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Chapter 1
Examples

This chapter illustrates by examples some situations where the use of biset
functors is natural. It is meant to be an informal introduction, most of the
technical details being omitted, and postponed to subsequent chapters.

1.1. Representation Groups

1.1.1. Let F be a field. If G is a finite group, denote by Ry(G) the representa-
tion group of G over I, i.e. the Grothendieck group of the category of finitely
generated FG-modules. It can be computed as the quotient of the free abelian
group on the set of isomorphisin classes of finitely generated FG-modules, by
the subgroup generated by all the elements of the form [U] — [V] — [W] where
U. V and W are finitely generated FG-modules appearing in a short ex-
act sequence of FG-modules 0 — V. — U — W — 0, and [U] denotes the
isomorphism class of U.

1.1.2. Operations. There are various natural operations connecting the
eroups Rp(G) and Rp(H) for finite groups G and H:

o If H is a subgroup of G, then restriction of modules from FG to FH
induces a restriction map ResSy : Rp(G) — Ryp(H).

e In the same situation, induction of modules from FH to FG yields an
induction map Ind$; : Re(H) — Rg(G).

o If v : G — H is a group isomorphism, there is an obvious associated
lincar map Iso(¢) : Rp(G) — Rp(H).

o If N is a normal subgroup of G, and H = G/N, then inflation of modules
from FH to FG yields an inflation map quﬁ/N : Rp(G/N) — Rp(G).

e Another operation can be defined in the same situation, with the addi-
tional hypothesis that the characteristic of F is coprime to the order
of N: starting with an FG-module V., one can consider the module
Vn of coinvariants of N on V, ie. the largest quotient vector space
of V on which N acts trivially. Then Vy is a FH-module, and the
construction V. — Vy is an exact functor from the category of FG-
modules to the category of FH-modules, because of the hypothesis on

S. Bouc, Biset Functors for Finite Groups. Lecture Notes in Mathematics 1990, 1
DOT 10.1007/978-3-642-11297-3_1. (© Springer-Verlag Berlin Heidelberg 2010
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the characteristic of F: indeed Vy = F ®pny V, and the FN-module F is
projective, hence flat. So the correspondence V +— Vi induces a deflation

map Defg/N : Re(G) — Rp(G/N).

1.1.3. Relations. All these operations are subject to various compatibility
conditions (in the following list, all the conditions involving a deflation map
hold whenever they are defined, i.e. when the orders of the corresponding
normal subgroups are not divisible by the characteristic of F):

1. Transitivity conditions:
a. If K and H are subgroups of G with K < H < G, then
R(‘s;" o R(\s% = Rosg\"- ; Indﬁ o Ind;\l» — In(lﬁ- ;
b. If ¢: G — H and ¢ : H — K are group isomorphisms, then
Iso(y) o Iso(p) = Iso(yy) .
c. If N and M are normal subgroups of G with N < A, then

Infgy o Infg/hy = Infg/ay | Defg/p; o Def&/y = Defgy, -

2. Commutation conditions:
a. If ¢ : G — H is a group isomorphism, and K is a subgroup of G,
then
Iso(¢’) o Res$ = Resg( K © Iso(p)
Iso(y) o Indf = Ind!) ;) o Iso(¢") ,
where ¢’ : K — ¢(K) is the restriction of ¢.
b. If ¢ : G — H is a group isomorphism, and N is a normal subgroup
of G, then
(A G el i s
Iso(¢™) o Def¢;/ny = Defyy /vy © Iso(g)
Iso(y) o Infg/N = Inf”/w(N) oIso(¢”) ,

where ¢” : G/N — H/p(N) is the group isomorphism induced by ¢.
c. (Mackey formula) If H and K are subgroups of G, then

Rosg o Indg\"r = Z Indzﬁ, K oIso(v,) o Rcsf‘;,n,\- ;
T€[H\G/K]

where [H\G/K] is a set of representatives of (H, K)-double cosets
in G,and v, : H'N K — HN*K is the group isomorphism induced
by conjugation by x.



1.1 Representation Groups
d. If N and A are normal subgroups of G, then

e G o G /N £G/M
D(f('./N o Inf(;/A, = Inf(',/NM o De f('./NM .

e. If H is a subgroup of GG, and if N is a normal subgroup of G, then

D(\f((::/N o In(l(,j = Ill(l(I;/I\[,\;N olIso(p) o D('fﬁ/,m,\, S
(

G ‘G _ 1.rH =1 LO/N
Resy o Illf(:/N = I“tH/IlﬁN oIso )o R('“HN/N )

where ¢ : H/HN N — HN/N is the canonical group iscmorphism.
f. If H is a subgroup of G, if N is a normal subgroup of G, and if
N < H, then

LO/N e _ ol e
R(sH/N o Def¢;/n = Defyy )y o Resyy

Ind%; o quﬁ/N = quf::/N o Iu(l%ﬂ; .
3. Triviality conditions: If G is a group, then
Res(; = Id, Ind{, = 1d, Def(i,, =Id, Infg,, =1Id,
Iso(p) = Id, if ¢ is an inner automorphism .

1.1.4. Simplifications. So at this point, there is a rather complicate
formalism involving the natural operations introduced in 1.1.2 and relations
between them. The first observation that allows for a simplification, is that
for each of the operations of 1.1.2, the map Rp(G) — Rp(H) is induced by
a functor sending an FG-module M to the FH-module L @pq M, where L is
some finite dimensional (FH,FG)-bimodule:

e When H is a subgroup of G, and M is an FG-module, then R(-,sﬁ]\[ =
FG ®prq M, so L = FG in this case, for the (FH, FG)-bimodule structure
given by left multiplication by elements of FH and right multiplication
by elements of FG.

e In the same situation, if N is an [FH-module, then Ind(,'}N ~ FG Qpy N,
so L = FG again, but with its (FG,FH)-bimodule structure given by left
multiplication by FG and right multiplication by FH.

e If p : G — H is a group isomorphism, and M is an FG-module, then
the image of M by Iso(y) is the FH-module Iso(¢)(M) = FH ®pq M, so
L = FH in this case, for the (FH,FG)-bimodule structure given by left
multiplication by FH, and by first taking images by ¢ of elements of FG,
and then multiplying on the right.

o If N is a normal subgroup of G, and H = G/N, then the inflated module
from FH to FG of the FH-module V is isomorphic to FH @p;y V, so
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L = FH in this case, with the (FG,FH)-bimodule structure given by
multiplication on the right by FH, and projection from FG onto FH,
followed by left multiplication.

e In the same situation, the module of coinvariants by N on the FG-
module M is isomorphic to FH ®pe; M, so L = FH in this case, with
the (FH,FG)-bimodule structure obtained by reversing the actions in the
previous case.

The second observation is that in each case, the (FH,FG)-bimodule L
is actually a permutation bimodule: there exist an F-basis U of L which is
globally invariant under the action of both H and G, i.e. such that hUg = U,
for any h € H and g € G. In particular, the set U is endowed with a left
H-action, and a right G-action, which commute, i.e. such that (hu)g = h(ug)
for any h € H, u € U and g € G. Such a set is called an (H, G)-biset.

Conversely, if U is a finite (H, G)-biset, then the finite dimensional F-vector
space FU with basis U inherits a natural structure of (FH,FG)-bimodule. If
the functor M +— L @ge M from FG-modules to FH-modules is exact, it
induces a group homomorphism Ry(G) — Rr(H), that will be denoted by
Rp(U). The exactness condition means that the module FU is flat as a right
FG-module. Equivalently, since it is finitely generated, it is a projective FG-
module. Using Higman’s criterion (see [45] III 14.4 Lemme 20), it is easy
to see that this is equivalent to say that for each u € U, the order of the
stabilizer of u in G is not divisible by the characteristic [ of F. In this case,
the biset U will be called right [-free. Note that if [ = 0, this conditions is
always fulfilled.

1.1.5. Formalism. Now the situation is the following: to each finite group G
is associated an abelian group Rp(G). If G and H are finite groups, then to
any a finite right [-free (H,G)-biset U corresponds a group homomorphism
Ry(U) : Rp(G) — Rp(H), with the following properties:

1. Let G and H be finite groups, and let U; and Uy be finite right [-free
(H,G)-bisets. If Uy and U, are isomorphic as bisets, i.e. if there exists
a bijection f : U; — U, such that f(hug) = hf(u)g for any h € H,
u € Uy and g € G, then Rp(U,) = Rp(Us). This is because the (FH,FG)-
bimodules FU, and FU, are isomorphic in this case. This first property
can be summarized as

(B1) U, = U, = Rp(Uy) = Re(Us) .

2. If G and H are finite groups, and if U and U are finite right [-free (H, G)-
bisets, then Rp(U LU U’) = Rp(U) + Rp(U’), where U L1 U’ is the disjoint
union of U and U’, endowed with the obvious (H,G)-biset structure.
Indeed, the (FH,FG)-bimodules F(U LU’) and FU $FU’ are isomorphic.

This property can be recorded as

(B2) Re(ULIU') = Re(U) + Re(U") .
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3. Let G, H, and I be finite groups, let U be a finite right [-free (H,G)-
biset, and let V' be a finite right [-free (K, H)-biset. Then consider the
set

VX/[U:“/XU)/H,

where the right action of H on V x U is given by (v,u)h = (vh, h='u), for
veV,ueU,and h € H. Theset V x U is a (K, G)-biset for the action
induced by k(v,u)g = (kv,ug), for k € K, v € V, u € U, and g € G.
Moreover, it is right [-free if V and U are: the pair (v,u) of V- xy U is
invariant by ¢ € G if and only if there exists h € H such that vh = v
and hu = ug. Since V' is [-free, there is an integer m, not divisible by [,
such that h™ = 1. But then h"™u = ug™ = u, and since U is [-free, there
is an integer m/, not divisible by [, such that (.(/’”)’”, = g™ = 1. In this
situation, one checks easily that

(B3) Re(V) o Rp(U) = Re(V x U) .

This is because the (FK,FG)-bimodules FV @py FU and F(V x g U) are
isomorphic.

4. Finally, if G is a finite group, and if Id¢ is the set G, viewed as a (G, G)-
biset for left and right multiplication, then Id¢ is left and right free,
hence right [-free, and Rp(Id¢) is the identity map: this is because the
functor FG ®p¢ — is isomorphic to the identity functor on the category
of FG-modules. Thus:

(B4) RLI:(I(I(;) = I(l[{,((;) .

This formalism of maps associated to bisets yields a nice way to encode all the
relations listed in Sect. 1.1.3: more precisely, the triviality conditions follow
from Properties (B4) and (B1). For transitivity and commutation conditions,
the left hand side can always be expressed as Rp(V) o Rp(U), where V is a
(K, H)-biset and U is an (H, G)-biset, for suitable finite groups K, H, and G.
By property (B3), this is equal to Rp(V x4 U).

Now the right hand side of the transitivity conditions is of the form Rg(W'),
where W is some (I, G)-biset, and one checks easily in this case that the
(K, G)-bisets V x ;y U and W are isomorphic. So the transitivity conditions
follow from property (B1).

Similarly, the right hand side of the commutation conditions can always be
written as a composition of two or three maps of the form Ry (7;), for suitable
bisets T, or a sum of such compositions in the case of the Mackey formula.
In any case, using properties (B2) and (B3), this right hand side can always
we written as Rp(W), for a suitable (I, G)-biset W, and the corresponding
relation follows from a biset isomorphism V x y U =2 W, using property (B1).
For example, the Mackey formula
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Res$) o Ind$} = Z Indf . ;e 0 Iso(,) o Resty. 1
r€[H\G/ K]

when H and I are subgroups of the group G, can be seen as a translation
of the isomorphism of (H, I\')-bisets

GxgG= |_| H <o Iy Xpoaw K.
re[H\G /K]

where I, is the (HN" K, H" N K')-biset associated to the group isomorphisim
H"NK — HNTK given by conjugation by & on the left. This biset isomor-
phism is nothing but the decomposition of the (H, K')-biset G x¢ G = G as
a disjoint union
G = I_l HaeK
T€[H\G/ K]
of its (H. ) double cosets, keeping track of the (H, K)-biset structure of

each orbit.
1.2. Other Examples

1.2.1. Groups of Projective Modules. Let F be a field. If G is a
finite group, denote by Pr(G) the group of finitely generated projective FG-
modules. Recall that Pe(G) is the quotient of the free abelian group on the set
of isomorphism classes of finitely generated projective FG-modules, by the
subgroup generated by the elements of the form [P 4 Q] — [P] — [Q], where PP
and @ are two such modules, and [P] denotes the isomorphism class of P.

If H is another finite group. and U is a finite (H.G)-biset, a natural
question is to ask if the functor M +— FU @pq M maps a projective FG-
module M to a projective FH-module. In this case in particular, it maps the
module FG to a projective F H-module, hence FU is a projective FH-module.
Conversely, if FU is a projective FH-module, and if M is a projective FG-
module, then FU 2gq M is a projective FH-module: indeed A is a direct
summand of some free module (FG)", where I is some set. Thus FU &g M
is a direct summand of FU wrq (FG)) = (FU) . which is a projective
F H-module.

Using Higman's criterion, it is easy to see that FU is a projective FH-
module if and only if the biset U is left [-free, i.e. if for any u € U, the
order of the stabilizer of u in H is not divisible by [. So if U is a finite left
[-free (H.G)-biset. the functor P +— FU @pq P maps a finitely projective
FG-module to a finitely generated projective FH-module. Since this functor
preserves direct sums, it induces a map Pe(U) : Pp(G) — Pe(H).

Now the situation is similar to the case of representation groups, except
that the condition “right [-free™ is replaced by “left [-frec™: to each finite
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group G is associated an abelian group Pr(G), and to any finite left [-free
(H.G)-biset U is associated a group homomorphism Ps(U) from Pr(G) to
P:(H). These operations are easily seen to have properties (B1)-(B4).
Considering the formalization procedure of Sect. 1.1 backwards, it means
that for the correspondence G +— Pp(G), there are natural operations of
restriction, induction, deflation, and transport by group isomorphism, and
also an inflation operation Infg/‘\v : Pr(G/N) — Pr(G), which is only defined
when N is a normal subgroup of G whose order is not divisible by [. All these
operations satisfy the relations of Sect. 1.1.3, whenever they are defined.

1.2.2. Burnside Groups. If G is a finite group, denote by B(G) the
Burnside group of G, i.e. the Grothendieck group of the category of finite
G-sets. Recall that B(G) is the quotient of the free abelian group on the set
of isomorphism classes of finite (left) G-sets, by the subgroup generated by
the elements of the form [X 11Y] —[X]—[Y], where X and Y are finite G-sets,
and X 11Y is their disjoint union. and [X] denotes the isomorphism class of X
(see Sect. 2.4 for details).

If G and H are finite groups, and if U is a finite (H,G)-biset, then the
correspondence X +— U x¢ X from G-sets to H-sets induces a map B(U) :
B(G) — B(H). One can check easily that these maps have the properties
(B1)-(B4), with Ry replaced by B.

1.2.3. Remark : Let F be a field, of characteristic [. If X is a finite G-
set. the F-vector space FX with basis X has a natural FG-module structure,
induced by the action of G on X. The construction X — FX maps disjoint
unions of G-sets to direct sums of FG-modules, so it induces a map

v B(G) — Re(G)

called the linearization morphism at the group G. These maps are compatible
with the maps B(U) and Rg(U) corresponding to bisets, in the following
sense: if G and H are finite groups, and if U is a finite right (-free (H,G)-
biset. then the diagram

XL

B(G) — Rx(G)

[f(lr’)j l[?:([’)

B(H) —= Rr(H)

XEL

Is commutative.

1.2.4. Cohomology and Inflation Functors. Let G be a finite group,
and R be a commutative ring with identity. When £ is a non negative integer,
the k-th cohomology group H¥(G. R) of G with values in R is defined as the
extension group Exth,.(R. R). In other words
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H*(G, R) = Homp(ra) (R, R[K])

where D(RG) is the derived category of RG-modules.

Now suppose that H is another finite group, and that U is a finite right free
(H, G)-biset. This hypothesis implies that RU is free as a right RG-module.
It follows that the total tensor product RU oo‘,L?(, — coincides with the ordinary
tensor product RU @i —. This yields a map

(‘)[7 : HOIHI)(R(,')(R, R[k]) — H()lll[)(n”)(RU ORrRG R, RU RRraG R[/»]) .
Now RU @ re R = R(U/G), and there are two maps of RH-modules
cv:R— R(U/G) no: R(U/G) — R

defined by =¢/(1) = Z“(;E(,/” uG, and n(uG) = 1 for any uG € U/G. By

composition, this gives a map
H*(U) : H*(G, R)=Homppe) (R, R[k]) — Homp gy (R, R[k])=H*(H. R)

defined by H*(U)(¢) = nu[k] o (RU &g ) o €v.

If K is another finite group, and V is a finite right free (K, H)-biset, one
can check that H¥(V) o HX(U) = H*(V xy U): this follows from the fact
that since U and V are right free, the set (V xy U)/G is in one to one
correspondence with (V/H) x (U/G).

It follows easily that the maps H*(U) between cohomology groups, for fi-
nite right free bisets, have the properties (B1)-(B4), with Rr replaced by H*.

In this case, the formalism of maps associated to bisets encodes the usual
operations of restriction, transfer, transport by isomorphism, and inflation
on group cohomology. The condition imposed on bisets to be right free ex-
presses the fact that there is no natural deflation map for group cohomology,
that would be compatible with the other operations in the sense of relations
of Sect. 1.1.3. Group cohomology is an example of inflation functor. These
functors have been considered by P. Symonds [47], and also by P. Webb [54],
who gave their name. More recently, E. Yaraneri [59] studied the composition
factors of the inflation functor Rp.

1.2.5. Global Mackey Functors. It may happen that for some con-
struction similar to the previous examples, the only operations that are
naturally defined are those of restriction to a subgroup, induction from a
subgroup, and transport by group isomorphism. Functors of this type are
called global Mackey functors, as opposed to the Mackey functors for a fixed
finite group G (see [51]). These global Mackey functors have also been con-
sidered by P. Webb [54]. They can be included in the general formalism of
biset functors, by restricting bisets to be left and right free.
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1.3. Biset Functors

The above examples lead to the following informal definition: let D be a class
of finite groups, and for each G and H in D, let 3(H,G) be a class of finite
(H,G)-bisets. A biset functor F (for D and [3) with values in the category
R-Mod of R-modules, where R is a commutative ring with identity, consists
of the following data:

1. For each G € D, an R-module F(G).

2. For each G and H in D, and for each finite (H, G)-biset U in 3(H,G). a

map of R-modules F(U) : F(G) — F(H).
These data are subject to the following conditions:
(B1) If G and H are in D, then 3(H,G) is closed by isomorphism of (H,G)-

bisets, and
VU,.Uy € B(H.G), Uy =2Uy= F(U,)=F(U>) .

(B2) If G and H are in D, then 3(H, G) is closed by disjoint union of (H, G)-
bisets, and

YU, U' € B(H.G), F(ULU')=F{U)+ F({U’).
(B3) If G. H, and K are in D, then 3(K,H) xy 3(H,G) C B(K.G), and
VV e p(K,H), VU € 3(H,G), F(V)oF(U)=F(\V xuyU).
(B4) If G € D, then the (G, G)-biset Id¢ is in 3(G, G), and
F(Ide) = 1d gy -

If F and F’ are such biset functors, then a morphism of biset functors f :
F — F’ is a collection of maps f¢; : F(G) — F'(G), for G € D, such that all
the diagrams

F(G) L F/(G)

I"((')‘ ll"’((')

F(H)—— F'(H)
fll

are commutative, where G and H are in D, and U € 3(H,G).

Morphisms of biset functors can be composed in the obvious way, so biset
functors (for D and 3) with values in R-Mod form a category.

Equivalently, biset functors (for D and /3) can be seen as additive functors
from some additive subcategory of the biset category (see Definition 3.1.1),
depending on D and /3. to the category of R-modules.
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1.4. Historical Notes

The notion of biset functor and related categories has been considered by
various authors, under different names: Burnside functors, global Mackey
functors, globally defined Mackey functors, functors with a Mackey structure,
inflation functors. I wish to thank P. Webb for the major part of the following
list of references [56]:

e 1981: Haynes Miller wrote to Frank Adams, describing the Burnside cat-
egory, which is the (non full) subcategory of the biset category in which
morphisms are provided by right-free bisets.

e 1985: The Burnside category appears in print: J.F. Adams, J.H.
Gunawardena, H. Miller [1].

e 1987: T. tom Dieck [53, page 278] uses the term global Mackey functor for
functors on this category.

e 1990: I. Hambleton, L. Taylor, B. Williamms [37] consider very similar
categories and functors (the main difference being that morphisms in
their category RG-Morita are permutation bimodules instead of bisets).

e 1991: P. Symonds [47] also considers Mackey functors with inflation, that
he calls functors with Mackey structure.

e 1993: P. Webb [54] considers global Mackey functors and inflation func-
tors.

o 1996: T consider foncteurs d’ensembles munis d'une double action (in
french [6]), i.e. functors on specific subcategories of the (yet unnamed)
biset category.

e 2000: In Sect. 6 of [8]. I use the name biset-functor for the Burnside func-
tor.

e 2000: P. Webb [55] uses the name globally defined Mackey functors for
biset functors.

e 2000: J. Thévenaz and 1 use a functorial approach to study the Dade
group of a finite p-group.

e 2005: In Sect. 7 of [14], I define rational biset functors, now called rational
p-biset functors.

e 2007: E. Yalgin and I [22] use the name of biset category.

1.5. About This Book

This book is organized as follows: Part I exposes a few generalities on bisets
and biset functors, in a rather general framework. Some details on simple
biset functors can be found in Chap.4. Part II focuses on biset functors
defined on replete subcategories of the biset category (see Definition 4.1.7),
i.e. functors with the above five type of operations, but possibly defined over
some particular class of finite groups, closed under taking subquotients (see
Definition 4.1.7). The special case of p-biset functors is handled in Part III,
and some important applications are detailed in Chaps. 11 and 12.



