LNCS 4127

Ernesto Damiani
Peng Liu (Eds.)

Data and

Applications
Security XX

20th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security
Sophia Antipolis, France, July/August 2006, Proceedings

@

Ifip

@ Springer

Ernesto Damiani Peng Liu (Eds.)

Data and
Applications
Security XX

20th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security

Sophia Antipolis, France, July 31-August 2, 2006
Proceedings

@ Springer

Volume Editors

Ernesto Damiani

University of Milan

Department of Information Technology
Via Bramante 65, 26013 Crema, Italy
E-mail: damiani @dti.unimi.it

Peng Liu

Pennsylvania State University

College of Information Sciences and Technology
313G IST Building, University Park, PA 16802, USA
E-mail: pliu@ist.psu.edu

Library of Congress Control Number: 2006929592

CR Subject Classification (1998): E.3, D.4.6, C.2,F2.1,]J.1, K.6.5

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-36796-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36796-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11805588 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4127

Preface

For 20 years, the IFIP WG 11.3 Working Conference on Data and Applica-
tions Security (DBSEC) has been a major forum for presenting original research
results, practical experiences, and innovative ideas in data and applications se-
curity. Looking back, it is difficult not to appreciate the full extent of the change
that has occurred in our field. Once considered afterthoughts in systems and
application design, data protection, privacy and trust have become the key
problems of our day. This central role of security in the information society
has however brought increased responsibilities to the research community. To-
day practitioners and researchers alike need to find new ways to cope with the
increasing scale and complexity of the security problems that must be solved
on the global information infrastructure. Like the previous conference, the 20th
DBSEC has proved to be up to this challenge.

DBSEC 2006 received 56 submissions, out of which the program committee
selected 22 high-quality papers covering a number of diverse research topics such
as access control, privacy, and identity management. We are glad to see that the
final program contains a well-balanced mix of theoretical results and practical
prototype systems, many of them converging and building off each other. Also,
the DBSEC program includes a number of papers on new, emerging aspects of
security research.

Putting together a top-level conference like DBSEC is always a team effort.
We would like to thank a number of friends and colleagues for their valuable
help and support, including our General Chair Andreas Schaad, our Publicity
Chair Soon Ae Chun, IFIP WG 11.3 Chair Pierangela Samarati, all our program
committee members, and, above all, the researchers who chose DBSEC as the
forum to which to submit their work. In addition, we would like to thank SAP
for sponsoring this conference.

August 2006 Ernesto Damiani, Peng Liu

Organization

General Chair

Andreas Schaad SAP Labs, France

Program Chairs

Ernesto Damiani
Peng Liu

Universita degli Studi di Milano, Italy
Penn State University, USA

Publicity Chair

Soon Ae Chun City University of New York, USA

IFIP WG 11.3 Chair

Pierangela Samarati Universita degli Studi di Milano, Italy

Program Committee

Gail-Joon Ahn

Anne Anderson

Vijay Atluri

Sabrina De Capitani di
Vimercati

Soon Ae Chun

Chris Clifton

Steve Demurjian

Csilla Farkas

Eduardo Fernandez-Medina

Simon Foley

University of North Carolina at Charlotte, USA
Sun Microsystems, USA
Rutgers University, USA

Universita degli Studi di Milano, Italy
City University of New York, USA
Purdue University, USA

University of Connecticut, USA
University of South Carolina, USA
Univ. of Castilla-La Mancha, Spain
University College Cork, Ireland

Qijun Gu
Ehud Gudes
Sushil Jajodia
Carl Landwehr

Texas State University, USA
Ben-Gurion University, Israel
George Mason University, USA
University of Maryland, USA

Tsau Young Lin
Patrick McDaniel
Sharad Mehrotra
Mukesh K. Mohania
Ravi Mukkamala

San Jose State University, USA
Pennsylvania State University, USA
University of California Irvine, USA
IBM Research Labs, India

Old Dominion University, USA

VIII Organization

Peng Ning

Sylvia Osborn
Brajendra Panda
Joon S. Park
Indrakshi Ray
Indrajit Ray
Pierangela Samarati
Andreas Schaad
Sujeet Shenoi

David Spooner
Bhavani Thuraisingham
T.C. Ting

Duminda Wijesekera
Meng Yu

Ting Yu

Sponsoring Institutions

North Carolina State University, USA
University of Western Ontario, Canada
University of Arkansas, USA
Syracuse University, USA

Colorado State University, USA
Colorado State University, USA
Universita degli Studi di Milano, Italy
SAP Labs, France

University of Tulsa, USA

Rensselaer Polytechnic Institute, USA
University of Texas Dallas, USA
University of Connecticut, USA
George Mason University, USA
Monmouth University, USA

North Carolina State University, USA

SAP Labs, Sophia Antipolis, France

Lecture Notes in Computer Science

For information about Vols. 1-3991

please contact your bookseller or Springer

Vol. 4127: E. Damiani, P. Liu (Eds.), Data and Applica-
tions Security XX. X, 319 pages. 2006.

Vol. 4090: S. Spaccapietra, K. Aberer, P. Cudré-Mauroux
(Eds.), Journal on Data Semantics VI. XI, 211 pages.
2006.

Vol. 4079: S. Etalle, M. Truszczynski (Eds.), Logic Pro-
gramming. XIV, 474 pages. 2006.

Vol. 4077: M.-S. Kim, K. Shimada (Eds.), Advances in
Geometric Modeling and Processing. XVI, 696 pages.
2006.

Vol.4076: F. Hess, S. Pauli, M. Pohst (Eds.), Algorithmic
Number Theory. X, 599 pages. 2006.

Vol. 4075: U. Leser, F. Naumann, B. Eckman (Eds.),
Data Integration in the Life Sciences. XI, 298 pages.
2006. (Sublibrary LNBI).

Vol. 4074: M. Burmester, A. Yasinsac (Eds.), Secure Mo-
bile Ad-hoc Networks and Sensors. X, 193 pages. 2006.

Vol.4073: A. Butz, B. Fisher, A. Kriiger, P. Olivier (Eds.),
Smart Graphics. XI, 263 pages. 2006.

Vol. 4072: M. Harders, G. Székely (Eds.), Biomedical
Simulation. XI, 216 pages. 2006.

Vol. 4071: H. Sundaram, M. Naphade, J.R. Smith, Y. Rui
(Eds.), Image and Video Retrieval. XII, 547 pages. 2006.

Vol. 4069: EJ. Perales, R.B. Fisher (Eds.), Articulated
Motion and Deformable Objects. XV, 526 pages. 2006.

Vol. 4068: H. Schirfe, P. Hitzler, P. @hrstrom (Eds.),
Conceptual Structures: Inspiration and Application. XI,
455 pages. 2006. (Sublibrary LNAI).

Vol. 4067: D. Thomas (Ed.), ECOOP 2006 — Object-
Oriented Programming. X1V, 527 pages. 2006.

Vol. 4066: A. Rensink, J. Warmer (Eds.), Model Driven
Architecture — Foundations and Applications. XII, 392
pages. 2006.

Vol. 4065: P. Perner (Ed.), Advances in Data Mining. XI,
592 pages. 2006. (Sublibrary LNATI).

Vol. 4064: R. Biischkes, P. Laskov (Eds.), Detection of
Intrusions and Malware & Vulnerability Assessment. X,
195 pages. 2006.

Vol. 4063: 1. Gorton, G.T. Heineman, I. Crnkovic, H.W.
Schmidt, J.A. Stafford, C.A. Szyperski, K. Wallnau
(Eds.), Component-Based Software Engineering. XI,
394 pages. 2006.

Vol. 4062: G. Wang, J.E. Peters, A. Skowron, Y. Yao
(Eds.), Rough Sets and Knowledge Technology. XX, 810
pages. 2006. (Sublibrary LNAI).

Vol. 4061: K. Miesenberger, J. Klaus, W. Zagler, A.
Karshmer (Eds.), Computers Helping People with Spe-
cial Needs. XXIX, 1356 pages. 2006.

Vol. 4060: K. Futatsugi, J.-P. Jouannaud, J. Meseguer
(Eds.), Algebra, Meaning and Computation. XXX VIII,
643 pages. 2006.

Vol. 4059: L. Arge, R. Freivalds (Eds.), Algorithm The-
ory — SWAT 2006. XII, 436 pages. 2006.

Vol. 4058: L.M. Batten, R. Safavi-Naini (Eds.), Informa-
tion Security and Privacy. XII, 446 pages. 2006.

Vol. 4057: J.P. W. Pluim, B. Likar, F.A. Gerritsen (Eds.),
Biomedical Image Registration. XII, 324 pages. 2006.

Vol. 4056: P. Flocchini, L. Gasieniec (Eds.), Structural
Information and Communication Complexity. X, 357
pages. 2006.

Vol. 4055: J. Lee, J. Shim, S.-g. Lee, C. Bussler, S. Shim
(Eds.), Data Engineering Issues in E-Commerce and Ser-
vices. IX, 290 pages. 2006.

Vol. 4054: A. Horvith, M. Telek (Eds.), Formal Methods
and Stochastic Models for Performance Evaluation. VIII,
239 pages. 2006.

Vol. 4053: M. Ikeda, K.D. Ashley, T.-W. Chan (Eds.),
Intelligent Tutoring Systems. XX VI, 821 pages. 2006.

Vol. 4052: M. Bugliesi, B. Preneel, V. Sassone, I. We-
gener (Eds.), Automata, Languages and Programming,
Part II. XXV, 603 pages. 2006.

Vol. 4051: M. Bugliesi, B. Preneel, V. Sassone, 1. We-
gener (Eds.), Automata, Languages and Programming,
Part 1. XXIII, 729 pages. 2006.

Vol. 4049: S. Parsons, N. Maudet, P. Moraitis, I. Rahwan
(Eds.), Argumentation in Multi-Agent Systems. XIV,
313 pages. 2006. (Sublibrary LNAI).

Vol. 4048: L. Goble, J.-J.C.. Meyer (Eds.), Deontic Logic
and Artificial Normative Systems. X, 273 pages. 2006.
(Sublibrary LNAI).

Vol. 4047: M. Robshaw (Ed.), Fast Software Encryption.
X1, 434 pages. 2006.

Vol.4046: S.M. Astley, M. Brady, C. Rose, R. Zwiggelaar
(Eds.), Digital Mammography. XVI, 654 pages. 2006.
Vol. 4045: D. Barker-Plummer, R. Cox, N. Swoboda
(Eds.), Diagrammatic Representation and Inference. XII,
301 pages. 2006. (Sublibrary LNAI).

Vol. 4044: P. Abrahamsson, M. Marchesi, G. Succi
(Eds.), Extreme Programming and Agile Processes in
Software Engineering. XII, 230 pages. 2006.

Vol. 4043: A.S. Atzeni, A. Lioy (Eds.), Public Key In-
frastructure. X1, 261 pages. 2006.

Vol. 4042: D. Bell, J. Hong (Eds.), Flexible and Efficient
Information Handling. X VI, 296 pages. 2006.

Vol. 4041: S.-W. Cheng, C.K. Poon (Eds.), Algorithmic

Aspects in Information and Management. XI, 395 pages.
2006.

Vol. 4040: R. Reulke, U. Eckardt, B. Flach, U. Knauer,
K. Polthier (Eds.), Combinatorial Image Analysis. XII,
482 pages. 2006.

Vol. 4039: M. Morisio (Ed.), Reuse of Off-the-Shelf
Components. XIII, 444 pages. 2006.

Vol. 4038: P. Ciancarini, H. Wiklicky (Eds.), Coordina-
tion Models and Languages. VIII, 299 pages. 2006.

Vol. 4037: R. Gorrieri, H. Wehrheim (Eds.), Formal
Methods for Open Object-Based Distributed Systems.
XVII, 474 pages. 2006.

Vol. 4036: O. H. Ibarra, Z. Dang (Eds.), Developments
in Language Theory. XII, 456 pages. 2006.

Vol. 4035: T. Nishita, Q. Peng, H.-P. Seidel (Eds.), Ad-
vances in Computer Graphics. XX, 771 pages. 2006.

Vol. 4034: J. Miinch, M. Vierimaa (Eds.), Product-
Focused Software Process Improvement. XVII, 474
pages. 2006.

Vol. 4033: B. Stiller, P. Reichl, B. Tuffin (Eds.), Per-
formability Has its Price. X, 103 pages. 2006.

Vol. 4032: O. Etzion, T. Kuflik, A. Motro (Eds.),
Next Generation Information Technologies and Systems.
XIII, 365 pages. 2006.

Vol. 4031: M. Ali, R. Dapoigny (Eds.), Innovations in
Applied Artificial Intelligence. XXIII, 1353 pages. 2006.
(Sublibrary LNAI).

Vol. 4029: L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh,
J. Zurada (Eds.), Artificial Intelligence and Soft Comput-
ing — ICAISC 2006. XXI, 1235 pages. 2006. (Sublibrary
LNAI).

Vol. 4027: H.L. Larsen, G. Pasi, D. Ortiz-Arroyo, T.
Andreasen, H. Christiansen (Eds.), Flexible Query An-
swering Systems. XVIII, 714 pages. 2006. (Sublibrary
LNAI).

Vol. 4026: P.B. Gibbons, T. Abdelzaher, J. Aspnes, R.
Rao (Eds.), Distributed Computing in Sensor Systems.
XIV, 566 pages. 2006.

Vol. 4025: F. Eliassen, A. Montresor (Eds.), Distributed
Applications and Interoperable Systems. XI, 355 pages.
2006.

Vol. 4024: S. Donatelli, P. S. Thiagarajan (Eds.), Petri
Nets and Other Models of Concurrency - ICATPN 2006.
XI, 441 pages. 2006.

Vol. 4021: E. André, L. Dybkjer, W. Minker, H. Neu-
mann, M. Weber (Eds.), Perception and Interactive Tech-
nologies. XI, 217 pages. 2006. (Sublibrary LNAI).

Vol. 4020: A. Bredenfeld, A. Jacoff, I. Noda, Y. Takahashi
(Eds.), RoboCup 2005: Robot Soccer World Cup IX.
XVII, 727 pages. 2006. (Sublibrary LNAI).

Vol. 4019: M. Johnson, V. Vene (Eds.), Algebraic
Methodology and Software Technology. XI, 389 pages.
2006.

Vol. 4018: V. Wade, H. Ashman, B. Smyth (Eds.), Adap-
tive Hypermedia and Adaptive Web-Based Systems.
XVI, 474 pages. 2006.

Vol. 4017: S. Vassiliadis, S. Wong, T.D. Hamaldinen

(Eds.), Embedded Computer Systems: Architectures,
Modeling, and Simulation. XV, 492 pages. 2006.

Vol. 4016: J.X. Yu, M. Kitsuregawa, H.V. Leong (Eds.),
Advances in Web-Age Information Management. X VII,
606 pages. 2006.

Vol. 4014: T. Uustalu (Ed.), Mathematics of Program
Construction. X, 455 pages. 2006.

Vol. 4013: L. Lamontagne, M. Marchand (Eds.), Ad-
vances in Artificial Intelligence. XIII, 564 pages. 2006.
(Sublibrary LNAI).

Vol. 4012: T. Washio, A. Sakurai, K. Nakajima, H.
Takeda, S. Tojo, M. Yokoo (Eds.), New Frontiers in Ar-
tificial Intelligence. XIII, 484 pages. 2006. (Sublibrary
LNAI).

Vol. 4011: Y. Sure, J. Domingue (Eds.), The Semantic
Web: Research and Applications. XIX, 726 pages. 2006.

Vol. 4010: S. Dunne, B. Stoddart (Eds.), Unifying The-
ories of Programming. VIII, 257 pages. 2006.
Vol. 4009: M. Lewenstein, G. Valiente (Eds.), Combina-
torial Pattern Matching. XII, 414 pages. 2006.

Vol. 4008: J.C. Augusto, C.D. Nugent (Eds.), Designing
Smart Homes. XI, 183 pages. 2006. (Sublibrary LNAI).

Vol. 4007: C. Alvarez, M. Serna (Eds.), Experimental
Algorithms. XI, 329 pages. 2006.

Vol. 4006: L.M. Pinho, M. Gonzélez Harbour (Eds.), Re-
liable Software Technologies — Ada-Europe 2006. XII,
241 pages. 2006.

Vol. 4005: G. Lugosi, H.U. Simon (Eds.), Learning The-
ory. XI, 656 pages. 2006. (Sublibrary LNAI).

Vol. 4004: S. Vaudenay (Ed.), Advances in Cryptology -
EUROCRYPT 2006. XIV, 613 pages. 2006.
Vol. 4003: Y. Koucheryavy, J. Harju, V.B. Iversen (Eds.),
Next Generation Teletraffic and Wired/Wireless Ad-
vanced Networking. X VI, 582 pages. 2006.

Vol. 4001: E. Dubois, K. Pohl (Eds.), Advanced Infor-
mation Systems Engineering. XVI, 560 pages. 2006.

Vol. 3999: C. Kop, G. Fliedl, H.C. Mayr, E. Métais (Eds.),

Natural Language Processing and Information Systems.
XIII, 227 pages. 2006.

Vol. 3998: T. Calamoneri, I. Finocchi, G.F. Italiano
(Eds.), Algorithms and Complexity. XII, 394 pages.
2006.

Vol. 3997: W. Grieskamp, C. Weise (Eds.), Formal Ap-
proaches to Software Testing. XII, 219 pages. 2006.
Vol. 3996: A. Keller, J.-P. Martin-Flatin (Eds.), Self-

Managed Networks, Systems, and Services. X, 185
pages. 2006.

Vol. 3995: G. Miiller (Ed.), Emerging Trends in Infor-
mation and Communication Security. XX, 524 pages.
2006.

Vol. 3994: V.N. Alexandrov, G.D. van Albada, PM.A.

Sloot, J. Dongarra, Computational Science — ICCS 2006,
Part IV. XXXV, 1096 pages. 2006.

Vol. 3993: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra, Computational Science — ICCS 2006,
Part ITI. XXXVI, 1136 pages. 2006.

Vol. 3992: V.N. Alexandrov, G.D. van Albada, PM.A.

Sloot, J. Dongarra, Computational Science — ICCS 2006,
Part II. XXXV, 1122 pages. 2006.

Table of Contents

Creating Objects in the Flexible Authorization Framework
Nicola Zannone, Sushil Jajodia, Duminda Wijesekera

Detection and Resolution of Anomalies in Firewall Policy Rules
Muhammad Abedin, Syeda Nessa, Latifur Khan,
Bhavani Thuraisingham i

On Finding an Inference-Proof Complete Database for Controlled
Query Evaluation
Joachim Biskup, Lena Wiese,

Consolidating the Access Control of Composite Applications and

Workflows
Martin Wimmer, Alfons Kemper, Maarten Rits, Volkmar Lotz.

Authenticating Multi-dimensional Query Results in Data Publishing
Weiwei Cheng, HweeHwa Pang, Kian-Lee Tan

XML Streams Watermarking
Julien Lafaye, David Gross-Amblard.cccuio...

Aggregation Queries in the Database-As-a-Service Model
Einar Mykletun, Gene Tsudik 0. iuiiieiiannnn...

Policy Classes and Query Rewriting Algorithm for XML Security Views
Nataliya Rassadko s :soxsssssnsnesnsaasas sasmssns s sss aeiesmss

Interactive Analysis of Attack Graphs Using Relational Queries
Lingyu Wang, Chao Yao, Anoop Singhal, Sushil Jajodia

Notarized Federated Identity Management for Web Services
Michael T. Goodrich, Roberto Tamassia, Danfeng Yao

Resolving Information Flow Conflicts in RBAC Systems
Noa Tuval, Ehud GUudescouueiumn e

Policy Transformations for Preventing Leakage of Sensitive Information
in Email Systems

Saket Kaushik, William Winsborough, Duminda Wijesekera,

Paul Ammann

X Table of Contents

Term Rewriting for Access Control
Steve Barker, Maribel Ferndndezouuuueuunuenennnnennn..

Discretionary and Mandatory Controls for Role-Based Administration
Jason Crammplon . . seissssses s saveramiessss seees § 88 B a5 T4

A Distributed Coalition Service Registry for Ad-Hoc Dynamic
Coalitions: A Service-Oriented Approach

Ravi Mukkamala, Vijayalakshmi Atluri, Janice Warner,

Rangit Abbadasario .o e

Enhancing User Privacy Through Data Handling Policies
Claudio Ardagna, Sabrina De Capitani di Vimercati,
Pierangela SOMOTELE ¢ oo vie v ein s 556 556555 5 S o5 55 505 5 418 558 51 5 5

Efficient Enforcement of Security Policies Based on Tracking of Mobile
Users
Vijayalakshmi Atluri, Heechang Shinc.......

A Framework for Flexible Access Control in Digital Library Systems
Indragit Ray, Sudip Chakrabortyccuiiiiniiienenn..

Authrule: A Generic Rule-Based Authorization Module
Sonke Busch, Bjorn Muschall, Ginther Pernul, Torsten Priebe

Aspect-Oriented Risk Driven Development of Secure Applications
Geri Georg, Siv Hilde Houmb, Indrakshi Ray

From Business Process Choreography to Authorization Policies
Philip Robinson, Florian Kerschbaum, Andreas Schaad

Information Theoretical Analysis of Two-Party Secret Computation

Da-Wei Wang, Churn-Jung Liau, Yi-Ting Chiang,
Tsan-sheng HSU e e

Anthor INdex: suissinsoninsinimsimisnims i iNoi@EHISiERIBIIBIRE S

Creating Objects in the Flexible Authorization
Framework*

Nicola Zannone®2, Sushil Jajodia?, and Duminda Wijesekera?

! Dep. of Information and Communication Technology
University of Trento
zannone@dit.unitn.it
2 Center for Secure Information Systems
George Mason University
{jajodia, dwijesek}@gmu.edu

Abstract. Access control is a crucial concern to build secure IT systems and,
more specifically, to protect the confidentiality of information. However, access
control is necessary, but not sufficient. Actually, IT systems can manipulate data
to provide services to users. The results of a data processing may disclose infor-
mation concerning the objects used in the data processing itself. Therefore, the
control of information flow results fundamental to guarantee data protection. In
the last years many information flow control models have been proposed. How-
ever, these frameworks mainly focus on the detection and prevention of improper
information leaks and do not provide support for the dynamical creation of new
objects.

In this paper we extend our previous work to automatically support the dy-
namical creation of objects by verifying the conditions under which objects can
be created and automatically associating an access control policy to them. More-
over, our proposal includes mechanisms tailored to control the usage of informa-
tion once it has been accessed.

1 Introduction

Access control is one of the main challenges in IT systems and has received significant
attention in the last years. These efforts have matched with the development of many
frameworks dealing with access control issues [1,2,3,4,5,6]. However, many of these
proposals focus on the restriction on the release of information but not its propaga-
tion [7].

Actually, IT systems are developed not only to merely store data, but also to pro-
vide a number of functionalities designed to process data. Thereby, they may release
information as part of their functionalities [8]. Yet, a malicious user can embed in some

* This material is based upon work supported by the National Science Foundation under
grants 11S-0242237 and 1I1S-0430402. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation. This work was partly supported by
the projects RBNE0195KS5 FIRB-ASTRO, 016004 IST-FP6-FET-IP-SENSORIA, 27587 IST-
FP6-IP-SERENITY, 2003-S116-00018 PAT-MOSTRO.

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 1-14, 2006.
© IFIP International Federation for Information Processing 2006

2 N. Zannone, S. Jajodia, and D. Wijesekera

application provided by the IT system, a Trojan horse that, once the application is exe-
cuted, copies sensitive information in a file accessible by the malicious user [9]. In this
setting, information flow control plays a key role in ensuring that derived objects do not
disclose sensitive information to unauthorized users.

This issue has spurred the research and development of frameworks that improve au-
thorization frameworks with some form of flow control. Sammarati et al. [10] proposed
to detect unauthorized information flow by checking if the set of authorizations associ-
ated with a derived object are a subset of the intersection of the sets of authorizations
associated with the objects used to derive it. Similar approaches [11,12] have associated
with each object an access control list that is propagated together with the information
in the object. However, in these approaches the creation of objects is implicit. Essen-
tially, they attempt to identify leaking information, but do not deal with the creation of
new objects.

Moreover, this approach is to rigid to implement real access control policies. Actu-
ally, it is not flexible enough to support information declassification [8]. For instance,
the US Privacy Act allows an agency to disclose information to those officers and em-
ployees of the agency who need it to perform their duties without the consent of the
data subject. Furthermore, the Act does not impose any constraint to data that do not
disclose personal identifying information.

In this paper, we extend our previous work [13] in order to automatically enforce ac-
cess control policies on objects dynamically created in Flexible Authorization Frame-
work (FAF) [14]. This requires to deal with some issues:

— deciding if an object can be created;
— associating authorizations with the new object;

— verifying if the derived object does not disclose sensitive information to unautho-
rized users.

The first issue is addressed by introducing conditions under which a data processing
can be performed and enforcing the system to verify them before creating new objects.
To cope with the second issue, we allow system administrators to define the policies
governing access to derived objects, based on the authorizations associated with the
objects used to derive them.

However, this is not sufficient to fully guarantee data protection. Actually, if a user
is authorized to execute an application in which a Trojan horse is embedded, such a
malicious application is considered as legitimate by the authorization framework. To
this end, we propose an approach based on [10,11,12] to block non safe information
flow. However, it is up to system administrators to decide whether or not an information
flow is safe. Thereby, we only provide support for detecting flows of information that
may be harmful to data subjects.

Other issues come up when the proposed approach is integrated in FAF. Actually, its
current architecture does not support the dynamical creation of objects. To this intent,
we need to improve it together with its underlying logic-based framework.

The remainder of the paper is structured as follows. Next (§2) we provide a brief
overview of FAF. Then, we illustrate our approach for dealing with the dynamical cre-
ation of objects (§3) and for automatically deriving their access control policy (§4).

Creating Objects in the Flexible Authorization Framework 5

Next, we propose a mechanism to control information flow and show how such a mech-
anism copes with the Trojan horse problem (§5). Finally, we discuss related work (§6)
and conclude the paper (§7).

2 Flexible Authorization Framework

Flexible Authorization Framework (FAF) [14] is a logic-based framework developed to
manage access to data by users. It consists of four stages that are applied in sequence.
The first stage takes in input the extensional description of the system, as subject and
object hierarchies and a set of authorizations, and propagates authorizations through the
organizational structure of the system. However, in this stage it is possible to derive con-
tradictory authorizations, that is, a subject could be authorized and denied to execute an
action on an object at the same time. The second stage aims to resolve this problem by
applying conflict resolution policies. Once authorizations are propagated and conflicts
resolved, there is the possibility that some access is neither authorized nor denied. In
the third stage, decision policies are used to ensure the completeness of authorizations.
In the last stage, specific domain properties are verified using integrity constraints, and
all authorizations that violate them are removed.

FAF provides a logic-based language, called authorization specification language
(ASL), tailored for encoding security needs. Before defining the language, we introduce
the logic programming terminology needed to understand the framework. Let p be a
predicate with arity n, and t,,...,t, be its appropriate terms. p(t1,...,t,) is called
atom. Then, the term literal denotes an atom or its negation. ASL syntax includes the
following predicates:

— A ternary predicate cando. Literal cando(o, s, a) is used to represent authorizations
directly defined by the system administrator where o is an object, s is a subject, and
a is a signed action terms. Depending on the sign, authorizations are permissions
or prohibitions.

— A ternary predicate dercando that has the same arguments of predicate cando and
is used to represent authorizations derived through propagation policies.

— A ternary predicate do that has the same arguments of predicate cando and rep-
resents effective permissions derived by applying conflicts resolution and decision
policies.

— A 5-ary predicate done that is used to describe the actions executed by users. Intu-
itively, done(o, s, T, a, t) holds if subject s playing role r has executed action a on
object o at time t.

— A propositional symbol error. Its occurrence in the model corresponds to a violation
of some integrity constraints.

— A set of hie-predicates. In particular, the ternary predicate in(z,y, H) is used to
denote that z < y in hierarchy H.

— A set of rel-predicates. They are specific domain predicates.

Based on the architecture previously presented, every authorization specification AS
is a locally stratified program where stratification is implemented by assigning levels to
predicates (Table 1 [14]). For any specification AS, AS; denotes the rules belonging to
the i-th level.

4 N. Zannone, S. Jajodia, and D. Wijesekera

Table 1. Strata in FAF specification

Stratum|Predicate Rules defining predicate
AS(|hie-predicates|base relations.
rel-predicates |base relations.
done base relation.
AS; |[cando the body may contain done, hie- and rel-literals.
AS; |dercando the body may contain cando, dercando, done, hie- and rel-literals. Oc-
currences of dercando literals must be positive.
AS3 |do the head must be of the form do(_, -, +a) and the body may contain
cando, dercando, done, hie- and rel-literals.
AS; |do the head must be of the form do(o, s, —a) and the body contains the
literal ~do(o, s, +a).
ASs5 |error the body may contain cando, dercando, do, done, hie- and rel-literals.

For optimizing the access control process, Jajodia et al. [14] proposed a materialized
view architecture, where instances of predicates corresponding to views are maintained.
Because predicates belong to strata, the materialization structure results (locally) strati-
fied. This guarantees that the specification has a unique stable model and well-founded
semantics [15,16]. Following [14], we use the notation M (AS) to refer to the unique
stable model of specification AS.

3 Creating Objects

When a user requires to perform a data processing, the IT system should verify whether
or not such a user has all necessary authorizations. In the remainder of this section, we
address this issue.

Let O be the name space of all possible objects that may occur in the specification.
We assume that they are organized into a hierarchical structure. This means that all
possible objects are fully classified with respect to their type. Further, we assume that
objects do not exist until they are created. This means that objects (together with their
classification) may be not in the scope of the specification, although they are defined
in O. Essentially, we assume that a possible object is considered only if some event
demands its existence, that is, it is created.

Following [17], we introduce predicate exists, where exists(o) holds if object o ex-
ists, that is, it is already created. We define the state of the system as the set of exist-
ing objects and their relationships. To deal with the creation of objects, Liskov et al.
[18] introduced two kinds of functions: constructors and creators. Constructors of a
certain type return new objects of the corresponding type and creators initialize them.
Essentially, constructors add object identifiers (i.e., names) to the state of the system
and creators assign a value to such names. However, this approach distinguishes the
identifier of an object from the values the object can assume. We merge this pair of
functions into a single function, called initiator. Essentially, when an object is created,
it exists together with its value. This allows us to be consistent with the semantics of
FAF. Further, we assume that objects are never destroyed. From these assumptions, we

Creating Objects in the Flexible Authorization Framework 5

can deduce that the set of objects belonging to a state of the system is a subset of the
set of objects belonging to the next state.

IT systems process data as part of their functionalities by providing automatic pro-
cedures used to organize and manipulate data. As done in [13], we represent data pro-
cessing through initiators and make explicit the objects used by data processing and the
users who performs them. Thus, we introduce an initiator for each procedure supported
by the IT system. For instance, we write

f(s,01,...,0m) =0

to indicate that object o is the result of data processing f when this is performed by
subject s and objects oy, . . ., 0., are passed as input.! We assume that when an object
is created (i.e., it enters in the scope of the specification), also its classification belongs
to the specification. Notice that initiators do not belong to the specification language.
We use them only to emphasize the objects used in the procedure and the subject that
executes it.

Subjects may need to access exiting objects in order to create new objects. Moreover,
only users that play a certain role or belong to a certain group may be entitled to perform
a certain data processing. This means that an authorization framework should verify
whether the subject has enough rights to access all objects needed to create the new one
and whether he can execute the procedure.

Our idea is to enforce the system to verify the capabilities of the subject before an
object is created. Based on this intuition, we redefine initiator f as

i, 0 Om) = o if Cistrue
PO ®m) T | otherwise

where C represents the condition that must be satisfied and | means that object o cannot
be created since s does not have sufficient rights to execute the procedure.

Initiators are implemented in our framework through rules, called creating rules.
These rules enforce the system to verify the conditions under which a user can create
the object.

Definition 1. Ler f be an initiator, s be the subject executing f, 01,...,0., be the
objects required by f, and o = f(s,o01,...,0m) be the derived object. A creating rule
has the form

exists(0) «— L1 & ... & L, & exists(o1) & ... & exists(oy,).

where L1, ..., L, are cando, dercando, do, done, hie-, or rel-literals. cando, dercando,
do literals may refer only to 01, . . ., Op,.
Essentially, the conjunction of literals Ly, . . ., L,, represents the condition that a subject

must satisfy in order to create object o. Last part of the body of the rule ensures that all
objects necessary to create the new object already exist.

! Notice that initiators are not total functions since if one combines personal data of different
users for creating an account, such account is not a valid object.

6 N. Zannone, S. Jajodia, and D. Wijesekera

Example 1. A bank needs customer personal information, namely name, shipping ad-
dress, and phone number, for creating an account. The bank IT system provides the
procedure openA for creating new accounts. Suppose a customer discloses his name
(n), shipping address (sa), and phone number (p) to the bank. A bank employee s will
be able to create account (= openA(s,n, sa,p)) only if it is authorized to read cus-
tomer data and he works in the Customer Services Division (CSD). In symbol,

exists(account) < do(n, s, +read) & do(sa, s, +read) & do(p, s, +read) &
in(s, CSD-employee, ASH) & exists(n) & exists(sa) & exists(p).

The outcome of a data processing may then be used to derive further objects. We repre-
sent the process to create an object as a tree, called creation tree, where the root is the
“final” object and the leaves are primitive objects (i.e., objects that are directly stored in
the system by users). In order to rebuild the creation tree, the system should keep trace
of the process used to create the object. To this end, we introduce the binary predicate
derivedFrom where derivedFrom(o;,02) is used to indicate that object oo is used to
derive object 0;. As for classification literals, derivedFrom literals referring an object
are added to the model only when the object is created.

Example 2. Back to Example 1, the bank IT system stores the following set of literals:

{derivedFrom(account, n), derivedFrom(account, sa), derivedFrom(account, p)}

4 Associating Authorizations with New Objects

Once an object has been created, authorizations should be associated with it. Since the
object is not independent from the objects used to derive it, the policy associated with
it should take into account the authorizations associated with them. Some proposals
[11,12] associate with each object an access control list (ACL) that is propagated to-
gether with the information in the object. Essentially, the ACL associated with the new
object is given by the intersection of all ACLs associated with the objects used to create
it. However, when a system administrator specifies an access control policy for derived
objects, he should consider that not all data processing disclose individually identifiable
information [8]. For example, the sum of all account balances at a bank branch does not
disclose data that allows to recover information associating a user with his own account
balance.

We propose a flexible framework in order to allow system administrators to deter-
mine how authorizations are propagated to new objects. The idea is that authorizations
associated with the objects used to derive the new one can be used to determine the au-
thorizations associated with it. However, this approach cannot be directly implemented
in FAF since the specification results no more stratified [13]. Next, we propose how
FAF can be modified in order to support access control on derived objects maintaining
the locally stratified structure.

4.1 Redefining Rules

To maintain the locally stratified structure, we need to redefine creating rules, autho-
rization rules [14], derivation rules [14], and positive decision rules [14] by enforcing

