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PREFACE

Differential equations play an enormously important role in engineering,
physics, chemistry, the life sciences, and many areas of applied mathematics.
Virtually any phenomenon that varies in a continuous or nearly continuous
fashion can be modeled using differential equations. It is the goal of this text
not only to describe how to solve elementary differential equations, but also to
itlustrate how differential equations are actually used to model real-world
processes.

Traditionally, most of the examples illustrating the use of differential
equations involved simple mechanical systems or electrical circuits. I have
drawn examples and exercises from numerous books and journals illustrating
some of the diverse areas in which differential equations are used. To the best
of my knowledge, many of these examples are appearing in an elementary text
for the first time. Among the more interesting and unusual of these examples
are the rate at which ocean water circulates (Exercise 3, Section 1.3), the
concentration of silica in the sediment of the floor of the North Sea (Section
2.4), the stabilization of production in a closed economy (Section 3.5), the
relationship between rainfall and runoff in a watershed (Example 3, Section
4.4, and Example 4, Section 4.5), the Lancaster war model (Example 1, Section
5.7), the Ross model for the way malaria affects a community (Example 3,
Section 5.10), the water level in a canal that empties into the open sea
(Example 2, Section 6.5), and a nonparametric description of a cycloid
(Exercise 21, Section 7.1). One-sixth of the 156 examples and one-eighth of the
774 exercises involve applications.
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PREFACE

Throughout the text I have tried to keep the explanations and derivations
as simple and straightforward as possible. Virtually every concept is illustrated
by an example before it is used. Discussions begin with elementary situations
and progress to the more complex. For example, the treatment of linear
differential equations begins by considering only second-order equations
(Chapter 2). This greatly simplifies the concept of linear independence, since
only two functions need to be considered. In the following chapter higher-order
equations are considered. It is here that the general definition of linear
independence is given. This delay in presenting the general definition enables
the student to have experience with this essential concept before working in a
general setting.

I believe that numerical methods do not constitute a separate area of study,
but are merely another technique for finding solutions. For this reason
numerical methods appear as sections in Chapters 1 and 5, and not as a
separate chapter. 1 also believe that the numerical methods should be discussed
along with other techniques so that the reader realizes that equations that do
not have a “nice” form can still be “solved.” Of course there is no detailed
discussion of numerical methods, but only an indication of the types of
methods that are commonly used.

With the exception of Chapter 7 (Boundary-Value Problems) and Sections
1.6, 1.7, and 1.10 (Exact Differential Equations, Integrating Factors, and
Existence of Solutions), only a knowledge of calculus of a single variable is
assumed. At various points in the text certain elementary properties of de-
terminants and complex numbers are needed; hence, a discussion of these
properties is contained in two appendixes.

Chapters 1 and 2 constitute the basis for any introductory course in
elementary differential equations. Once these chapters have been covered, the
remaining chapters may be studied in any order, with the exception that
Chapter 4 should precede Section 5.9. The independence of Chapters 3 through
7 makes the book flexible enough to meet the needs of almost any instructor.
My personal view is that Chapter 5 is exceptionally important and should be at
least partially covered.

Before writing this text, I did not realize how much of a team effort is
required by such a project. I was blessed with exceptionally knowledgeable
reviewers who made significant contributions to the final form of the text. I
would like to thank them for their assistance: Donald Blevins, Trinity College,
Washington, D.C.; John Brothers, Indiana University; Murray Cantor, Uni-
versity of Texas at Austin; J. R. Dorroh, Louisiana State University; Richard
Koch, University of Oregon; and Hugh Maynard, University of Texas at San
Antonio.

Without a coauthor to share the blame, I alone am responsible for any
misprints, weaknesses, or errors that appear in the text. I hope that readers will
bring to my attention not only errors and shortcomings of the text, but also its
features that they particularly like.
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1 am grateful to Marilyn Davis, Editor at Harcourt Brace Jovanovich,
Publishers, for her guidance and cooperation. I would also like to thank
Andrea Haight and Christopher Lang for their excellent editorial work, and
Anna Kopczynski for the book’s handsome design. Various portions of the
manuscript were expertly typed by Linda Brent and Pam Bost. Robert Finley
read the manuscript and assisted in the preparation of the answer section. Last,
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1 First-Order
Differential
Eqguations

1.1 Introduction

Differential equations play an enormously important role in engineering,
physics, chemistry, and various areas of applied mathematics. Virtually any
phenomenon that varies in a continuous or nearly continuous fashion can be
modeled using differential equations. Systems as varied as electrical circuits,
economic growth, rainfall-runoff in a watershed, and the metabolism of
glucose have been modeled using differential equations. It is the goal of this
book not only to describe how to solve elementary differential equations, but
also to illustrate how differential equations are used to model various processes.
In this section we will present some of the basic definitions from the theory of
differential equations, while the later sections will be devoted to determining
solutions of elementary differential equations and investigating their applica-
tions. ’

We will consider equations such as

d? d? 4
ORI TR
and
2
%(1)4—420)20 (1.2)



2 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

Our goal is to find functions that satisfy the given equation. For example, the
function y(x)=e* satisfies equation (1.1) since

d 3 ( )= 2—(e )+4—(e )—3e*=e*—2e*+4e* —3e*
Likewise, the function z(z)=cos2t satisfies equation (1.2) since
d2
;Z(COSZI)+4COSZIZ —4¢0s2t+4c0s2t=0
t

Equations in which the unknown is a function of a real variable and which
contain not only the functions themselves, but also certain of their derivatives,
are called ordinary differential equations. For example, in equation (1.1), x is
the real variable and y is the unknown function. In equation (1.2), ¢ is the real
variable and z is the unknown function. Other examples of ordinary differen-
tial equations are

d
T (x)+xy(x)=x>

d’w 2 aw
(73—(2)) +z$(x)+4w(z)=sinz (1.3)
Z

d*0 .
F(z)+sm0(t)=0

Relations that do not involve derivatives, such as
x2+yr=x+y

or relations that contain partial derivatives, such as

( )= (xt)

do not define ordinary differential equations.
For brevity, an ordinary differential equation will be called a differential
equation. In order to simplify the notation,

& dy dry
y, 5 _2,..-, n
dx dx dx

will frequently be used in place of

o L), . 22




1.1 INTRODUCTION

respectively, when writing differential equations. With this understanding, the
differential equations in (1.1), (1.2), and (1.3) can be rewritten as

3 2
Iy _,4y +4% —3y=0

dx? dx?
2
4z L 4=0
di?
%4—x3y=x2
3 22
(g_w) +zﬂ+4w=sinz
dz3 dz

2
M+sin0=0
dt?

The order of a differential equation is the order of the highest derivative
appearing in the equation. Thus the differential equations in (1.1), (1.2), and
(1.3) are of third, second, first, third, and second orders, respectively.
Throughout this book we will always assume that an nth order differential
equation can be written in the form

d"y . d_y dn—ly
e =fix,y, dx T gt (1.4)

Equations (1.1) and (1.2) are of this type since they can be rewritten as

dly _,d* _ dy

dx3_2dx2 4dx+3y
and

d?z

—=—4z

dr?

The second equation in (1.3) is a third-order differential equation that can not

be written in the form in (1.4).
A solution on an open interval I of the differential equation in (1.4) is a

function u defined on 7 such that

d"u _ du dn—l
E;;T(x)_f x,u(x), E(x)’.“’ dxn_l u(x)

for every x in the interval 1.

3
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FIRST-ORDER DIFFERENTIAL EQUATIONS

» Example 1 The function u(x)=e* is a solution on (— oo, o) of dy /dx
=y since du/dx=e* =u(x) for every x in (— oo, o0). <

» Example 2 The function #(x)=x"" is a solution on (0, 00) of dy/dx=

—y? since du/dx= —x 2 = —[u(x)]? for every x in (0, o0). <

A relation g(x, #)=0 is called an implicit solution on an open interval 7 of
equation (1.4) if it determines at least one real function on 7 and this function
is a solution of the differential equation.

» Example 3 The relation x* +x? —1=0 is an implicit solution of dy /dx
=—x/y on (—1,1) since it determines the function u{x)=v1—x? on
(—1,1)and

du, —x X

dx m T u(x)

for every x in (—1,1). The relation x?+u?—1=0 also determines the

function u,(x)=—v1—x2 on (—1,1). A calculation similar to that done
for u; shows that the function u, is also a solution of the differential
equation dy /dx=—x/y on (—1,1). «

» Example 4 One of the most important problems in mechanics is that of
determining the motion of an object constrained to move along a straight
line and acted upon by a force F. If the mass of the object is m and the
acceleration and position of the mass at time ¢ are a(t) and y(1),
respectively, then by Newton’s second law of motion we have

F=ma
or, since a(t)=d2y /dt?,

d2
dr?

<

I

(1.5)

The force acting on the object may vary with time, with the position of
the object, or with the velocity of the object. For example, the force due
to gravity is a function of the distance from the center of the earth, and
the force acting on the moving object due to air resistance is a function
of the velocity of the object. Thus the equation of motion in (1.5) has the
form of equation (1.4) for the case n=2.



1.1 INTRODUCTION §

The simplest form of equation (1.5) occurs when the force F is
constant. In such a case the equation can be solved by integrating twice.
Doing this gives

F
y(t):mtz-i-clt-i-cz (1.8)

where ¢, and ¢, are constants from the two integrations. If we wish to
determine the position y(¢) at time ¢ of the object, we must have some
additional information in order to evaluate the constants ¢, and c,. Such
information may be given in terms of the initial position, y(0), and the
initial velocity, dy(0)/dr. If we require that y(0)=), and dy(0)/dt=y,,
then using equation (1.6) we find that

Y%o=y(0)=c,
_dy(0) _
yf_ (ﬁ _cl

Thus with these initial values we are able to uniquely determine the
position y(t) at time ¢ of the object:

F
y(8)= 517 +ytty

Notice that it took two pieces of initial data to determine a unique
solution of equation (1.5). <

This example illustrates two fundamental properties of differential equa-
tions. First, a differential equation usually has infinitely many solutions.
Second, if values of the solution and certain of its derivatives are preassigned,
then exactly one solution may be determined. One set of such values which
usually determines a unique solution of the differential equation in (1.4) is

a dn—l
wa)=x,  ge(@=rn, o (@)= .7
where y;, y,..., ¥, are constants. Such conditions are often called initial

conditions because x frequently measures time and « is often taken as the
starting time of the process involved. Notice that in Example 4 the initial
conditions determined uniquely the position of the moving object. The prob-
lem of finding a solution of equation (1.4) that satisfies the initial conditions in
(1.7) is called the initial-value problem for equation (1.4).
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Common problems involving differential equations are: (1) to find a
solution that satisfies preassigned conditions, such as initial conditions; 2) to
find all of the solutions; (3) to determine properties of solutions without
actually computing the solutions; and (4) to approximate a solution numeri-
cally. All of these problems will be discussed in varying detail throughout the
remainder of the text.

In general, only differential equations that have special forms can be solved
explicitly. We will now define one special form of a differential equation that
arises frequently in applications and can often be solved explicitly.

Let @,_,,..., @y, dy, and r be functions defined on an open interval I. If
equation (1.4) can be rewritten as

dn—ly
dxn—l

+ ---+a](x)ﬂ+a0(x)y=r(x) (1.8)

da"
_—y+an-l(x) dx

dx"

then it is called a linear differential equation. If the differential equation can
not be written in this form, it is called a nonlinear differential equation.
Equations (1.1), (1.2), and the first equation in (1.3) are linear differ-
ential equations. The remaining two equations in (1.3) are nonlinear differen-
tial equations. The differential equation in Example 1 is linear, while those in
Examples 2 and 3 are nonlinear.

If the coefficient functions a, a;,..., @,_, are constant functions, then, as
we will see later in the text, there are techniques that will determine all the
solutions of the linear differential equation in (1.8).

Exercises SECTION 1.1

In Exercises 1-8 determine the order of the differential equation and whether
it is linear.

2
1. (d_y) +y=x3

dx
2. g;—);%- (%)4+x5y=0
3 -‘?-51+-‘&+ +x7=0
dx’® X3
4 xzi—)—;-ﬂc(%) +y=e*



1.1 INTRODUCTION 7

6. 2 y+xd 2 ter=yx
dx? dx?

7. a_y +y2+y=x+e"

8. dy+(cosx) o y=3x
dx?

In Exercises 9—16 verify that the given function is a solution of the differential
equation.

d?y

dx 2
d?y _ o

10. —d—2+4y—0, u(x)=sin2x on (— o0, 00)
X

+y=0, u(x)=cosx on (—,00)

11. % +2y%?2=0, u(x)=x"?on (0,0)

2
12. ﬂ+3ﬂ +2y=0, u(x)=e *+e 2* on (—o0, )

dx? dx
13 L2 @ +y=0, u(x)=2e*+3xe* on (— oo, 0)
dx? dx
3 2
14, %—2%—%+2)} 0, u(x)=3e*+2e % +e>* on (— o0, )
X X
3 2
15. %HZ;’H? +y=0, u(x)=e *(3+5x+4x?) on (— o0, %)
X
4 2
16. Zy+4jy+6j)2)+4%+y20, u(x)=x% "% on (— ,0)
X X

In Exercises 17-20 find numbers r such that u(x)=e"™ is a solution of the
given equation.

17. LY 45 +4y=0

dx® ~dx
18. d2y+3dy —4y=0

dx?
19. Z:y—ijz}’—Z—y+2y 0
2. 4% _sd%y +4y=0

dx? dx?
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In Exercises 2124 find numbers 7 such that #(x)=x" is a solution of the given

_ differential equation.

21. nglz +2x%—6y=0
22. 2 2‘;;)2’+5 %+y=0
23 2%“.}6%—2)}:0
p] 33;{ +x%—y=0

In Exercises 25-28 determine the constants ¢, and ¢, such that u(x)=c,e*+
c,e ~* is a solution of d2y /dx? —y=0 that satisfies the initial conditions.

25. y(0)=0, % 0)=1

26. y(0)=1, %(0):0

27. (0)=0, % =0

28. y(0)=2, % =4

In Exercises 29-32 find the solution of each initial-value problem.
29. -3—); =x2, y(0)=2

30. % =x}+1, yO)=-—1

31. L =sinx, y(7)=0

dx
d*y _ . dy(0)
32. w——cosx, y(=1, p =1

1.2 First-Order Linear Differential
Equations

In the following section we will see that various physical, chemical, biologi-
cal, and economic processes can be modeled by the first-order linear differen-
tial equation (where * denotes d/dx)

¥y +p(x)y=q(x) (1.9)



