulty that, at the level for which this book is
intended, the acquaintance with mathematical models of applied situations is
still very limited, especially considering the diversity of the backgrounds of my
potential readers.

It is my pleasure to express my thanks to a number of individuals who
helped me to shape this book. W. Robert Mann and David R. Kincaid have read
the entire manuscript and have suggested many valuable improvements. Several
of my assistants, notably Peter Geiger, have contributed to the exercises and
have ironed out inconsistencies and outright errors. My wife, Marie-Louise
Henrici, has examined the numerical work with great care. I have profited from
conversations with Walter Gander who has generously shared his expertise in
practical numerical analysis. Finally, anybody familiar with the work of Heinz
Rutishauser will recognize my indebtedness to this giant of modern numerical
analysis; my way of presenting the material (especially in Chapter 4) often is
rooted in his teachings, as preserved in his Vorlesungen iiber numerische Math-
ematik (2 vols., Birkhduser, Basel 1976).

I dedicate this volume to Garrett Birkhoff who in his lectures, in his
teaching, and in his written work, has set a standard for doing justice to both
dialectic and algorithmic mathematics, and for dealing with genuine applications
while maintaining a high level of mathematical polish and intellectual purity.
May his example prolong the traditional unity of mathematics.

Peter Henrici
Zurich
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INTRODUCTION

C. G. 1. Jacobi (b. 1804, d. 1851), the famous mathematician from Konigsberg
(the Jacobian matrix mentioned in §1.7 is named after him) once declared:
“Mathematics solely and exclusively serves the honor of the human spirit.”
Nevertheless, mathematics time and again has been applied; that is, used to
control man’s relation to his physical environment.

The old Babylonians used special cases of the theorem of Pythagoras to
generate right angles. Eratosthenes of Kyrene (b. —290, d. —214) knew that the
planet earth is a sphere and used simple trigonometry to estimate its radius.
Archimedes (b. —285, d. —215), in addition to numerous mathematical achieve-
ments, discovered the basic laws of statics and used them to construct engines of
war which enabled Syracuse, his home, to withstand the Roman siege for two
years. Johannes Kepler (b. 1571, d. 1630) explained the motions of the planets by
means of conic sections. Isaac Newton (b. 1643, d. 1727) formulated the basic
laws of dynamics and reduced all of celestial mechanics to a single mathema-
tically formulated law, the law of gravitation, which even today serves to com-
pute the trajectories of satellites and space ships. The Swiss mathematician
Leonhard Euler (b. 1707, d. 1783), while still a student, won a Paris Academy
prize with a paper on where to place masts on sailing vessels. His collected
works abound with numerical applications of mathematics to all branches of
physics that were then known. Carl Friedrich Gauss (b. 1777, d. 1855) was active
as a surveyor and astronomer and created the method of least squares, a basic
tool of applied mathematics. Bernhard Riemann (b. 1826, d. 1866), considered by
many the greatest mathematician of the nineteenth century, laid the groundstone
for what was to become a standard textbook of mathematical physics. Henri
Poincaré (b. 1854, d. 1912), the founder of modern topology, wrote a Me-
chanique Céleste in three volumes.

Since World War I, the application of mathematics has been facilitated by
the electronic computer with its enormous speed of calculation and its automa-
tically executed programs. The atom bomb would have been impossible without
large-scale computations, and the same holds for the conquest of space or for the
peaceful uses of atomic energy. Today, mathematical methods are even used in
fields, such as medicine and economics, that formerly seemed rather removed
from quantification.
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Most applications of mathematics exhibit a common pattern. First, an
intellectual model is constructed of the phenomenon to be investigated. Usually
one will try to keep this model as simple as possible; however, all relevant effects
should be taken into account in an unambiguous manner. To keep the model
simple it is quite customary to make simplifying assumptions. In studies of
planetary motion, the planets are assumed to be points of mass. In models of
economic science, functional dependencies are frequently assumed to be linear.

If complex phenomena are modelled mathematically, one first will have to
ask whether the model used is meaningful. For instance, in the modelling of
phenomena in classical physics the model frequently consists of a differential
equation or of a system of such equations. Here, one will have to ask whether a
solution of the equation exists, whether it depends continuously on the data
(Which usually are not precisely known), and whether the solution (as in nature)
is determined uniquely by the data. Similar questions will be asked where the
model consists of a system of algebraic equations. Questions of this kind, which
relate to the meaningfulness of a mathematical model, are frequently resolved
in a completely satisfactory manner by theoretical, “dialectic” mathematics,
worked solely with pencil and paper.

The methods of dialectic mathematics may fail, however, if the model is to
be used to draw quantitative conclusions. Consider space travel. Theoretical
mathematics is very well able to assure the existence of a solution of the system
of differential equations describing the trajectory of a space vehicle, but if the
problem is to land on the moon, a knowledge of the mere existence of the correct
trajectory is not sufficient. This trajectory must also be constructed; that is, the
differential equations have to be solved.

This is the point where numerical mathematics springs into action. Its task
is to develop methods for extracting quantitative answers from mathematical
models. In this sense, numerical mathematics is a secondary science. Its points of
reference are not the axioms of pure mathematics, but models and concrete
problems which usually originate elsewhere. If one considers the ideal mathema-
tical theory to be one that is purely abstract, axiomatic, and independent of
extraneous considerations, then the preoccupation of numerical mathematics
with ad hoc problems is clearly unsatisfactory. The inflexible concern with a
given problem, which cannot be changed at will, somehow seems to stifle the free
flight of imagination and at times gives numerical mathematics an aspect more
akin to engineering than to pure mathematics. Whatever feelings of constraint
may result from this should be compensated for by an awareness of the indis-
pensable role which numerical mathematics has played time and again in solv-
ing man’s problems in a modern world.

As far as certain standardized models of applied mathematics are con-
cerned (ordinary differential equations, linear equations, approximation ), numer-
ical mathematics has created standardized methods of solution, called
algorithms, which solve the problem in a routine fashion if the data do not exhibit
pathological properties. Such standard algorithms are incorporated in the pro-
gram libraries of most large computing centers and may be used without a
detailed knowledge of numerical mathematics.
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In addition to these standard models, in practice, models of a non-standard
type frequently occur which require the development of special methods of
computation, taking into account the pecularities of the model. In such in-
stances, a knowledge of some principles of numerical mathematics is usually
helpful. The art of computer programming, in addition to developing useful
methodologies, serves to codify solution algorithms so that by means of a com-
piler they can be translated directly into a machine program.

In Chapters 2 through 7 of this book, solution algorithms for some typical
problems of applied mathematics will be presented and, to the extent made
possible by the modest prerequisites required, studied mathematically. In Chap-
ter 1, we address the basic problem of stability, which must always be faced when
the mathematical model involves a continuum, regardless of the special problem
on hand or the algorithm used for solving it.



CHAPTER 1

Computation

In this chapter, we call attention to the fact that the number system of any
computer is discrete, which implies that the results of even the simplest arith-
metic operations and function evaluations are inaccurate. Unless appropriate
measures are taken, these inaccuracies through such effects as cancellation and
smearing can significantly diminish, and sometimes destroy, the accuracy of the
result of an extended computation.

Using examples we then proceed to a discussion of the notions of numerical
and mathematical stability. The former is a property of an algorithm; the latter
(also called condition) is a property of the problem to be solved. These notions
are basic to all of numerical analysis.

§1.1 THE DISCRETE NUMBER SYSTEM OF THE
COMPUTER

In principle, numerical mathematics is concerned with all kinds of computation,
including computations involving Boolean expressions, algebraic formulas, or
formulas from the predicate calculus. In practice, however, numerical] mathema-
tics is concerned mainly with computations involving numbers or systems of
numbers, such as vectors or matrices.

Frequently, the models of applied mathematics are based on the idea of a
continuum in space or time. The variables of the models then are (systems of)
real numbers. Many models in electrical engineering and in mathematical physics
work with complex numbers. The models of economics frequently involve num-
bers of units, that is, integers. In mechanical engineering, for instance in the
design of gearboxes, it is sometimes appropriate to assume that the variables of
the model are rational numbers.

In principle, the representation of integers in a computer does not present
any difficulties. Any computer internally works with a fixed base b. Here b is an
integer > 2; frequently b is chosen as a power of 2; less frequently b = 10.
(However, the input and output of numbers is nearly always performed in the

4
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base b= 10.) As is well known, a given integer n+ 0 possesses a unique
representation, -

n=+(no+n_;b+n_,b*+ - +n_.b",

where the n; are integers satisfying 0 < n, <b (i =0, — 1, ..., —k), and where the
representation is made unique by requiring that n_, = 0. In ordinary notation, n
would be shown as

B_jHogyy """ BN _1Hg.

(The digits n; are numbered so that the indices increase from left to right.) Any
integer n thus is completely specified by its sign and by the sequence of its digits.
The number 0 requires a special representation; among other things, it has no
sign. (Regrettably, however, —0 # +0 on some calculators.) A difficulty arises
from the fact that k + 1, the number of digits, is bounded. If, for instance, b = 2,
and if 48 digits can be accommodated, then the largest integer that can be
represented in the computer equals

248 — 1 = 281, 474, 976, 710, 655.

Some applications, such as certain investigations in number theory, require the
accommodation of larger integers. These would be represented in the “super”
base b = 2*8, with digits which themselves are 48-digit integers in the base b = 2.

Rational numbers are represented in the computer as they are conceived in
pure mathematics, namely, as pairs of integers.

The problems of numerical computation begin with the representation of
real numbers. (Complex numbers, as in pure mathematics, are treated as ordered
pairs of real numbers, subject to certain rules of computation.) It is clear that a
computer cannot represent every real number. As is well known, the set of real
numbers is not denumerable, whereas in the computer, a number must be char-
acterized by denumerably many (in fact by finitely many) yes-or-no states. Two
methods of representing real numbers are in use:

(A) Fixed point representation. This was the system used by the very early
computers. The computer here works exclusively with numbers of
the form,

where m and n are fixed integers (depending only on the computer)
satisfying m <n and (usually) m <0, n> 0, and where the x; are
integers satisfying 0 < x; < b. Every number that can be represented
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in the computer thus is determined by its sign and by the sequence of
its digits,

(xma xm+ 1s <=+ xn)'

In ordinary notation this would be read as,

XpXpetr1 " X1 Xo " X1 X3 """ Xp,.
In fixed point representation, the decimal (or binary, or “b-ary™)
point is always at the same place. For instance, the SEAC, the pion-
eering computer completed in 1951 at the National Bureau of Stan-
dards, worked with b =2, m = —1, n = 48, which enabled it at least
to accommodate approximations to such mathematically important
numbers as e and 7.

If fixed point representation is used, the largest number that can
be represented in the computer is b1~™ — b™"; thus, for instance, on
SEAC 4 — 2% Before running a problem on a fixed point computer,
it had to be prepared so that no final or intermediate result of the
computation exceeded the maximum number that could be handled.
This advance preparation, called scaling, could be extremely tedious.
It had the advantage, however, that the details of the computation
had to be looked into in advance with much greater care than is
customary today.

Floating point representation. This representation, which is much
more flexible than fixed point representation, is almost universally used
today. The computer works with numbers of the form

x=+ty- b (1)
Here,

b is the base of the number system used,
y is the mantissa,
z is the exponent

of the number x. The mantissa is a fixed point number,
y= Y yb7,

made unique (if x # 0) by the condition that y,, # 0. Frequently, in
large computers m = 1, so that (if x # 0), the b-ary point is to the
extreme left, and

b l<y<l.



§1.1 THE DISCRETE NUMBER SYSTEM OF THE COMPUTER 7

The number of digits of the mantissa in any case is n —m + 1. The
exponent z is an integer, usually also represented in the base b.

EXAMPLE 1.1-1: On the CDC computer in use at the ETH Zurich, y is a
48-digit binary number with m = 1. The range of the exponent z is approximately
indicated by

10—293 < 2z < 10322_

EXAMPLE 1.1-2: On the HP-33E pocket calculator, the mantissa is externally
shown as a 7-digit number with m = 0. Thus, the mantissa shown satisfies

1 <y <9.999999.

Internally, however, this calculator works with a 10-digit mantissa. The whole
mantissa can be made visible by a special instruction. The range of the exponent is

-9 <z<99.

We see that rather small and rather large numbers can be handled in
floating point representation. This does not change the fundamental fact that the
set of numbers which the computer has at its disposal is finite.

A number of interesting problems pose themselves to the engineer con-
cerned with the design of digital computers, especially if the floating point
representation is used. How should the basic arithmetic operations be per-
formed? How should input and output be handled? How should the number 0
be treated? When should one round up, when down? We do not concern
ourselves with these questions here. We simply recognize that the results of
almost all operations have to be rounded.

Somewhat formalizing this fact, let M = M be the set of numbers rep-
resentable in the computer C. (This set generally depends on the computer;
however, the index C is omitted in the following.) If

xeM, yeM,

the numbers

X+ Y, X =Y, Xy, -
y

are in general not in M. The results of the basic arithmetical operations can be
represented only approximately in the computer. Thus, for instance, the exact

value of thg product xy must be approximated by some number (xy)* which is in
M. Assuming the engineers have worked well, the quantity

| (xy)* — xy|
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will be as small as possible; that is, the exact value xy is represented by the (or a)
machine number (xy)* closest to xy.

PROBLEM

1 Find out the base, the number of digits in the mantissa, and the expon-
ent range of your calculator. What is the smallest positive number
representable in your calculator? What does your calculator do in the
case of exponent underflow or overflow?

§1.2 ™M IS NOT A FIELD

As a consequence of the discreteness of the number system of the computer, the
simplest laws of algebra are no longer valid on the computer. We substantiate
this claim, which at first sight may seem astonishing, by some simple examples.
These examples were calculated on a programmable calculator of type HP-33E;
however, similar examples could be found for any computer, large or small.

DEMONSTRATION 1.2-1: In any mathematical system known as a group (for
instance, in the additive group of real numbers), there holds the associative law

(@a+b)+c=a+(b+c)

where the parentheses indicate the operation that is to be executed first. However,
on our calculator, the data

a=1, b=3%10"17, c=3%10"1°
yield the different results:

(a + b) + ¢ = 1.000000000,
a + (b + ¢) = 1.000000001.

DEMONSTRATION 1.2-2: This is a more complicated example of the same
kind. We consider the sum

= 1
w=lv 2 e

k=1
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By writing this in the form,

X1 1
*=‘+§fﬁ"tﬁ)

R P S AR Lt

n n+1

it is clear that, mathematically,

Sp=2—-—0,
" n+1

so that, for instance,
Sg999 = 1.9999.
Computing the sum numerically by the usual summation algorithm,

1
5o :=1, sk’=Sk—1+7((k—+l—), k=12,...

3

we get

n Sn
9 1.900000000

99 1.990000003
999 1.999000003
9999 1.999899972

However, if the summation is started at the tail end,

1 1 1 1
mrntamrn T 32ttt

Sp =

then the results are as follows:

n Sn
9 1.900000000
99 1.990000000
999 1.999000000
9999 1.999900000

The values obtained in the two modes of summation are different. Thus, the
associative law also is violated here. Why does summing backwards yield the more
accurate values? When the small terms are summed first, the exponents of the partial
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sums remain small until almost the very end. Accordingly, the rounding errors in the
individual additions remain small until the exponent of the running sum reaches its
final value, which in our example happens only at the very end. We conclude that, in
forming a sum with a large number of terms, the terms with a small absolute value
should be summed first.

DEMONSTRATION 1.2-3: In an additive group, an equation of the form
a+ x =b always has a uniquely determined solution x. On our calculator the
equation,

1+x=1

in addition to the mathematical solution x = 0 also has the solution x = 107*°.
More generally, every machine number x, satisfying }x| < 5 * 1071 is a solution
of the equation. We conclude that on a computer equations need not have uniquely
determined solutions.

DEMONSTRATION 1.24: 1t is well known that for arbitrary non-negative
numbers x and y, there holds the inequality of the arithmetic and the geometric
mean,

x +y) = />y
with equality holding only for x = y. On our calculator, however, the values
x = 5.000000001, y = 5.000000002
yield
H(x + y) = 5000000000,  ./xy = 5.000000002.

Not only the basic laws of arithmetic, but also some fundamental facts of
analysis lose their validity on the computer.

DEMONSTRATION 1.2-5: Let a < b, let f be a real function continuous on the

interval [a, b}, and let f(a) < 0, f(b) > 0. Then, according to the intermediate value
theorem, there exists x so that

Consider however

We find

£(1.442249570) = —0.000000002,



