Standard FORTRAN A Problem—Solvmg Approach

Laura Cooper Marllyn Srhith

Standard FORTRAN:
A Problem-Solving
Approach

Laura G Cooper Florida Agricultural and Mechanical University
Mari Iyn Z. SMith Fioriva state university

Houghton Mifflin Company - Boston
Atlanta

Dallas

Geneva, lllinois

Hopewell, New Jersey

Palo Alto

Copyright © 1973 by Houghton Mifflin Company. All rights re-
served. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including pho-
tocopying and recording, or by any information storage or retrieval
system, without permission in writing from the publisher.

Printed in the U.S.A.

Library of Congress Catalog Card Number: 72-4395

ISBN: 0-395-14028-5

Standard FORTRAN:

A Problem-Solving
Approach

Preface

This textbook is the result of five years of teaching experience in the field
of computer programming languages at both the undergraduate and graduate
levels. We have used several unique teaching concepts:

1. a problem-solving procedure that provides a step-by-step method for
writing a program for the computer

2. presentation of the standard ANSI FORTRAN language that the major
computer manufacturers follow

3. early presentation of basic material so that the student can write complete
programs from the beginning of the course

For each problem in the text, we start the problem-solving procedure
with a statement of the problem, then we develop a flowchart, and finally,
we write FORTRAN language instructions for the sample problem. Most
textbooks give a flowchart only in its final form for a sample problem, but
we show the student how to analyze a problem and how to approach the
development of the flowchart step-by-step. Then, we guide the student in
writing the appropriate FORTRAN instructions corresponding to the steps
developed in the flowchart.

Many students shy away from learning FORTRAN because in most
books the sample problems are strictly math or science oriented. The nu-
merous sample problems in our text are not restricted to any one area. We
feel we have presented a balanced mixture of simple problems from the
fields of business, the humanities, and science.

We have adhered strictly to the presentation of standard ANSI FOR-
TRAN, because FORTRAN is a programming language with many dia-
lects. One of its earliest forms was called FORTRAN II. As new commands
were added to the language, it became known as FORTRAN 1V. Other
dialects were developed when various computer manufacturers inserted
their own special features into the language. As a result, a program which
works on one computer may not work on another one, because the second
machine does not know the same dialect of FORTRAN as the first. To
bring uniformity to the language, the American National Standards Insti-
tute (ANSI) has recommended a standard version of FORTRAN and has
encouraged the major computer manufacturers to adopt it. By having a
standard language, ANSI hopes to eliminate all the wasted hours spent
converting a program for use on different computers. A person learning
ANSI FORTRAN can transfer from one computer installation to another
and can use the language immediately without studying a new dialect.

One of the main objectives of our text is to teach the student how to use
the computer to solve problems. We believe the best way to accomplish
this is to have the student write many programs starting with very simple
ones. Therefore, we present enough of the basics of problem solving and

\'

vi

Preface

the FORTRAN language so that the student should be able to write his
first program by the end of the second week of classes, if not sooner. We
have organized the book so that the student can learn in stages, always
progressing from simple problems to more complex ones.

We approach the teaching of FORTRAN as if it were a foreign language.
We introduce new elements of the language in a sample program and later
explain the rules of grammar involved. The examples illustrate how to take
the different parts of the language and combine them to solve problems.
While programming is probably best learned from an instructor, we feel
that the ambitious student who has access to a computer could teach him-
self using our text. We have kept the language of the book simple and free
from computer jargon. In addition, we have included many exercises and
program assignments to let the student practice using his FORTRAN.
Some suggested topics for programs are: an elementary one after Chap-
ter 6, one using single-subscripted variables, one using D) loops, one on
two- or three-dimensional arrays, and one on subprograms. Depending upon
the length of the course and the number of credit hours involved, the assign-
ments may be expanded or combined. The entire book can be covered in a
one quarter or one semester course. But a two semester course would allow
the student to have more practice on the advanced topics.

In our attempt to simplify the material for the beginning student, we have
omitted several topics from the main portion of the book and have placed
them in Chapter 13. These topics include such items as double precision
variables, complex variables, logical variables, the E- and G-field specifica-
tions, and Hollerith constants. An individual may use the topics in this
chapter whenever a need for them arises. He does not need to finish the
first twelve chapters before reading Chapter 13.

Some special features in the text include a brief history of the computer
and a discussion of basic computer concepts in Chapter 2. At the end of each
chapter we present a list of terms with which the student should be familiar
before proceeding to the next chapter. We have included a section on how
to use the card punch and the drum control card. To help the student when
he writes programs, we have included an appendix designed as a reference
to all the ANSI FORTRAN statements discussed in the text. It gives the
forms of each statement, the rules for using it, and a reference to the dis-
cussion or examples of the statement in the text.

Laura G. Cooper
Marilyn Z. Smith

Contents

Flowcharts 1

Computer Concepts 14
Problem-Solving Procedure 21
Preparing Cards for the Computer 27
FORTRAN Expressions 37

Writing a Program 49

Finding and Correcting Errors 78

More on Input and Output of Simple Variables 87

© O N o O A O N =

Single Subscripted Variables 101
Loops and the D@ Statement 129

e
-

Two- and Three-Dimensional Arrays 145

-t
N

Subprograms 171
Additional FORTRAN Statements 211

-t
w

Appendix A Reference to FORTRAN Statements 231
Appendix B FORTRAN Supplied Functions 244
Index 247

vii

Chapter 1

1.1 Introduction

Flowcharts

1.2 Why Use a Flowchart?

It is unworthy of excellent men to lose hours like slaves in the labor of calcula-
tion which could safely be relegated to anyone else if machines were used.
Leibnitz

Computers can handle large amounts of information compiled by insurance
companies, banks, the Census Bureau, and numerous other corporations. They
also aid in solving lengthy mathematical problems which involve complex
computations. Many familiar situations emphasize the importance of the speed
of modern computers. Airline reservations, police investigations, intensive care
in hospitals, and space rocketry are just a few examples in which people need
an answer immediately and can obtain it from a computer.

Men and women would find some of the tasks mentioned above very tedious
and time-consuming, but a computer could do them in a matter of seconds. A
computer is similar to an adding machine, because it can do simple arithmetic.
Although both a computer and an adding machine are tools and may be used
to solve problems, differences do exist between these two machines. In an add-
ing machine the operator enters each number and instruction manually. In or-
der to total a series of numbers, the operator must key in the first number and
press the add button, key in the second number and press the add button, key in
the third number, and so on. No matter how fast the adding machine, it must
wait for the operator to give it a new number and a new instruction (add, sub-
tract, multiply, divide). On the other hand, to have a computer total a series of
numbers, an operator submits all the numbers and all the instructions at one

time. Then with all the instructions in hand, the computer can begin executing
them.

Computers cannot think, but they are capable of performing many arithmetic
calculations if they are told what kind of calculation to do and what numbers
to use. A computer must receive detailed steps to follow in order to solve a
specific problem. It is not enough to command a computer to ‘“calculate my
income tax” or “find me a date for Friday night.” If a computer is to calcu-
late income tax, it must know which numbers to add, which ones to subtract,
and other details a person must know in order to compute the tax by hand. Any
problem which a computer is to solve must be broken down into a series of
steps that are carried out in some sort of logical order. Usually we first write
these steps in the form of a flowchart: a diagram which tells from start to finish
all the commands which the computer must execute to solve a problem. For
the computer to carry out the commands described in the flowchart, we then
must convert the commands into some form which the computer understands.

In addition to representing a logical solution to a problem, a flowchart is a
means of communication among people who use computers. In understanding
another person’s method, his flowchart is easier to read than the detailed form
which he has prepared for the computer. In each of the next sections we will
examine a simple problem and develop a flowchart for solving it.

2 Standard FORTRAN: A Problem-Solving Approach

1.3 Flowcharting a Simple Payroll Problem

NAME,
RATE HOURS

| SALARY< RATE X HOURS

NAME,
SALARY

Suppose you work for the payroll department of a large corporation with over
2000 employees. You have a stack of cards containing one card for each em-
ployee. The information on the card is the employee’s name, his hourly rate
of pay, and the number of hours worked per week. Using this information you
must compute each person’s salary and write him a check. You have an as-
sistant, who may be another person or a computer, write all the checks. Your
job is to write down precise instructions on how to do the company’s payroll
and your assistant will carry out the instructions.

First, we need some place to start. In a flowchart we start by using the symbol
and writing the word START inside. Now, there
sits your assistant with a pen and a stack of em-
ployee payroll cards in front of him. What should
he do next? Compute the salary? But how does he know which numbers to
use? Wouldn’t he have to get these numbers off the first card in the stack?
Yes, he would. Therefore, our first instruction is to read a card and remember
the name, the rate of pay, and hours worked. A flowchart has a special sym-
bol for the instruction, “read a card,” so that we do not have to write
the command “read” inside. This flowchart
symbol instructs your assistant to read three items
from a single card: NAME, RATE, and
HOURS.

Knowing RATE and HOURS, your assistant can then compute the salary
which is RATE X HOURS. We place
this command inside the diagram in the
flowchart. The arrow (<) states that
the value of the product of RATE and HOURS will be labeled SALARY
The use of the arrow is another way of saying that SALARY has just been
computed.

What should be the next instruction? To write the check. The items which go
on the check are NAME and SALARY. The symbol below 51gmﬁes the write
instruction. We do not need to say “write NAME
and SALARY.” Instead, the words NAME
and SALARY inside this symbol signify that
command.

We connect all the boxes to show that we proceed from one box to the
next. Our instructions so far have written a check only for the first employee.
In order to design our flowchart so that it will write a check for the second em-
ployee, we must repeat the instructions, as in Figure 1.1. If this flowchart is to
show how to write checks for a company with over 2000 employees, it cer-
tainly would be a lengthy one. However, if we examine the flowchart in Figure
1.1, we see that it consists basically of three boxes which we would write re-
peatedly. We may shorten our flowchart considerably if we use a loop—that is,
show that we wish to repeat three instructions for each employee. The flow-
chart in Figure 1.2 illustrates the loop.

Drawing a line from box 4 to just below the START box signifies that after
your assistant writes the first check he goes back to the instruction to read the
second card, to compute this man’s salary, and to write him a check. Then
he goes back to read the third card, compute salary, write the check, and con-
tinue. What stops the loop? The flowchart does not say. Of course, when no

Figure 1.1

3

1

(Start)

2 Y

NAME,
'RATE, HOURS

SALARY<« RATE X HOURS

6

NAME,
SALARY

NAME,
RATE, HOURS

Y

SALARY<« RATE X HOURS

7 Y

NAME,
SALARY

8
NAME,
RATE, HOURS

|

etc.

Flowcharts 3

employee cards remain, there are no more checks to write. We should include
something in the flowchart to ask if your assistant has reached the last data
card. If he has, then stop; otherwise, continue writing checks. Every flowchart
should have a place to start and a way to stop. Figure 1.3 gives the complete
flowchart.

Figure 1.2 Figure 1.3
1 1
Start (Start ’
2 L 2 \
NAME, NAME,
RATE, HOURS RATE, HOURS
3 y 3 \
SALARY<« RATE X HOURS SALARY<+ RATE X HOURS
4 7 4 :
NAME, - NAME,
SALARY SALARY

Notice several things about the flowchart in Figure 1.3. Box 5 asks the
question: Is this the last card? It is not necessary to include the question mark
in the flowchart box, because the diamond-shaped box represents a question.
The question has two answers—yes and no—and the flowchart shows which
direction to take and what to do whether the answer is yes or no. When we
follow the flowchart, we proceed from box 1 to box 2 to box 3 to box 4. Then
at box 5 there is a decision to make. We go either to box 2 or to box 6. The
possible directions which we may take at a point of decision in a flowchart are
called branches. The process of following one of these branches is called
branching. Also note that lines connect all symbols and that the arrows indi-
cate the order of the steps.

Now that we have written the flowchart, how can we be sure that it is cor-
rect? Our next step is to take some names and numbers which are employees’
rates and hours worked and test the flowchart by hand to see if it will correctly
produce the payroll. Is it necessary to use 2000 pieces of test data to check
the flowchart? The amount of test data depends upon the problem. In this case,
each data card contains the same type of information. Therefore, a flowchart

4 Standard FORTRAN: A Problem-Solving Approach

Figure 1.4

which works for three or four pieces of data should work for any number of
cards.
Suppose we have the three data cards shown in Figure 1.4.

MARY SMITH 3.00 50
BILL JONES 1.50 20
card 3
SAM BROWN 2.00 40
card 2
card 1

Referring to the flowchart in Figure 1.3, we see that the first command is to
read NAME, RATE, and HOURS from a card. Take a piece of paper and
write

NAME = SAM BROWN
RATE = 2.00
HOURS = 40

With such a simple problem, we could probably remember these values with-
out writing them. However, a good habit to develop is that of writing down
everything read in or computed in a flowchart. As problems become more com-
plicated, it is not always possible to remember every number.

After we read one card, we proceed from box 2 to box 3 and calculate the
salary. Interpret this box as: multiply RATE by HOURS (2.00 X 40 =
80.00), and call this number SALARY. This means that we should write

SALARY = 80.00

When the flowchart says to write NAME and SALARY, we may refer to the
worksheet to see that the NAME was SAM BROWN and his SALARY was
80.00. Knowing these items, we could write him a check. Then the flowchart
asks if we have just processed the last card. Since we haven’t, we proceed from
flowchart box 5 to box 2 where we find the instruction to read a card. Since we
have read the first test card and we cannot read it again, we may wish to cross
it off. The card to read now is the second one. Instead of writing

NAME = BILL JONES
RATE = 1.50
HOURS = 20

let us erase or scratch out the old values of NAME, RATE, and HOURS, and
replace them with these new values.

NAME = SAM BROWN BILL JONES
RATE = 266 1.50
HOURS = 46 20

Each name may have only one value at a time. Every time there is a new

Table 1.1

Trace Diagram of Wage
Problem

Flowcharts 5

value, the old one is erased. This concept may not be very intuitive, but, in
fact, it is the way computers work. We continue to compute RATE X HOURS
(1.50 X 20 = 30.00) and replace the value of SALARY with this new value.
The arrow (<) here indicates replacement, that is, replace the previous value
of SALARY with 30.00. When we processed the first data card, the arrow told
us to compute SALARY for the first time. Now that we are processing an-
other data card and SALARY already has a value, the arrows means replace
the former value of SALARY with a new one. In either case, whether the ar-
row means compute or replace, the arrow indicates that SALARY is to have
a value.

SALARY = 80.60 30.00

We continue through the flowchart until we have written the check for MARY
SMITH. Then, when the flowchart asks if we have processed the last card, the
answer is yes and we stop.

There is an easy and convenient tabular method for analyzing a flowchart.
We call this table listing a trace. Table 1.1 is a trace diagram of the wage
problem. Note the following properties of the table:

1. For each step of the flowchart, one (and only one) line in the table is
entered.

2. Since some values remain unchanged during several steps, we do not copy
them down each time. In other words, in step 2, the values for NAME,
RATE, and HOURS are still: SAM BROWN, 2.00, and 40; but we do not
copy them over. However, in step S NAME becomes BILL JONES and no
longer is SAM BROWN. At this point, when we have a new value for
NAME, we may wish to cross off the old value.

The flowchart seems to work because it has produced the correct answers.
But remember that a flowchart is the first step toward having the computer
solve a problem for us, because the instructions in the flowchart are the same
ones which we will give to the computer to tell it how to do the problem.

Flow- Variables Test
Step | chart Output
No. | Box No. Name Rate | Hours Salary Last (Write)
card
1 Sam Brown | 2.00 | 40
2 3 80 = (2.00)(40)
3 4 Sam Brown
80.00
4 5 no
5 2 Bill Jones 1.50 20
6 3 30 = (1.50)(20)
7 4 Bill Jones
30.00
8 5 no
9 2 Mary Smith | 3.00 | 50
10 3 150 = (3.00)(50)
11 4 Mary Smith
150.00
12 5 yes
13 6

6 Standard FORTRAN: A Problem-Solving Approach

1.4 A Flowchart to Decide If a Crate May Be Mailed

Figure 1.5

A warehouse manager has over 1000 crates which he wishes to mail, but the
Post Office will accept the crates only if they are not too large. As each crate
was filled, the packing manager assigned a number to the crate and measured
its length, width, and height. He wrote the information about each crate on a
separate card. The Post Office requires that the length of the longest side plus
the distance around the other sides (girth) must be less than or equal to 72
inches. We wish to develop a procedure which will enable the warehouse
manager to decide which crates he cannot mail.

girth
\
|

I

|

L
R e
rd '

L length |

The information which we have consists of the crate code number and the
lengths of the three sides. Let us label these items so that we may refer to them
easily in the flowchart:

CODE—<crate code number
SIDE1—Ilength of the longest side
SIDE2—Ilength of the second longest side
SIDE3—Ilength of the shortest side

The main portion of the problem is to determine if SIDE1 + GIRTH is less
than or equal to 72. If it is, the warehouse manager can mail the crate. If not,
we should write a message saying that the crate “cannot be mailed.” To write
this in a flowchart diagram we have the following boxes in which the symbol =
represents the words “less than or equal to.”

SIDE1 + GIRTH <72 >

"Ca,nhéfb Be
Mailed”

But how does the flowchart obtain a value for SIDE1 and a value for GIRTH?
We must compute the GIRTH as 2(SIDE2 + SIDE3) before we may ask the
question: Is SIDE1 + GIRTH = 72. Let us add this to the flowchart.

Flowcharts 7

~ “Cannot Be
© Mailed”

So far the flowchart seems to be progressing smoothly, but where do the values
for SIDE1, SIDE2, and SIDE3 come from? They must be read from a card
before they can be used. Therefore, we add this step to the flowchart.

Figure 1.6

SIDE1, SIDE2,
SIDE3

2 Y

GIRTH « 2(SIDE2 + SIDE3)

So far, we have at least three loose ends in the flowchart:

1. Where do we START?
2. What do we do if SIDE1 + GIRTH is less than or equal to 72?

3. Where do we proceed after writing “cannot be mailed”?

We want to begin the flowchart by reading a card. If SIDE1 + GIRTH =
72, the warehouse manager can mail the crate, and we should proceed to

8 Standard FORTRAN: A Problem-Solving Approach

Figure 1.7

check the next crate. If he cannot mail the crate, we should write the message
and then proceed to check the next crate. By making the flowchart loop back
to box 2, we can go on to process the next crate. This addition to the flowchart
in Figure 1.6 appears in Figure 1.7

SIDE1, SIDE2,
SIDE3

3 y

GIRTH < 2(SIDE2 + SIDE3)

2

““Cannot Be
- Mailed”’

Let us now examine the flowchart in Figure 1.7. It seems to be complete,
but there are several places where we could improve it. Consider the message
which the computer writes. It does not say which crate cannot be mailed. Since
each crate was numbered, we should write that number along with the message.
To show in the flowchart that we want to write the specific words “cannot be
mailed” they are enclosed in quotation marks. To show that we want to write
the crate code number, we will include the word CODE in the flowchart write
box. This means that the value of CODE will be written and not the letters
CODE. If we wish to write the crate code number, first we must read it in
along with the lengths of the sides.

A second improvement in the flowchart would be a way to stop the process.
Our flowchart loops continually expecting a new card each time. At some point
no cards will remain. What can we use to stop the loop in the flowchart? We
could ask if the last card has been read, as in Figure 1.3. However, if we wish
to convert this flowchart into a form which a computer can understand, there

Figure 1.8

Flowcharts 9

is no way for us to tell the computer to check for the last data card. When a
computer reads a card, it cannot tell if that card is the first one, the last one, or
any other one. However, we can insert a special card at the end of the card
deck. If this card contained a number unlike any of the numbers in the data
deck, then we could look for this card. When we find it, we would know that
we had come to the end of the card deck. This special card is called a dummy
data card, because it is not part of the actual data deck, but it signals the end
of the data card deck.

What kind of dummy data card could we use in this flowchart? Since the
crates would be numbered 1, 2, 3, and so on, our dummy card could contain a
zero value for CODE. The complete flowchart appears in Figure 1.8.

1
(Start)
2 Y

CODE, SIDE1,
SIDE2, SIDE3

4

GIRTH <« 2(SIDE2 + SIDE3)

l

yes

SIDE1+ GIRTH < 72

CODE,
“Cannot Be
Mailed”’

Exercise

Suppose the warehouse manager has the following four data cards:

10 Standard FORTRAN: A Problem-Solving Approach

1.5 Summary of Flowchart Symbols

0
3 30 10 10
card 4
2 40 20 10
card 3
1 20 10 5
card 2

card 1

Construct a trace diagram of the flowchart in Figure 1.8 using these data cards.
Your trace table headings should look like the following:

Flow- Variables Test
Step| chart Output
No. |Box No.|Code|Side1|Side2|Side3|Girth| Code=0|Side1+Girth=72| (Write)

A flowchart is an effective way of representing the solution to a problem. If a
flowchart is going to be useful, the author should draw it so that someone else
can understand it. This means that everyone should use the same symbol to
represent the same command. For example, the diamond asks a question and
the oval says either to start or stop. If we saw a flowchart in which ovals rep-
resented questions and diamonds represented starting, we would have to relearn
the meaning of these symbols. In this section we will discuss those symbols
suggested by the American National Standards Institute (ANSI) which apply
to the scope of this text.

Rules for the Use of Flowcharts

1. A flowchart should have a place to start and a place to stop.

2. A line should connect every symbol in a flowchart to another symbol. If
the size of the page prohibits the connection of two symbols, use the con-
nector symbol. We will give an example of this later.

3. Do not cross lines on a flowchart.

4. Normally the direction of movement from one flowchart box to another
is from top to bottom and from left to right. Use arrows on the connecting
lines to show that the direction is from bottom to top or from right to left.
Arrows may be used on all connecting lines to point out explicitly the direc-
tion of the flow.

5. Sentences, symbols, or words may be used inside the flowchart boxes.

The arrow (<) denotes replacement.

7. Use quotation marks around a message that will be written out.

o

