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INTRODUCTION

The aim of these notes is to give a survey of the main
developments in the theory of "ordinary'", 1e. characteristic 0
representations of finite Chevalley groups which have occurred
in recent years. In the year 1969-70 a seminar on finite
groups arising from algebraic groups was held at the Institute
for Advanced study. In this seminar T.A. Springer gave sone
lectures on Harish-Chandra's philosophy of cusp forms, which had
at that time been applied also to these finite groups. Springer
then stated the so called '"Macdonald conjectures" which predicted
that there would be families of representations of these groups
parametrized by the characters of the vgrious "maximal tori".

An important breakthrough came in 1976 when Lusztig and Deligne
in their famous paper [18] published a proof of these conjectures,
by constructing virtual representations of the groups on the

2-adic cohomology of certain varieties.
An outline of the contents is as follows. Chapter I is
a review of the main results that we need on the "absolute
theory" of reductive algebraic groups over an algebraically
closed field. In Chapter II and in the rest of the notes we
consider the situation where G 1s a connected reductive group
defined over Fq, and where F 1s a Frobenlius endomorphism
of G. The group GF of fixed points under F 1is the finite
group whose representation theory will be studied. The classification
of the maximal tori of aF is described, leading us to the

problem of constructing a family of virtual representations of
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GF corresponding to each torus. In Chapter III this is done

in the easiest case, 1e. in the case of the "split torus",
leading to the principal series representations. In Chapter IV
the theory of Harish-Chandra 1s described and this brings out
the importance of constructing cuspidal (discrete series)
representations.

Chapter V is perhaps the raison d'etre for these notes.
In recent years I have detected a growing dissatisfaction among
finite group theorists about assuming the existence and main
properties of gf-adic cohomology on an axiomatic basis. I have
therefore endeavored in this chapter, starting from a brief
review of the classical theory of sheaves on a topological
space and of sheaf cohomology, to give an idea of how t-adic
cohomology groups are constructed and to give a feeling for their
properties by pointing out classical analogues when possible.
It is hoped that thls chapter will be of independent interest.

Chapter VI contains the main results in the paper of
Lusztig and Deligne. If T 1s an F-stable maximal torus of G,
a virtual representation Rg(e) of GF 1is constructed
corresponding to each character ® of TF (1e. homomorphism of TF
into 6:, where & 1s different from p, the characteristic of
Fq). If o0 1s regular, ie. not fixed by any non-trivial

element of N(T)F/ TF, then R%(e) is irreducible, up to sign.

Orthogonality properties of the Rg(e) are established, and
their dimensions are computed. The connection between this

theory and the Harish-Chandra theory 1s established; in
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particular if T 1is a "minisotropic torus" and 6 is a regular
character of TF then +R2(6) 1s cuspidal (but not all
cuspidal representations arise this way). The proof of an
important result in the paper [18] ((6.3) of these notes)

which leads to a reduction formula for the character values of
the Rg(e) has so far been 1lnaccessible to many group theorists
because of the technical machinery involved. I have described
the main ideas in this proof, omitting some of the details,

and to my mind this is the most interesting feature of this
chapter. The rest of the material follows either the Lusztig-
Deligne paper [18] or the monograph of Lusztig [48].

The determination of the explicit’values of the
characters of the R%(e) remains one of the main unsolved problems
in the theory. The work of Springer and Kazhdan which enables
us to write down the values at unipotent elements in terms of
"trigonometric sums" on the Lie algebra (provided p and q
are large) is described in Chapter VII. Finally in Chapter VIII
I have tried to bring the material up-to-date by describing
recent work of Lusztig on the classification of representations
of classical groups and of "unipotent'" representations for all
types. This chapter also contalns a section on Hecke algebras
ie. centralizer algebras of the representations of GF induced
from certain representations of parabolic subgroups. These
algebras arise naturally when we try to decompose these induced
representations.

The notes are iatended to be accessible to advanced
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graduate students. A knowledge of the representation theory
of finite groups to the extent of say, Parts I and II of the
book by Serre [66] 1s assumed; some knowledge of algebraic
groups 1is desirable but not absolutely necessary. In Chapters
II through VII I have given proofs of most of the results;
Chapter VIII is essentially a review of recent results but I
have included some discussions of proofs. The bibliography
includes mainly the papers that I have quoted in the notes.
For supplementary references the reader can consult a survey

article by Curtis [14].
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CHAPTER I. REVIEW OF RESULTS ON ALGEBRAIC GROUPS.

The references for this chapter are [5], [32], and [40].
We willl define affine varieties, introduce linear algebraic
groups over an algebraically closed field, and review some of
thelr basic properties.

We will mostly follow the notation of [40]. Let K be

an algebraically closed field. An affine variety XCk? 1is

the set of zeros in K" of a (finite) set of polynomials in
K[xl,xz,...,xn]. The Zariski topology on K® 1s defined by
stipulating that the closed sets are affine varieties. Then
we have the induced Zariski topology on any subset X of K",
An affine variety X 1s said to be irreducible if X
is not the union of two proper non-empty closed subsets. Any
affine variety can be written as the union of a finite number
of closed irreducible subsets called its components. If the
affine variety X 1is defined by a set of polynomials which
generate an ideal I of K[xl,xz,...,xn], X 1is irreducible

if and only if I 1is a prime ideal. The ring K[X]

= K[xl,xz,...,xn]/l is called the affine coordinate ring of
X. Each element f + I ¢ K[X] (where f ¢ K[xl,xz,...,xn])
gives rise to a K-valued function on X; 1if (al,az,...,an)

e X, we map it on f(al,az,...,an) e K. So K[X] 1is also
called the algebra of polynomial functions on X. It 1is a
finitely generated K-algebra, and X can be identified with
HomK(K[X],K). If X 1s irreducible, the dimension of X 1is

the transcendence degree of the quotient field K(X) of K[X],



over K.

Let XC:Kn, YC K™ be affine varieties. We say a map
¢:X+Y 1s a morphism if o(al,az,...,an) = (vl(al,az,...,an)...,
wm(al,az,...,an)) where Vysenes¥ € K[xl,xz,...,xn]. The
morphism ¢ 1induces a comorphism o':K[Y] + K[X] by
o.(f) = ¢-f and 0. is a K-algebra homomorphism. If X,Y
are affine varities, we can define a product variety XxY and
K[XxY] ~ K[X] ® K[Y].

We can define the Zariski topology on projective n-space
PN over K by taking closed sets to be the common zeros of a
set of homogeneous polynomials over K. The closed subsets of

P" are called projective varieties. A quasi-projective variety

is an open set in a projective variety.

We regard GL(n,K), the group of all nxn invertible
matrices over K, as being embedded in an. Then a group
G C GL(n,K) is called a linear algebraic group if it is the
intersection with GL(n,K) of a closed subset of k%, A map

G » H of linear algebraic groups is a morphism if it is a

morphism in the sense of affine varieties and a group

homomorphism.

Examples of linear algebraic groups.

1. GL(n,K).

2. SL(n,K), the group of nxn matrices with determinant 1 over K.

¢ [0 0J
3. Sp(2n,K) = {A ¢ GL(2n,K)]| A( ) A= }, where
~J 0 -J 0

« 1
where J 1s the nxn matrix (\ 1.
1-°
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¢ (100 10
4. 0o(2n+1,K) = {A e GL(2n+1,K)| “A({00J ) A= [0 0
0J 0 0J

where char K ¥ 2.
S0(2n+1,K) = 0(2n+1,K) () SL(2n+1,K).
t 0J 0J
5. 0(2n,K) = {A ¢ GL(2n,K)| A A = }
Jo Jo
where char K ¥ 2.

S0(2n,K) = 0(2n,K) () SL(2n,K).

Remark. The groups of 4 and 5 have to be defined
differently in characteristic 2. See [9], p. 8.

6. The group of diagonal matrices over K.
7. The group of upper triangular matrices over K.
8. The group of upper triangular matrices over K with entries
1 along the diagonal.
9. GZ(K): A group of type G, over € can be defined as
the group of automorphisms of a Cayley algebra. In
analogy with this, we can define a group Gz(K) over K
to be generated by 7x7 matrices over K satisfying

certain conditions (see e.g. [58], p. 400).

Let G be a linear algebraic group. Then there 1is a
unique irreducible component G© of G containing the identity
element, and G° 1s a normal subgroup of finite index. G
is connected (in the Zariski topology) if and only if G 1is
irreducible, and if and only if G has no closed subgroup of
finite index. (See [40], 7.3.)



Example. 0(2n,K) 1s not connected, whereas SL(2n,K)
is connected.

Definitions. 1. G 1is simple if it has no closed
connected non-trivial normal subgroups.

Example. SL(n,K).
2. G 1s semisimple if it has no closed connected non-trivial
normal abelian subgroups.

Examples. SL(n,K), Sp(2n,K), SO(2n+1,K), S0(2n,K).
3. G 1s unipotent if it 1s isomorphic to a closed subgroup
of the group of upper triangular nxn matrices over K with
entries 1 along the diagonal, for some n.

Example. The additive group of K 1s isomorphic to
la
the group { }, a e K.
01

4, G 1is reductive if it has no closed connected non-trivial
normal unipotent subgroups.

Examples. GL(n,K), CSp(2n,K) (the group of symplectic
similitudes).
5. G 1is a torus if it is isomorphic to a product of multi-
plicative groups of K.

Example. The group of nxn diagonal matrices over K.

In the famous Chevalley Seminar of 1956-58 [11] the
semisimple groups over K were classified up to isomorphism.
The simple ones fall into families of types A,B,C,D (classical
groups) or Gz’Fu’Es’E7’E8 (exceptional groups). In the

notation we have used above, SL(n,K) = A, _;(K), S0(2n+1,K)



= Bn(K), So(2n,K) = Dn(K), Sp(2n,K) = Cn(K). (See [40], §32.)
For the rest of this chapter we assume that G 1is a
connected reductive linear algebraic group over K and
state certain properties of G.
Definition. A maximal connected solvable subgroup of G
is called a Borel subgroup of G.
Proposition 1.1. (See [40], 21.3, 23.1) (i) All the

maximal tori In G are conjugate in G.
(11) All the Borel subgroups of G are conjugate.
(111) If B 41is a Borel subgroup then NG(B) = B,

The dimension of a maximal torus is called the rank of
G. G has a maximal connected normal solvable subgroup called
its radical, and the quotient is semisimple. The rank of the

quotient group 1s called the semisimple rank of G. Let T be

a maximal torus of G. Then N(T)/T is a finite group called
the Weyl group of T and denoted by W(T). It is a finite
reflection group. We have the Bruhat decomposition G = U BwB
where w 1s a representative for we W in N(T), Hen

and the double cosets are disjoint. We have N(T)() B = T,
(See [40], 28.3.)

A subgroup P of G 1is called a parabolic subgroup if

it contains a Borel subgroup. A parabolic subgroup P has a

Levl decomposition, 1e. a semidirect product decomposition

P =LV where V 1is the maximal connected unipotent normal
subgroup of P and is called the unipotent radical of P. L

is reductive and 1s called a Levi subgroup. It is not unique,



but any two Levi subgroups are conjugate. In particular, if
B 1s a Borel subgroup we have B = TU where T 1is a maximal
torus and U 1s a maximal unipotent subgroup of G. (See [40],
30.2.).

For any maximal torus T 1let X(T) = Hom(T,K'), the
group of morphisms of T into K* (ie. characters of T) and let

vV = X(T) ; R. Then W(T) acts on V and this is the natural

representation of W(T) as a reflection group. There is a

subset ¢ of X(T) which is an abstract root system ([40], p. 229)

in V, except that ¢ may not generate V 1if G 1s not semisimple.
The elements of ¢ are called the roots of G with respect to

T. We can choose a set of simple roots A 1in ¢ such that every
root is either a positive root, ie. a linear combination of roots in
A with positive coefficients, or a negative root, ie. a linear
combination of roots in A with negative coefficients. Then

o = ¢¥VUe~ where ¢%(9~) 1s the set of positive (negative)

roots. For each a € ¢ there 1s a T-stable connected unipotent
subgroup Uu of G and isomorphisms x, :K + U, such that
subgroups U, (ae¢) and T. The subgroup U generated by

the U, (ae8¥) 1s a maximal unipotent subgroup. Then TU 1is a
Borel subgroup, and in fact the choice of a Borel subgroup
containing T 1s equivalent to the choice of a set of simple

roots in ¢. The subgroup of G generated by the U, (ac¢”)

is called the opposite of U and is denoted by U~. For

-1

each w ¢ W(T) Let U; =UNwWw Then we have



the following refinement of the Bruhat decomposition. Every
element x in G can be written uniquely as x = uwtu'
where u e U, u' ¢ U;, t e T. (See [40], 26.3, 27.3, 28.4.)

Remark. For an easy treatment of the Bruhat decomposition
in the case of SL, and Sp2n see [80], p. 73.

Finally we mention the Jordan decomposition of elements
of G. Suppose Xx e GL(V) where V 1s a finite-dimensional
vector space over K. Then we say x 1s semisimple if x 1s
a diagonalizable automorphism of V and that x 1is unipotent
if all of its eigenvalues are 1. If x 1s an arbitrary
element of GL(V) we have x = Xx_.x_ = x x_ where x is

S™u u’'s s

and X are determined

semisimple and x - i

u is unipotent:; x
uniquely by these conditions. Now let x e G. Then we have

X = su = us where, in any embedding G- GL(V), s maps onto

a semisimple element and u onto a unipotent element. We call

s the semisimple part of x and u the unipotent part of x.
(See [40], 15.3.) A torus of G consists entirely of semisimple

elements and a unipotent subgroup consists entirely of unipotent

elements.



CHAPTER II. CLASSIFICATION OF TORI.

In this chapter we will assume that X = ﬁp for some
prime p.

Let X be an affine variety over K. We say X is
defined over Wq C K, or has an Fq-rational structure, if
X can be defined by a set of polynomials with coefficients
in Fq. If X and Y are affine varieties defined over Fq
we can talk of a morphism ¢:X+Y being defined over Fq; we
require a set of polynomials Vys¥oseeesibpy defining ¢ (see
the definition in Chapter I) to be polynomials over Fq.

Suppose X 1s defined over Tq. Then the affine
coordinate ring A = K[X] has a subring Ay which 1s an Fq-

algebra such that A0(3 K = A. We have a map F:A+A called
F
q

morphism defined by ¢(ay ® A) = aj ® 29 (ag € Ag, A € K).

Then F¢ = ¢F 1s the map a +» a@ of A. F 1s an algebra
homomorphism and is a bijection from A onto Aq, and for
each a € A there is an n > 1 such that Fla = ad", (For
the detaills of this see the proof of 2.10.) The map ¢ 1s a
bijection and 1s a semilinear ring homomorphism (ie ¢(ra) =

= 2d¢(a) for A e K, a € A), and for each a € A there is an
n > 1 such that ¢"(a) = a. Giving an Fq—rational structure
on X 1is equivalent to defining an Fq—algebra AO C A with

A0 ®K = A, and this in turn is equivalent to giving either a

map F or ¢ with the above properties. For instance, 1if



