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These notes are concerned with seminormal operators on a Hilbert
space. In the past decade several major results on this class of
operators have been obtained, some of which appear mystifying and have
created stirs of interest in the area. These results have come from
(at least) five different sources and this makes it somewhat difficult
to appreciate what is happening. The aim of these notes is to paint
a reasonably self-contained picture of some of the developments in the
area of seminormal operators which have occurred during the last ten
years.

The fact that seminormal operators are interesting became obvious
in 1970 when C. R. PUTNAM [5] established that the planar Lebesgue
measure of the spectrum of any non-normal seminormal operator is
positive. Perhaps just as deep is the result cktained in 1973 by
C. A. BERGER and B. I. SHdAW [1l] which shows that any hyponormal
operator with a cyclic vector has a trace class self-commutator.

Jhile these two developments were taking place R. W. CAREY and J. D.
PINCUS were studying an invariant (referred to as the principal
function) for operators having a trace class self-commutator. This
invariant arose as a two dimensional analogue of the phase shift from
the theory of trace class perturbations of self-adjoint operators.
HELTON and HOWE [l1], in an attempt to understand the work of Carey
and Pincus, began studying the star-algebra generated by polynomials
in an operator that has a trace class self-commutator. These authors
introduced a tracial bilinear form on this algebra which thev repre-
sented via integration up against a signed measure on the plane.
Pincus immediately verified this measure has derivative equal to the

principal function. Independently, these authors have useu these



v

invariants todescribe a fairly complete spectral theory for seminormal
operators. A most interesting result concerning these matters is

the recent work of C. A. BERGZIR [l] which shows that the size of the
principal function for a hyponormal operator can give information
concerning cyclic vectors. That such information was carried in the
principal function was conjectured by Helton and Howe. In another
direction, J. G. STAMPFLI [8] has produced an interesting dichotomy in
the local spectral theory of seminormal operators. Stampfli has shown
that local spectral subspaces of hyponormal operators are always
closed (but possibly trivial), whereas in the cohyponormal case the
local spectral spaces are always non-trivial. It is the above mention-
ed results of these authors that occupies the major portion of these
notes.

The notes are organized as follows.

Chapter 1 is mainly concerned with the local spectral theory of
seminormal operators. Examples and simple applications of local
spectral theory are presented.

Chapter 2 contains a "singular integral" model for seminormal
operators. This model plays an important role in the remaining por-
tion of the notes. 1In this chapter the model is used to make trans-
parent a pair of self-adjoint commutator inequalities of Putnam [2]
and Kato[2].

Chapter 3 contains what its title describes. First, we derive
Putnam's inequality wﬁich establishes that the planar Lebesgue measure
of the spectrum of a non-normal seminormal operator is positive.
Secondly, we derive the result of sBerger and Shaw |l] which establishes
that a hyponormal operator with a cyclic vector has a trace class self-
commutator.

Chapter 4 presents a discussion of the phase shift of M.G. Krein
[1]. This phase shift arises in connection with trace class pertur-

bations of self-adjoint operators. The existence and properties of



the phase shift are crucial to our proof of the existence of the prin-
cipal function. Several remarks concerning the phase shift are pre-
sented which are intended to give the reader a better feeling for

the principal function.

Chapter 5 contains a brief study of nearly normal operators. For
a portion of this chapter we restrict to the seminormal case. This
provides several simplifying advantages. One such advantage is the
ease with which we can compute the principal function for singular
integral representations of seminormal operators. The finale of the
notes is a result of Berger [1l] relating the size of the principal
function to the existence of cyclic vectors.

A general "thank you" is offered to my colleagues, students, and
friends who have influenced the writing of these notes. More
specific thanks are given to Ann Ware and Dianne Byrd for their care-
ful typing of this work, and to Tom Howe for a final proofreading.

Finally, a special thanks to my wife Carolyn for her constant support.

Athens, Georgia
Spring 1979
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CHAPTER I

SEMINORMAL OPERATORS

In this chapter, we set down some of the basic properties of semi-
normal operators. A fairly complete description of the local spectral
theory for seminormal operators is presented. Examples are constructed

and spectral theory is illuminated with these examples.

1. Definitions and Basic Properties.

The notation % is reserved for a complex separable Hilbert space

with inner product ( , ). The term operator indicates a bounded linear
operator on ¥. Operators will be denoted by capital letters
A, B, C, ... . The full algebra of operators on ¥ is denoted by L(¥).

As is customary, if A, B are operators on ¥, then their commutator is
denoted by [A,B] = AB - BA. The commutator [A*,A] = A*A - AA* is re-

ferred to as the self-commutator of the operator A.

As the reader surely knows, an operator N € L(¥) is called normal
when N commutes with N*. Equivalently, N is normal when the self-

commutator [N*,N] is zero. A generalization of normality is the fol-

lowing: An operator S € L(¥) 1s called seminormal in case its self-
commutator D = [S*,S] is semidefinite. In the case D > 0 the operator
S is called hyponormal and when D < 0 the operator S is called
cohyponormal. 1In spite of the fact that the adjoint of the class of
hyponormal operators is merely the class of cohyponormal operators,
there are several important stages where the development of the classes

is entirely different. Examples of these differences appear in local

spectral theory and in the study of cyclic vectors.



For any A € L(¥) and a,8 €C
[(aA+8)*, aA+8] = |a|2[a%,A] .

Consequently, aS + B will be seminormal whenever S is seminormal.
This last remark remains valid if in both instances the word "semi-
normal" is replaced by either "hyponormal" or "cohyponormal".

Let A € L(¥) and z € €. The notation Az = A - zI will be used.
To avoid confusion, we indicate that A; = (Az)* = (A*)E . Let

A = X + 1Y be the Cartesian form of the operator A, so that

X %[A+A*] and Y = f%[A - A*]. Write z = x 4+ iy in Cartesian form.

Easy computations show

2 2 .
* = !
AZAZ xX + Yy + i[XY-¥YX] (1.1)
2 2 .
A_A* = X° + Y - 1i[XY-YX] (1.2)
z 'z X Yy
* = 2j _
[AZ,AZ] 21 [XY-YX]. (1.3)

The identities (1.1)-(1.3) will be used freely in the sequel. Identity
(1.3) provides an obvious connection between seminormal operators and
pairs of self-adjoint operators with semidefinite commutators.

The following simple lemma will be used.
Lemma 1.1. Let A and B be in L(¥). 1In order that the inequality
lagl < [iB£]]
hold for every f € ¥, it is necessary and sufficient that A = KB for

some contraction operator K.

Proof. The sufficiency of the condition is clear. If the in-
equality [Af] < [Bf]| holds, then we define Kg = Af, whenever
g = Bf. This defines K on the range of the operator B, moreover,

Kgl < llgll, for g in this range. Thus K extends to a contraction on



the closure of the range of B. Setting K to be zero on the orthogonal
complement of the range of B provides a contraction operator on ¥ such

that A = KB. The lemma is proved.

The following proposition describes three equivalent formulations

of hyponormality.

Proposition 1.1. ©Let H € L(%). The following statements are

equivalent:
(i) H*H - HH* > 0
(ii) |E*£] < |HE|, for all £ € ¥.

(ii1) H* = KH, for some contraction operator K.

Proof. Statements (i) and (ii) are obviously equivalent. The
equivalence of (ii) and (iii) follows immediately from Lemma 1.1. The

proposition is proved.

The following properties of hyponormal operators follow quickly
from Proposition 1.1.

1°. Let H be hyponormal. Then we have the inclusion
ker H < ker H¥*, (1.4)

where for A € L(¥), we have used the notation ker A to indicate the
kernel of the operator A. Note, in particular, the inclusion (1.4)

shows that ker H is a reducing subspace for the hyponormal operator H.
2°. Let H be hyponormal. Then we have the inclusion
R(H) < R(H*), (1.5)

where for A € L(¥), we have used the notation R(A)for the range of the
operator A. The inclusion (1.5) follows by taking adjoints in state-

ment (iii) of Proposition 1.1 .



From 2° we learn the following. If the equation

(H=-A\)f = ¢

]

has a solution £ ¢A' then the equation

(H*-X)f = ¢
has a solution f = WT = [K(A)]*(bR satisfying
ll‘yx“ < yh‘D)\‘ll ’
where K()) denotes some contraction satisfying H; = K(A)H\ . We note

that K(A) is not uniquely determined (this can be remedied by insisting
that K(A) be zero on [R(Hx)]l). Further, the dependence of K(A) on

the parameter X is not simple.

o

3°. Let H be an invertible hyponormal operator. The operator

H_l is also hyponormal. In fact, if H* = KH, then K = H*H_l. Thus

K* = (H_l)*H, which provides the equation (H_l)* = K*H_l. The hypo-
1

normality of H ~ follows from Proposition 1l.l1l. For another proof of

this remark, we could compute

1 =L =i,

ye, a7t = @y« a7t

[(H™ y*HL

The latter identity can be used to show H_l is hyponormal. This com-
putation also shows that the ranks of the self-commutators of H and H—l
are equal. Similar remarks can be made for seminormal and cohypo-
normal operators.

The following lemma will be used twice in the sequel. Its simple

proof is left as an exercise:

Lemma 1.2. Let {an}:=l be a sequence of positive numbers which

satisfy the relations

< a a n=2,3,... .



Then

n
a; < a . n= 1,2y wse s

The notation ¢ (T) will be used for the spectrum of an operator

T € L(¥). The spectral radius of T will be denoted by rsp(T). Thus

A€o (T)}.

rsp(T) = max{ |

The following proposition gives an example of one of the properties

which seminormal operators share with normal operators:

Proposition 1.2. Let S be a seminormal operator in L(¥). Then

ixsh = rsp(s) .

Proof. We will employ the identity

T n;l
rsp(S) = Iim |5 /m

n

Without loss of generality it can be assumed that S = H is hyponormal.

Let K be a contraction operator such that H* = KH. Set a_ = Il=™ ],
B= 1,20, .  Then
2 |2 | | TR (2
a; = [HL® = [H*H| = |KH"| 5 it “ = a, .
Similarly,
2 _ . np2_ n_n; n-1_.n+1, n-1 n+1
anf=hH <= | = | (a*) KH I < | (H*) | [ I = a -18n+1 *
for n = 2,3,... . From Lemma 1.2, we obtain
n [ ot [ o
a3 = i = |5 = ay» n= 1,2,... .
Therefore, |H"| = [H|™, n = 1,2,... . It follows that rsp(H) = |H|.

The proposition is proved.



The following corollary of Proposition 1.2 gives a growth con-

dition on the resolvent of a seminormal operator:

Corollary 1.1. Let S be a seminormal operator. Assume AO is a

complex number such that XO £ o(S). Then
-1y _ 1
lFts=14) ll_dist(AOTngT) '

where dist (AO,O(S)) denotes the distance from AO to o (S).

Proof. From Proposition 1.2

: A € o((S—AO)-l)} .

“(S—AO)_IL = max{ |\

This latter quantity equals [min{|k—%0‘:k € o(S)}]_l. This ends the

proof.

In the remainder of this section we discuss the usual manner for
splitting off a maximal normal part from a seminormal operator. The
part remaining used to be referred to as "completely non-normal" or
"abnormal" part. More recently, the adjective "pure" has been used to
describe this part. We will use this newer terminology.

The seminormal operator S € L(¥) is called pure in case, the
only subspace reducing S on which S is a normal operator is the zero
subspace.

If H is a hyponormal operator on ¥ and 7 < ¥ is an invariant sub-
space of H, then the restriction HlW(Of H to 7 is also hyponormal. In
fact, assume H7 < 7 and let P be the orthogonal projection of ¥ onto 7.
If K is a contraction operator satisfying H* = KH, then
(HI%)* = PH*I% = PKPH'W( The operator PKP (considered here as acting
on 7 ) is a contraction and the remark follows. The same remark can-
not be made for cohyponormal operators. For example, the restriction

of a unitary operator to an invariant subspace can be an isometric



non-normal (hence non-cohyponormal) operator. Nevertheless, as the
reader may trivially check, the restriction of a seminormal operator
to a reducing subspace is seminormal. Finally, we note the following

useful remark.

4°. Let H be a hyponormal operator on ¥. Assume 7% < % is an

invariant subspace for H such that the restriction operator H}% is
normal. Then 7% reduces the operator H.

The analogue of 4° formulated for cohyponormal operators is not
true. The verification of 4° is left as an exercise.

The following theorem often enables the study of seminormal opera-

tors to be reduced to the case of a pure seminormal operator.

Theorem 1.1. Let S be seminormal operator on %. Denote by Wb(s)
the smallest subspace of ¥ reducing the operator S containing the range
of D = [S*,S]. Set wi(s) = Wb(S)*, Relative to the decomposition
¥ = Wb(s) @ ml(S), the operator S = SO @ Sl’ where S0 is a pure semi-
normal operator and Sl is normal.

Proof. Without loss of generality, it can be assumed that S=H is
hyponormal. In this case D = [H*,H] is non-negative semidefinite. It
suffices to show that any reducing subspace for H on which the restric-
tion of H is normal must be orthogonal to Wb(H). Let 7% be such a

subspace and let £ € 7. Then
0 = |lme® - |m*e|? = o£,5) = [0 %g® .

Thus Df = 0, or in other words, f is orthogonal to R(D). This ends

the proof.



2. Examples.

In this section we assemble some common examples of semi-
normal operators.

Note first, on a finite dimensional Hilbert space every seminor-
mal operator S is normal. Indeed, trace[S*,S] = 0. Since all the
eigenvalues of [S*,S] have the same sign, this forces [$%,8] = 0.

Let N be a normal operator on a Hilbert space X. Assume ¥ is an
invariant subspace of N. The restriction A = N|¥ is called a subnormal
operator on ¥. Let P denote the orthogonal projection of X onto & and

P' = I-P be the complementary projection, then

(A*,A] = (PN*N-NPN*) |, = PNP'N*

X
The last operator is clearly positive and this establishes the well
known result that every subnormal operator is hyponormal. It is inte-
resting to note that subnormal operators used to be called hyponormal
operators. It is not trivial to construct a hyponormal operator which
is not subnormal (see, Halmos [1,p.107]).

As specific examples of subnormal operators we mention the follow-
ing.

1°. Let 22 and Q; be the Hilbert spaces of square summable com-

<5

n=0" respectively. Let K

plex sequences of the form {cn}:=_mand {cn}

be an auxiliary Hilbert space and write

i + _ o+
Lo () = 0, ©H, 0, ()= 2, ®H .
In other words QZ(M)(Q;(M)) consists of the W-valued square summable
sequences of the form {fn}n:_oo ({fn}n=0)' The operator U on QZ(M)

defined by
U{fn}n=—m = {f

n—l}n=—w

is referred to as a bilateral shift with multiplicity equal to the

dimension of M. The operator U is clearly unitary. The subspace



Q;(M) (viewed naturally as a subspace of QZ(M)) is an invariant sub-
space for U. The subnormal operator U+ = UlQ;(M) is called a vector-

*
valued unilateral shift. The range of the self-commutator [U+, U+]

9

+ . _
=0 € QZ(M), for which fn = 0,when n > 0. It

consists of elements {fn}
follows immediately, from Theorem 1.1 of Section 1, that the operator

i .
U+ s pure

2°. Let 1 be a non-negative finite Borel measure in the complex

plane having compact support K. The closure of the polynomials (in
the variable z) in Lz(du) is denoted by Hz(du). The closure of the

rational functions with poles off K is denoted by Rz(du). There holds
12 () < R (an) < (am)

where we must admit the possible equality between any of these spaces.

The subspaces H2(du) and Rz(du) are obviously invariant under the

normal operator Mz defined on Lz(du) by
M £(z) = zf(z)

The subnormal operators Mz| > and Mz| > have received considerable
H R

attention. A result of Bram [l] establishes that every subnormal
operator with a cyclic vector is unitarily equivalent to an operator

of the form MZI , for some measure U.

H2(du)
3°. In this example we use the notations QZ(M) and 2;(M) intro-

duced in Example 1°. Let {An}:—

=00

be a sequence of operators on K

satisfying
ha i <M, n=o0,21,%2, ...,

where M > 0 is a constant. The operator B on Qz(M) defined by
B{f } = {A f N

n’ n=-« n n-1 n=-«
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is called an operator valued bilateral weighted shift. Similarly,

S}

if {An}n=0 is a sequence of operators on M satisfying
l‘IAnll i MI n = 011121"~l

then we define the operator valued unilateral weighted shift A on

25 (H) by

o
o

A{f}o={Af } (f

n° n= n n-1 n=0 -1 - 0).

The bilateral weighted shift B is hyponormal if and only if

A*A_ > A*

SBAL > n—lAn—l’ for all n. Similarly, the unilateral weighted

shift A is hyponormal if and only if A;‘lAn > A¥ for all n > 1.

. n—lAn—l’
The question of purity of the weighted shift operators seems
complicated. Let us consider a more specific example. Let V and D
be non-negative self-adjoint operators on KA. We will assume the range

of V is dense. Set A = YV+D , n > 0, and A = VYV, n < 0. The bila-

teral shift B in this case has the matrix representation

0
.. 0 U [O] o0 ...

R AY 0 0 & 5 s
B =
s s+ & 0 0 V+D 0 & < s

w « = 0 0 0 Vv+D . . .

and the self-commutator of B has the form

o w 0 0 5 o ow
[B*,B] = . . . 0
. . . 0 0o . . .

.-.o@o.-.
o




