Mathematical
Analysis

a straightforward
approach

K.G.BINMORE



MATHEMATICAL
ANALYSIS

A STRAIGHTFORWARD APPROACH

K.G.BINMORE

Professor of Mathematics L.S.E.

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE
LONDON - NEW YORK - MELBOURNE



Published by the Syndics of the Cambridge University Press

The Pitt Building, Trumpington Street, Cambridge CB2 1RP
Bentley House, 200 Euston Road, London NW1 2DB

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1977
First published 1977
Printed in Great Britain at the University Press, Cambridge

Library of Congress Cataloguing in Publication Data

Binmore, K G 1940-
Mathematical analysis.

Includes index.

1. Mathematical analysis. 1. Title.
QA300.B536 515 76-28006
ISBN 0 521 21480 7 hard covers
ISBN 0 521 29167 4 paperback



PREFACE

This book is intended as an easy and unfussy introduction to mathematical
analysis. Little formal reliance is made on the reader’s previous mathematical
background, but those with no training at all in the elementary techniques of
calculus would do better to turn to some other book.

An effort has been made to lay bare the bones of the theory by eliminating as
much unnecessary detail as is feasible. To achieve this end and to ensure that all
results can be readily illustrated with concrete examples, the book deals only
with ‘bread and butter’ analysis-on the real line, the temptation to discuss gener-
alisations in more abstract spaces having been reluctantly suppressed. However,
the need to prepare the way for these generalisations has been kept well in mind.

It is vital to adopt a systematic approach when studying mathematical analy-
sis. In particular, one should always be aware at any stage of what may be
assumed and what has to be proved. Otherwise confusion is inevitable. For this
reason, the early chapters go rather slowly and contain a considerable amount of
material with which many readers may already be familiar. To neglect these
chapters would, however, be unwise. ‘

The exercises should be regarded as an integral part of the book. There is a
great deal more to be learned from attempting the exercises than can be obtained
from a passive reading of the text. This is particularly the case whenjas may fre-
quently happen,ithe attempt to solve a problem is unsuccessful and it is necess-
ary to turn to the solutions provided at the end of the book.’

To help those with insufficient time at their disposal to attempt all the exer-
cises, the less vital exercises have been marked with the symbol . (The same
notation has been used to mark one or two passages in the text which can be
omitted without great loss at a first reading.) The symbol * has been used to
mark exercises which are more demanding than most but which are well worth
attempting.

The final few chapters contain very little theory compared with the number
of exercises set. These exercises are intended to illustrate the power of the tech-
niques introduced earlier.in the book and to provide the opportunity of some re-
vision of these ideas.

This book arises from a course of lectures in analysis which is given at the
London School of Economics. The students who attend this course are mostly
not specialist mathematicians and there is little uniformity in their previous

ix



Preface X

mathematical training. They are, however, quite well-motivated. The course is a
‘one unit’ course of approximately forty lectures supplemented by twenty in-
formal problem classes. I have found it possible to cover the material of this
book in some thirty lectures. Time is then left for some discussion of point set
topology in simple spaces. The content of the book provides an ample source of
examples for this purpose while the more general theorems serve as reinforce-
ment for the theorems of the text.

Other teachers may prefer to go through the material of the book at a more
leisurely pace or else to move on to a different topic. An obvious candidate for
further discussion is the algebraic foundation of the real number system and the
proof of the Continuum Property. Other alternatives are partial differentiation,
the complex number system or even Lebesgue measure on the line.

I would like to express my gratitude to Elizabeth Boardman and Richard
Holmes for reading the text for me so carefully. My thanks are also due to
‘Buffy’ Fennelly for her patience and accuracy in preparing the typescript. Final-
ly, I would like to mention M.C. Austin and H. Kestelman from whom I learned
so much of what I know.

July 1976 K.G.B.
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l REAL NUMBERS

1.1 Set notation

A set is a collection of objects which are called its elements. If x is an
element of the set S, we say that x belongs to S and write

x€E€S.

If y does not belong to S, we write y & S.
The simplest way of specifying a set is by listing its elements. We use the
notation

A = {%, 15‘\/2963 ﬂ}
to denote the set whose elements are the real numbers ¥, 1,+/2, e and 7.
Similarly
B = {Romeo, Juliet}
denotes the set whose elements are Romeo and Juliet.
This notation is, of course, no use in specifying a set which has an infinite
number of elements. Such sets may be specified by naming the property which

distinguishes elements of the set from objects which are not in the set. For
example, the notation

C = {x:x>0}
(which should be read ‘the set of all x such that x > 0’) denotes the set of all
positive real numbers. Similarly

D = {y:y loves Romeo}

denotes the set of all people who love Romeo.

It is convenient to have a notation for the empty set (. This is the set which
has no elements. For example, if x denotes a variable which ranges over the set
of all real numbers, then

{(x:x*+1=0} = 0.

This is because there are no real numbers x such that x> = —1.
If S and T are two sets, we say that S is a subset of T and write



2 Real numbers

SCT

if every element of S is also an element of 7.

As an example, consider the sets P = {1,2,3,4}and Q ={2,4}. Then Q C P.
Note that this is not the same thing as writing Q € P, which means that Q is an
element of P. The elements of P are simply 1, 2, 3 and 4. But Q is not one of
these.

The sets A, B, C and D given above also provide some examples. We have
A C Cand (presumably) B C D.

1.2 The set of real numbers

It will be adequate for these notes to think of the real numbers as being
points along a straight line which extends indefinitely in both directions. The
line may then be regarded as an ideal ruler with which we may measure the
lengths of line segments in Euclidean geometry.

I N R L

—2 =1 0 1 2 3

The set of all real numbers will be denoted by R. The table below distin-
guishes three important subsets of R.

Subset Notation Elements

Natural numbers

(or whole numbers) N 1,2,3,4,5,...

Integers YA ..—2,—1,0,1,2,3,...
Rational numbers P
(or fractions) Q 0,1,2,—1,13,3,—%5—-3,...

Not all real numbers are rational. Some examples of irrational numbers are
V2,eand 7.

While we do not go back to first principles in these notes, the treatment will
be rigorous in so far as it goes. It is therefore important to be clear, at every
_ stage, about what our assumptions are. We shall then know what has to be
proved and what may be taken for granted. Our most vital assumptions are con-
cerned with the properties of the real number system. The rest of this chapter
and the following two chapters are consequently devoted to a description of the
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properties of the real number system which we propose to assume and to some
of their immediate consequences.

1.3 Arithmetic

The first assumption is that the real numbers satisfy all the usual laws
of addition, subtraction, multiplication and division.
The rules of arithmetic, of course, include the proviso that division by zero is
not allowed. Thus, for example, the expression

2

0

makes no sense at all. In particular, it is not true that

We shall have a great deal of use for the symbol e, but it must clearly be
understood that oo does not represent a real number. Nor can it be treated as
such except in very special circumstances.

14 Inequalities

The next assumptions concern inequalities between real numbers and
their manipulation.
We assume that, given any two real numbers a and b, there are three mutually
exclusive possibilities:

(i) a>b (ais greater than b)
(ii) a=b (aequalsb)
(iiiya<b (ais less than b).

" Observe that 2 <b means the same thing as b >a. We have, for example, the
following inequalities.

1>0;3>2;2<3; —1<0; —3<-2.
There is often some confusion about the statements
(ivia>b (ais greater than or equal to b)
(v) a<b (aisless than or equal to b).
To clear up this confusion, we note that the following are all true statements.
120,322,121, 2<3; —1<0; —3<-3.

We assume four basic rules for the maniputation of inequalities. From these
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the other rules may be deduced.
(DIfa>band b >c,thena>c.

(IT) If @ > b and c is any real number, then
ate>b+ec.

(IIT) If @ > b and ¢ > 0, then ac > bc (i.e. inequalities can be multiplied
through by a positive factor).

(IV) If a > b and ¢ <0, then ac < bc (i.e. multiplication by a negative factor
reverses the inequality).

1.5 Example If a > 0, prove thata™* > 0.

Proof We argue by contradiction. Suppose that @ > 0 but that a ' <0.
It cannot be true that ' = Q (since then 0 = 0.¢ = 1). Hence

a' <.
By rule III we can multiply this inequality through by @ (since a > 0). Hence

1 =a'.4<0.a = 0.

1

But 1 < 0is a contradiction. Therefore the assumption ¢~* < 0 was false. Hence

al>0.

1.6 Example If x and y are positive, then x <y if and only if x* < y2.

Proof We have to show two things. First, that x < y implies x? < y?,
and secondly, that x? < y* implies x < y.
(i) We begin by assuming that x < y and try to deduce that x? < y%. Multiply
the inequality x < y through by x > 0 (rule III). We obtain

x2 < xy.
Similarly
xy <y?,

But now x? < y? follows from rule I.
(ii) We now assume that x? < y? and try and deduce thatx < y. Adding —x?
to both sides of x? < y? (rule II), we obtain

y2—x2>0
ie. (y—x)(y +x)>0. N
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Since x +y >0, (x + )™ > 0 (example 1.6). We can therefore multiply
through inequality (1) by (x + »)™* to obtain
y—x>0
ie. x<y.

(Alternatively, we could prove (ii) as follows. Assume that x? < y? but that
x 2 y. From x > y it follows (as in (i)) that x* > y?, which is a contradiction.)

1.7 Example Suppose that, forany e >0,a <b + €. Thena <b.

Proof Assume that ¢ > b. Then a — b > 0. But, for any € > 0,
a<b + €. Hence a <b + € in the particular case when € = b —a. Thus

a<b+(@a—b)
andso a<a.
This is a contradiction. Hence our assumption @ > b must be false. Therefore
a<b.
(Note: The symbol € in this example is the Greek letter epsilon. It should be

carefully distinguished from the ‘belongs to’ symbol € and also from the symbol
& which is the Greek letter xi.)

18 Exercise

(1) If x is any real number, prove that x2 > 0. If 0 <a<1andb > 1,
prove that
(H0<a*<a<1 (i) p2>p>1.

(2) Ifb>0and B> 0 and
a A
—_ < -,
b B
prove that aB < bA. Deduce that
a atA A

b < b+ B < B’

(3) Ifa>b and ¢ >d, prove that a + ¢ > b + d (i.e. inequalities can be
added). If, also, b > 0 and d > 0, prove that ac > bd (i.e. inequalities
between positive numbers can be multiplied).

(4) Show that each of the following inequalities may fail to hold even
though ¢ >b and ¢ >d.

Da—c>b—d
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b
d
(iii) @c > bd.

(ii) g >

What happens if we impose the extra condition that 5 > 0 and d > 0?
(5) Suppose that, forany e >0,a —e <b <a + €. Prove that a = b.
(6) Suppose that @ <b. Show that there exists a real number x satisfying
a<x<b.

1.9 Roots

Let n be a natural number. The reader will be familiar with the notation
y =x". For example, x> =x.x and x* = x.x.x.
Our next assumption about the real number system is the following. Given
any y 2 0 there is exactly one value of x = O such that

y = x".

(Later on we shall see how this property may be deduced from the theory of
continuous functions.)

If y 20, the value of x 2 0 which satisfies the equation y = x" is called the
nth root of ¥ and is denoted by

x = yl/n.

When n = 2, we also use the notation v/y = y'/2. Note that, with this con-
vention, it is always true that \/y = 0. If y > 0, there are, of course, fwo num-
bers whose square is 3. The positive one is \/v and the negative one is —+/y.
The notation = +/y means /¥ or —\/".

If r = m/n is a positive rational number and y > 0, we define

yr — (ym)lln-
If r is a negative rational, then —r is a positive rational and hence y ™" is defined.
If y > 0 we can therefore define y" by

1
y = =
We also write ¥° = 1. With these conventions it follows that, if ¥ >0, then y"
is defined for all rational numbers r. (The definition of y* when x is an irrational
real number must wait until a later chapter.)

1.10 Quadratic equations

If y >0, the equation x? = y has two solutions. We denote the positive
solution by v/y. The negative solution is therefore —+/y. We note again that
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there is no ambiguity about these symbols and that * +/y simply means ‘v/y or
=V

The general quadratic equation has the form
ax?+bx+c =0
where a # 0. Multiply through by 44. We obtain
4a’x* + 4abx +4ac = 0
(Qax +b)>*—b+4ac = 0
QQax +b)* = b* —4dac.

It follows that the quadratic equation has no real solutions if »> —4ac <0,
one real solution if 2 — 4ac = 0 and two real solutions if 5> — 4ac > 0. If
b —4dac >0,

2ax +b = £~/(b* —4ac)
v - —b /(6> —4ac)
2a

The roots of the equation ax? + bx + ¢ = 0 are therefore

_ —=b—~/(b? —4ac) _ —b+ (b —4ac)
B 2a - 2a ’

03

and f

It is a simple matter to check that, for all values of x,
ax? +bx+c = a(x —a)(x —f).

With the help of this formula, we can sketch the graph of the equation

y=ax®+bx+ec.
y =ax?+bx+c
y=ax?+bx+c
TN
o ~—"8 o B\
a>0 a<<0

111 Example A nice application of the work on quadratic equations
described above is the proof of the important Cauchy—Schwarz inequality . This
asserts that, if@,,a,,...,4, and by, bs, . . ., b, are any real numbers, then

(@b, +raby+ .. +anh,)? < @ +adi+.. . +a2)GI+HbE+ ... +b2).
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Proof For any x,

0 < (@1x + by)? + (@2x +b2)* + ...+ (apx + by)?
= @+...tad)x?+2a1by+ ... Fapnb)x +(Bi+ ...+ DY)
= Ax?+2Bx + C.

= Ax? + 2Bx + C > 0 for all values of x, it follows that the equation

Ax? + 2Bx + C = 0 cannot have two (distinct) roots. Hence

ie.

(2B)? —4A4C<0
B*< AC

which is what we had to prove.

112
(1)

()

(3)

“)

(%)

(6)

Exercise

Suppose that 7 is an even natural number. Prove that the equation
x" =y has no solutions if y <0, one solution if y =0 and two
solutions if y > 0.

Suppose that # is an odd natural number. Prove that the equation
x" =y always has one and only one solution.

Draw graphs of y =x? and y = x> to illustrate these results.
Simplify the following expressions:

(i) 8?3 (i) 277473 (ii) 32%/5.

If y >0, z >0 and r and s are any rational numbers, prove the follow-
ing:

@Dy =y () y™ ="y (i) (yz) = y'z".
Suppose that @ > 0 and that « and g are the roots of the quadratic
equation ax? + bx + ¢ = 0 (in which b? — 4ac > 0). Prove that
y =ax? + bx + c is negative when & < x < § and positive when x <«
or x > f. Show also (without the use of calculus) that y =ax? + bx + ¢
achieves a minimum value of ¢ — »%*/4a when x = —b/2a.

Let a,, a3, - . . ,a, be positive real numbers. Their arithmetic mean A4,
and harmonic mean H,, are defined by

po_mtat. e 1f1 1 1
n n " nla, da; an-

Deduce from the Cauchy—Schwarz inequality that H, < A4,,.
Letay,a,,...,apand by, b4, . . . , b, be any real numbers. Prove
Minkowski’s inequality, i.e.

n 172 n 172 n 1/2
{Z(ak+bk)2} < {Zla},} + {Z bg] )

k=1 ke =
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For the case n = 2 (or n = 3) this inequality amounts to the assertion
that the length of one side of a triangle is less than or equal to the sum
of the lengths of the other two sides. Explain this.

1.13 Irrational numbers

In § 1.2 we mentioned the existence of irrational real numbers. That
such numbers exist is by no means obvious. For example, one may imagine the
process of marking all the rational numbers on a straight line. First one would
mark the integers. Then one would move on to the multiples of ¥ and then to
the multiples of 4 and so on. Assuming that this program could ever be com-
pleted, one might very well be forgiven for supposing that there would be no
room left for any more points on the line.

w- £
19 e

b= ]
oo
wies —4
Nk -
whkn

But our assumption about the existence of nth roots renders this view unten-
able. This assumption requires us to accept the existence of a positive real num-
ber x (namely +/2) which satisfies x2 = 2. If x were a rational number it would
be expressible in the form

where m and » are natural numbers with no common divisor (other than 1). It
follows that

m? = 2n?

and so m? is even. This implies that m is even. (If m were odd, we should have
m =2k + 1. But then m? = 4k% + 4k + 1 which is odd.) We may therefore write
m = 2k. Hence

4k = 2n?
n? = 2k

Thus 7 is even. We have therefore shown that both m and n are divisible by 2.
This is a contradiction and it follows that x cannot be rational, i.e. /2 must be
an irrational real number,

Of course, +/2 is not the only irrational number and the ability to extract nth
roots allows us to construct many others. But it should not be supposed that all
irrational numbers can be obtained in this way. It is not even true that every
irrational number is a root of an equation of the form



