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COMMUTING NONSELFADJOINT OPERATORS
AND COLLECTIVE MOTIONS OF SYSTEMS

M.S. Liv¥ic
Department of Mathematics
Ben Gurion University of the Negev
Beer Sheva, Israel

Introduction

The spectral analysis of nonselfadjoint operators in the single
operator case was developed during the fifties and sixties thanks to
the efforts of many mathematicians. Then it was realized that this
analysis forms a mathematical basis for the theory of open systems,
interacting with the environment. In the light of the success of
this theory, attempts have been made to create an analogous theory
for several commuting operators, based on a generalization of the
Nagy-Foias functional model to the case of several Lndependent
variables. It turned out, however, that this approach was ineffective.
Moreover, the following generalization of the classical Cayley-Hamilton

Theorem was obtained:

Two commuting operators with finite dimensLonal Amaginary parits
ane connected, 4An genendic case, by a certain algebraic equation. The
degree of this equation does not exceed the dimension of the sum of

ranges of imaginary parts.

This result shows that the genuine theory of commuting nonself-
adjoint operators with finite dimensional imaginary parts is deeply
connected with analytic functions on algebraic manifolds and it cannot
be based only on functions of independent variables. Recent investiga-
tions of commuting operators was carried out in two directions. One
of them deals with semigroups of shifts and it is presented in
L.L. Waksman's monograph [13]. The other direction, which also is
presented in this issue of "Lecture Notes'" is based on operator colliga-
tions and collective motions of open systems [2-9]. In the case of
collective motions all interacting systems distributed along the x-axis,
form, at each given moment of time, one big spatial system. The
corresponding input-output fields are compatible with internal collec-
tive states iff they satisfy certain partial differential equations of
hyperbolic type. Actually, every given wave equation can be expressed
as an external display of corresponding collective motions. In this



way one can obtain, for instance, the Schradinger, Klein-Gordon and
Dirac equations. It turns out that the theory of commuting nonself-
adjoint operators is deeply connected with the problem of wave
dispersion in a medium: the above mentioned algebraic equation between
commuting operators is nothing else but the corresponding dispersion
law for the input-output waves. It is possible that the so called
"quasi-particles'" [1] can be described, at least from the mathematical
point of view, as manifestations of collective motions. If the input
field vanishes then the output manifestations of internal states
behave like actions at a distance, decaying with respect to distance
and depending also on time. If there exists a nonvanishing input
wave, propagating along the x-axis, then quasi-particles are repre-
sented by a combined filed, consisting of the '"ruling'" input wave

and of the all output manifestations, provoked by this wave.

§1. Single-Operator Colligations: Review of Basic Results

Let A be a bounded linear operator in a Hilbert space or in a
finite dimensional space H. The closure G of the image of the
difference A-A* is called the nonhermitian subspace of operator A.
In many cases of interest this subspace is finite dimensional. The
restriction of the type dim[range(A-A*)] < «» plays an important
role. As an example let us take the Newton-Leibnitz integral

X
(Af)(x) =i [ f(s)ds , (0 € x € &)
0
It is a nonselfadjoint operator in L2 and the image of 2 Im(A):
1 ya
T (A-A")f = [ f(s)ds , (0 € x € &)
0

is the one-dimensional subspace of all constant functions in the
interval 0 < x ¢ £. Moreover [2,3] the Newton-Leibnitz integral can
be characterized up to the unitary equivalence by the properties:

1) dim[range(A-A%)] =1

2) spectrum(A) = {0}
This example shows that the number n = dim G can be helpful for the

classification of nonselfadjoint operators.

Many problems of Mathematical Physics lead to equation of the

form

af
ot
where f(t) € H is a state of the corresponding system. In physical

i + Af =0 , (1)

applications the energy (or the number of particles) in the state f



is proportional to the scalar product (f,f). If A=A* then the
scalar product (f(t),f(t)) 1is a constant and in this case the system
is said to be closed. In general the system interacts with environ-
ment and the corresponding operator A is not selfadjoint. It is
always possible to represent the difference A-A* in the form

T (A-A%) = o%op (2)
where &: H > E is a linear mapping of H into a new Hilbert (or
finite dimensional) snace E, o 1is a bounded selfadfoint operator
in E and ¢*: E > H 1is the adjoint of ¢:

(6f,u) = (f£f,%*u) , (f € H, u € E)

One of the representations of the form (2) can be derived in the

following way:

1 ARy
—i' (A A ) = PCOPG N
where G 1is the nonhermition subspace, PG is the orthogonal projec-

tion onto G ,
o A xR
O"i_(AA)|G

and E=G, ®=PG.

The set X = (A,H,¢,E,0) which satisfies the cond#tion (2) is
called a colligation. In the following we assume that subspace E is
finite dimensional: dim E = n < ». The space H 1is called the
internal snace of the colligation and E - the coupling space.

With every colligation we associate an open system which is

defined by eauations of the form

3 %{ + Af = d*olu(t)] (3)

v(t) = u(t) - i¢[f(t)] (4)
where v(t), v(t) € E are an input, and an output respectively.
These relations have not been chosen arbitrarily. It is easy to check
that for such a system the following law of metric (energy, number of
particles) balance holds:

$ (£,6) = (ou,w) - (ov,v) , (5)
where (ou,u) and (ov,v) can be interpreted as metric flows through

the input and the output respectively.

Proof of the metric balance formula:

Using (3) and (4) we obtain



T D = G0 v (5,55 = Uaf-iero(u),6) + (£,iAf-i0%0(w)) =

= (1 (A-A")£,£) - i(o(u),0f) + i(ef,0(u))
and
(ou,u) - (ov,v) = (ou,u) - (o(u-i®(f)),u-ide(f)) =
= i(e(f),0(u)) - i(o(u),o(f)) - (¢*0d(u),u)

The colligation condition (2) implies (5).
Let us consider a solution of equation (3) of the form

u(t) = uge?t, £y = £ett L v(t) = vpeltt (6)
It is easy to see that

£, = (A-A1) " loru, (7

vy = SMy, , (8)
where

S(A) = I-i6(A-A1) 1oro(a) (9)

and A is a regular point of the resolvent.

Operator-function S(A) is said to be the characteristic
(transfer) function of colligation (A,H,¢,E,0). From (5) it follows
for solution (6) that

I(A'A*)(foyfo) = (Ouoruo)'(c"'o,vo) (10)
This formula implies the following

Theorem 1
The characterdistic function S()A) has the following propernties:

(Iml)[S*(k)cS(X)-o] >0 , (Imx # 0) (11)
S*(\)eS(A) = 0o , (ImA = 0) (12)
It can be pnroved the following important [2]

Factorization Theorem

let H=H;=>H »>H,> ... H ;=2H =0 be a chain of Linvarianz
subspaces of operator A and Hi = Hk 0 Hk-l' Then the characteristic

function S(A) 1is a product

S(\) = Sm(A)Sm_l(x) 55 SZ(A)SI(X) (13)
where sk(x) (k=1,2,...,m) 1is the characteristic function of the
colligation

_ 1
X, = (A‘Hl,Hk,PkQ,E,o) (14)

(Px is the orthogonal projection on Hi)



The colligation X = Pk(X) is said to be the projection of X onto

Hi. The colligation X 1is said to be the coupling of the projections
Xk: X = Xm v Xm—l sy ¥ Xl. To the coupling of colligations there

correspondes the chain coupfing [2,9] of corresponding systems: the
output of each link coincides with the input of the next one.

It is easy to check that the subspace
A = span{Ak¢*(E)} = span{A*k¢*(E)} 5 (C € k < =)

reduces A and that the restriction of A to the orthogonal
complement HO =Hof is selfadjoint. The subspace i is said to
be the principal subspace of the colligation.

Theorem 2 [2]. Let the space E and the selfadjoint operatorn o be
given. Assume that det(o) # 0. Then the characteristic function
S(A) determines a cornesponding colligation up to an unitary trhans-
formation of Lts principal component. The class Q(o): An operator-
function W(A): E - E 1is said to be a function of the class Q(o) if

it has the following properties:

1) W(X) is a meromorphic function in the open upper half plane
ImAx > 0
2) W(A) is holomorphic in a neighbourhood |A| > a of X =« and

W(eo) = I.
3) WY oW(A) > o (Imh > 0) (15)
4) W (N)oW(A) = o0 (Imx = 0) (16)

The following theorem holds [2]:
Theorem 3

Let o=0" be a given invertible operdtor in E. A given function
W(A) belongs to the class Q(o) A46 W(A) L8 the characternistic
function o some colligation X = (A,H,9,E,0).

I1f, for instance, dim E = 1, then S(A) 1is a scalar function and we
can assume that o=1. In this case the characteristic function S(X)

can be represented in the following form [2,9]:

N x-xl’; 1
S(A) = kzl W . exp[ I *—a(—STJ 0 ¢ Ngw (17)
(Im)\k >0, L ImAk < =), where a(s) 1is a real nondecreasing function.

The corresponding operator Af=f' can be representing (up to a
unitary transformation) in the space tz L, in the following

triangular form



N £
fl =2 f +1 = B, B.f. + ig, [ f(s)ds, (j=1,2,...,N)
k kTk j=k+1 k™3] k 0
X
fr(x) = a(x)f(x) +1i [ f(s)ds , (0 £ x £ &)
0

3
where Bk = (2 Im kk)é. If dim H < », then £=0 and N = dim H.

If spectrum(A) = {0} then N=0 and a(x) = 0. In this case the

triangular model turns into the Newton-Leibnitz operator
X
(Af) (x) =i [ f(s)ds , 0 < x g2
0
The characteristic function in thig case is

S(\) = exp(i 1)

For the generalization of formulas (17), (18) to the case n > 1
see [2].

§2. Commutative Colligations and Collective Motions

(18)

(19)

(20)

Let (A,B) be a pair of linear bounded operators in H. Define

the subspaces

= _* = _*_ = o
GA-(HW, GB-(TB')H, G = G,+Gg

The subspace G 1is called the nonhermitian subspace of the pair

(21)
(A,B).

We assume in the following that dim G = n < . Let us consider, for

example, the operators

(Af) (x)

b'e
i [ £(s)ds
0
(feL,, 0« xx< &)
x
[ (s-x)f(s)ds
0

(Bf) (x)

It is easy to see that B = A2 and
£
T (A-AME = [ £(s)ds = (£,1)1
0
1 * 4
T (B-B™)f =i [ (x-s)f(s)ds = i(f,1)x-i(f,x)1
0

Hence G = {c1+c2x} is two dimensional

Definition. Let H,E be Hilbert spaces, (A,B)-bounded linear
operators in H; o(A), o(B)-bounded selfadjoint operators in E,
® - a bounded linear mapping of H into E. A set

X = (A,B;H,%,E;0(A),0(B))

(22)
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is said to be a colligation if

% (A-A*) = o*g(A)0, % (B-B*) = o*g(B)o (23)
If range ¢ = E and Ker o(A) N Ker o(B) = 0 the colligation is
called a sftnict colligation. A colligation is said to be commutative
if AB=BA. An arbitrary given pair (A,B) can be embedded in a
strict colligation with E=G, @=P;, o(A) = % (A-A*)'G,

-1 p_op*

o(B) = 1 (B-B )'G.

If AB=BA then the ranges of selfadjoint operators

(AB*-BA*) = i[(B-B*)A*-(A-A%)B¥) (24)

[k L ot ]

(B*A-A*B) = i[(B-B*)A-(A-A%)B] (25)

belong to the nonhermitian subspace

G = range(A-A*)+range(B-B¥) (26)
Remark. If X is strict then &*E=G, ¢G=E and dim E = dim G.
Indeed, relation (23) imply that range(A-A*) = range¢*g(A),
range(B-B*) = ranged*o(B) and G = ¢*(rangeoc(A)+rangec(B)) = &*E.
If one assumes that (¢G,U0)=0 then (G,¢*U0)=0 and ¢*UO=0. Hence
(8H,Uy) = (H,0*U)) = 0 and U, = 0.

0

Corollary. If X is strict and commutative then there are two
selfadjoint operators <y and Y in E, satisfying the following
conditions:

% (AB*-BA*) = 6%y0 (27)

1 * * ot

T (B*A-A™B) = o*Yye | (28)
where ¢, = 3|G.

Remark. The equalities (24) and (23) imply
2 Im(AB*) = o*[0(A)8B*-g(B)oA"] ,
2 Im(B*A) = 0*[0(A)®B-0(B)¢A]
Hence for strict colligations we obtain:
o (A)8B*-0(B)oA* = yo
o (A)dB-0(B)dA = Yo ,
Then substituting and using (23) we obtain
i[0(A)00*a(B)-0(B)do*o(A)]0 = (Y-y)0o
Hence, for strict colligation the relation

Y -y = i[0(A)d*c(B)-0(B)dd*c(A)]
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is valid.

Operators Yy, y play an important role but the condition
®(H) = E is too restrictive: the projection of a strict colligation
on a subspace is not always strict. Moreover, in the simplest case
when dim H = 1, colligations are not strict unless dim E = 1. To
overcome these difficulties we use the notion of a regular colliga-

tion, introduced by N. Kravitsky [5].

Definition. A commutative colligation is said to be #egufar if there

exists a selfadjoint operator vy in E such that the equality
o(A)oB*-g(B)oA* = yo (29)
is valid. Let us define Y as follows:
Y = y+i[0(A)88*0 (B)-0(B)dd*0(A)] (29")
It is easy to check that Y satisfies the following condition
o(A)0B-0(B) oA = Y0 (30)

Analogously from (30), (29') it follows (29). It is evident that
strict colligations are regular. The operators y and Y are
defined uniquely for strict colligations but for regular colligations
it is not so. We will include operators <y and Y in the notation

of a regular colligation
X = (A,B;H,%,E;0(A),0(B),y,Y) ,
where y and Y are connected by the so called "linkage' equality

(29'). They satisfy the regularity conditions (29), (30). The
regularity conditions can be written in a determinantal form

Ad, A* Ao, A ~
oM, Al ve o (A) = yo £31)
6(B)o, B o(B)s, B
and the linkage equation has the form
o(A)o, d*c(A) 1 o~
s(B)o, o*a(B)| = T (YY) (32)

Let us assume now that an input, a state and an output depend also on
a spatial coordinate x (x; € X ¢ xl).

Definition. An input u(t,x), a state f(t,x) and an output Vv(t,x)
are said to be a colfective input, state and output respectively if

they satisfy equations of the form:

1 24 A - sro) Uit 01, %)
i %é + Bf = o*o0(B) [u(t,x)] ey
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v(t,x) = u(t,x)-ie[f(t,x)] , (35)
where
X = (A,B;H,9,E;0(A),0(B)) (36)

is a colligation, i.e.

,}(A-A*) = ®*g(A)0
(37)
%—(B-B*) = 0% (B)o

So, at the arbitrary fixed point x (xO £ X < xl) the equation
(33) defines a temporal system. The input and the internal state
depend also on x. In the case of collective motions all temporal
systems, distributed along the x-axis, at the same moment of time
behave like one big spatial system: the equation (34) defines a
connection between the internal states at different points of the
x-axis. For collective motions the following laws of metric balance

hold:

3
25,6

(c(A)u,u) - (c(A)v,V) (38)

S5 = ®u,u) - (@(B)V,V) (39)

Assuming that equations (33) and (34) are consistent for arbitrary
initial conditions f(tn,x0)=f0 we conclude that AB=BA. On the line

t = 51T+t0 5 X = EZCT+x0 (40)
where ¢ denotes the light speed in the vacuum,equations (33), (34)
imply

i E @Bt - oK), (41)

v = u-id¢(f) , (42)

where g-K = g1A1+g2A2 " A1 = A, A2 = cB ,

The system (41) in the direction E = (51,52) corresponds to the
motion Xx = V-(t-t0)+x0 of the point x along the x-axis with the

constant velocity V = €, If £1=1, €2=0 then V=0 and x=x

22

€1 0°

In this case we obtain the temporal system at fixed point X=X If
€1=O, 52=1 then V=« and t=t0, which corresponds to the spatial
system at fixed moment of time t=t;. Thus, in the case of collective
motions there exists a family of open systems related to motions

X = Vt+x0

corresponds to the 4infinite speed of the point x, which is an

along the x-axis. In particular, the spatial system

immediate action at a distance: the spatial system defines a so0lid
frame fon all possiblLe motions of temporal systems, distrnibuted along
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the x-ax4is.
Theorem 4

Assume that X 44 a strnict commutative colligation. Then an 4in
put u(t,x) 4s a collective input Lf and only Lif u(t,x) satisgfdies
the PDE

o(B)%% = o (A) %% - iyu (43)

The corresponding output satisfies the equation

o (B)Y = o (AL - iFv (44)

Proof. We use integrability conditions

2% _ 3’
9tox oxat

Equations (33), (34) imply
9 ~p* = 3 _p%
= (Af-0*c(A)u) =7 (Bf-9*0(B)u)
Hence
of of _ du
A 5; - B 5{ = @*[C(A) 3;

Equations (33), (34) also imply
of of

- o(B) 34 (45)

A - B 3% i[Bd*c (A)-Ad*0(B)]u
Using (29) we obtain
of of _ .ok
AE(— BW—1¢Y (46)

Equalities (45), (46) imply

Ju Ju .
@*[G(A) X o(B) 3t 1yu] =0
which implies for strict colligations the equation (43). For v=u-io¢f

we obtain

o)) - om) I - ifv -

o(a) 3¢ - o(B) - io(a)e 3+ iomye 2 - iFu-Fer -

i(y-Y)u + [0(A)®B-o(B)oA]f - [0(A)ed*s(B)-0(B)dd*s (A)Ju-yof
Using (30) in the form

o (A)9B-0(B)OA = Yo (47)
and

Y-y = i(0(A)®d*c(B)-0(B)dd*c (A)) (48)

we obtain
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ov 9 .~ i ~ ~ .~ ~
o(A) 5% - 0(B) 5% - i¥Vv = i(y-Y)u + You + i (Y-y)u - Yef = 0
Remarks: 1) Theorem 4 implies that <y corresponds to the input and

Y corresponds to the output in a natural way. We will denote Y=Y1n

and ¥=y°YY. 2) If o(B) > 0 then PDE (43), (44) are of hyperbolic
tvpe. Let us consider collective motions of the form
W = uoel(kt+ux) g s fOel(kth) g Voel(xt+ux) (49)

Theorem 4 implies that u and v are solutions of equations (43)

and (44) resvectively. Hence U, and Vv are solutions of algebraic

) 0

equations

(Ao (B) -uo (A)+y M), = 0 (50)

(Ao(B)-uo(A)+YOUt)VO =0 (51)
Later we will prove the following important equality:

det (A0 (B)-uo(A)+y'™) = det(ho(B)-uo(A)+y° %) (52)
The polynomial

D(A,n) = det(Ao(B)—uo(A)+yi”) (53)

is said to be the discriminant of the colligation. The corresponding

algebraic curve
I = {(A,u) € C,p, D(A,u) = O}

is said to be the discriminant curve,

The subspaces

E'™(M) = Ker(Ao(B)-po(A)+y' ™) (54)
EOUt (M) = Ker (Ao (B)-uo(A)+y°!Y) (55)
where M = (A,u) 1is an arbitrary point of the curve T are said to be

the joint input and the joint output subspaces respectively. Equations
(50), (51) imply that u, € E'T(M), v, € E°Yt(M). 1In the case
o(B) > 0 to each real value u there correspond n real roots

Al(u), ey An(u) of the equation
D(A,u) =0 (56)

Hence, to each real value p there correspond n plane collective

waves of the form (49).

§3. Characteristic (Transfer) Functions

Let us consider special motions

u = u.et?’T f =f g L2t , V =V el?T (57)



