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Pireface

BY DR. BN ¢, ZEEMAN

Topology and algebra are the two main pillars upon which modern
mathematics is built. The student who has grasped the elementary
principles of these two subjects discovers a simplicity and coherence
running through the whole of mathematics. It is the elementary
principles that are important rather than the technical details, and
the idea of this book is to start from nothing and gently introduce the
reader to the elementary principles of topology. N

Topology is the study of continuity, and underlies every subject in
mathematics and science that uses continuity. In particular topology
underlies calculus, and logically ought to be taught before calculus.
Often the schoolboy who cannot understand calculus when he first
meets it is a better mathematician than the one who swallows it. The
Limiting process of calculus is a sophisticated technical process, in-
clined to impart a flavour of cheating to the boy who has previously
been happy with the precision of arithmetic, algebra and geometry.
This is disastrous because haziness of understanding produces fear of
mathematics. Such a boy ought to be given this book. If he is mature
enough to start calculus then he is mature enough to understand
topology. By grasping the topological principles underlying calculus he
will recapture that feeling of precision.

Ten years ago topology was taught, if at all, only in the third year
at English universities, but today in recognition of the logical place of
the subject, most universities introduce the elementary principles in
the first year. This book covers exactly that first year material. In
ten years’ time it may well be taught in schools.

Compared with previous introductions to the subject, this book has
two outstanding features. First, it is written from a geometrical point
of view: there are plenty of diagrams and the reader is encouraged to
draw his own, and to think geometrically. This is important because
today the habit of geometrical thinking influences even the most
abstract mathematical subjects. Also in higher dimensions, the most
geometrical subject in mathematics is no longer geometry but algebraic
topology, which is the sequel to this book.

Secondly, this book contains all the essential material and no more;
there is room to relax, and there are sufficient exercises and examples
to make it an ideal introduction at any level, be it school, university
or scientific laboratory.



Preface

The first chapter consists of the usual discussion of set theory. The
concept of a diagram consisting of sets and functions has been intro-
duced at the same time. The concepts of equivalence relation and
countability have been -reserved for mention later, in Chapters IV
and V respectively, where they make a natural appearance in connec-
tion with other topics.

The second chapter is a discussion of metric spaces, where the
topological terms open set, ne@ghbourhood etc., have been carefully
introduced. Particular attention is paid to various distance functions
which may be defined on Euclidean n-space and which lead to the
ordinary topology. Sy ¥

In the third chapter, topologlcal space is introduced as a generah—
zation of metric space. A great deal of attention has been paid to
alternative procedures for the creation of a topological space, using
neighbourhoods, etc., in the hope that this seemingly trivial, but
subtle, point may be clarified. Since topological space is a generaliza-
tion of metric space, it is hoped that the reader will observe the
similarity, or perhaps redundancy, in the presentation of these two
topics.

Chapters IV and V are devoted to a discussion of the two most
important topological properties, connectedness and compactness. As
applications the reader is introduced to a little algebraic topology. In
Chapter IV to explain simple connectedness the concepts of homotopy
and the fundamental group are described, except that the group
structure is omitted because the reader is not presumed to know any
group theory. Chapter V is concluded with a discussion of two-
dimensional closed surfaces.

May, 1963 E. C. ZEEMAN
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Theory of Sets
I

1 Introduction

As in any other branch of mathematics today, topology con-
sists of the study of collections of objects that possess a math-
ematical structure. This remark should not be construed as
an attempt to define mathematics, especially since the phrase
“mathematical structure” is itself a vague term. We may,
however, illustrate this point by two important examples.

The set of positive integers or natural numbers is a collec-
tion of objects N on which there is defined a function s, called
the successor function, satisfying the conditions:

1. For each object  in N, there is one and only one object ¥
in N such that y = s(x);

. Given objects = and y in S such that s(z) = s(y), then
x=y;

3. There is one and only one object in N, denoted by 1,

W



Ch. 1 Theory of Sets

which is not the successor of an object in NV, i.e., 1 # s(z)
for each z in N;

4. Given a collection T of objects in N such that 1is in 7 and
foreach zin T, s(x) is alsoin T, then T = N.

The four conditions enumerated above are referred to as
Peano’s axioms for the natural numbers. The fourth condition
is called the principle of mathematical induction. One defines
addition of natural numbers in such a manner that s(z) = ¢ + 1,
for each « in N, which explains the use of the word “successor”
for the function s. What is significant at the moment is the
conception of the natural numbers as constituting a certain
collection of objects N with an additional mathematical struc-
ture, namely the function s.

We shall use the system of real numbers as a second exam-
ple of the fact that the type of entity that one studies in
mathematics is a collection of objects with a certain mathe-
matical structure. This explanation will require several pre-
liminary definitions. -

A commutative field is a collection of objects F and two
functions that associate to each pair a, b of objects from F an
element a + b of F, called their sum, and an element a b of F,
called their product, respectively, satisfying the conditions:

1. Foreacha,bin F,a+ b = b + a;

2. Foreacha,b,cinF,a+ (b+¢) =(a+Dd) + ¢c;

3. There is a unique object in F, denoted by 0, such that
a+0=0+a=aforeachainF;

4. For each a in F, there is a unique object @’ in F such that

a+a =a +a=0;

Foreacha,bin F, a-b = b-a;

Foreach a, b,cin F, a-(b-¢) = (a-b)-c;

7. There is a unique object in F, different from 0, denoted
by 1, such that a-1 = 1-a = a for each a in F;

8. For each a in F, if a is different from 0, there is a unique
object a* in F such that a-a* = a*-a = 1;

9. Foreacha,b,cin F,a-(b+¢) = a-b+ a-c.

&> &



Iniroduction Sec. 1

A commutative field F is thus a set of objects and an addition
and multiplication that satisfies rules analogous to the rules of
addition and multiplication of real numbers.

A field is called Linearly ordered if it has additional struc-
ture, namely a relation “<” which satisfies the properties of
“Jess than” as used in the real number system. Precisely, a
field F is called a linearly ordered field if there is a relation
“<” among certain ordered pairs of objects of F satisfying the
conditions:

1. For each pair of objects z, y in F, one and only one of the
three statements, z < y, z = gy, ¥y < z, is true;

2, For each object zin F, z < y impliesz + 2 < y + 3;

3. For each object z in F such that 0 <z, <y implies
z-2<y-=a

Let T be a subcollection of objects from a linearly ordered
field F. An object b in F is called an upper bound of T if for
each zin T, either z < borz = b. An object a in F is called
a least upper bound of T, if a is an upper bound of T and if
a < b, where b is any other upper bound of T.

As a final definition before describing the system of real
numbers, a linearly ordered field F is called complete if every
non-empty subcollection T of F that has an upper bound also
has a least upper bound. We can now state that the real
number system is a collection R of objects together with oper-
ations of addition and multiplication and a relation “ <’ such
that the collection R, together with this structure, is a complete,
linearly ordered, commutative field.

[The use of the definite article, “the real number system
is...,” should not be construed as asserting that there is only
one real number system, but it is implicitly asserted that the
conditions imposed on the collection R are categorical; that is,
that any two instances of the real number system are indis-
tinguishable, apart from the names or notation used to denote
the objects.]

Thus we see that some of the better-known mathematical

3



Ch. 1 Theory of Sets

objects of study are describable as collections of objects to-
gether with certain specified structures. We shall describe a
topological space in the same terms, although an appreciation
of the utility of this concept can only come later. A top-
ological space is a collection of objects (these objects usually
being referred to as points), and a structure that endows this
collection of points with some coherence, in the sense that we
may speak of nearby points or points that in some sense are
close together. This structure can be prescribed by means of
a collection of subcollections of points called open sets. As we
shall see, the major use of the concept of a topological space is
that it provides us with an exact, yet exceedingly general
setting for discussions that involve the concept of continuity.

By now the point should have been made that topology,
as well as other branches of mathematics, is concerned with
the study of collections of objects with certain prescribed
structures. We therefore begin the study of topology by first
studying collections of objects, or, as we shall call them, sets.

2 Sets and Subsets

* &6 3

We shall assume that the terms “object,” “‘set,” and the rela-
tion “is a member of” are familiar concepts. We shall be
concerned with using these concepts in a manner that is in
agreement with the ordinary usage of these terms.

If an object A4 belongs to a set S we shall write 4 € S
(read, “4 in §’). If an object A does not belong to a set S
we shall write A & S (read, “4 not- in §8”). If 4y,...,4,
are objects, the set consisting of precisely these objects will be
written

{dy, ..., 4.}

For purposes of logical precision it is often necessary to dis-

4



Sets and Subsets Sec. 2

tinguish the set {4}, consisting of precisely one object 4 from
the object A itself. Thus

A€ {4}
is a true statement, whereas
4= {4}

is a false statement. It is also necessary that there be a set
that has no members, the so-called null or empty set. The
symbol for this set is @ (a letter in the Swedish alphabet).

Let A and B be sets. If for each object z € 4, it is true
that z € B, we say that A is a subset of B. In this event, we
shall also say that A4 is coniained in B, which we write

A C B,
or that B contains A, which we write
BDOA.

In accordance with the definition of subset, a set A4 is
always a subset of itself. It is also true that the empty set
is a subset of 4. These two subsets, 4 and @, of A are called
tmproper subsets, whereas any other subset is called a proper
subset.

There are certain subsets of the real numbers that are
frequently considered in calculus. For each pair of real num-
bers a, b with a < b, the set of all real numbers z such that
a < z < bis called the closed interval from a to b and is denoted
by [a, b]. Similarly, the set of all real numbers z such that
a < z < bis called the open interval from a to b and is denoted
by (a,b). We thus have (a, b) C [a, b] C R, where R is the
set of real numbers.

Two sets are identical if they have precisely the same

5



Ch. 1 Theory of Sets

members. Thus, if 4 and B are sets, 4 = B if and only if*
both A C B and B C A. Frequent use is made of this fact in
proving the equality of two sets.

Sets may themselves be objects belonging to other sets.
For example, {{1,3,5,7}, {2,4, 6]} is a set to which there be-
long two objects, these two objects being the set of odd positive
integers less than 8 and the set of even positive integers less
than 8. If 4 is any set, there is available as objects with which
to constitute a new set the collection of subsets of 4. In
particular, for each set 4, there is a set we denote by 24 whose
members are the subsets of 4. Thus, for each set 4, we have
B € 24if and only if B C 4.

Exercises

1. Determine whether each of the following statements is true or
false:

(a) For each set 4, 0 € A.

(b) For each set 4, @ C A.

(¢) For each set 4, 4 C 4.

(d) For each set 4, A € {4}.

(e) For each set 4, 4 € 24,

(f) For each set 4, 4 C 24.

(g) For each set 4, {4} C 24.

(h) 0 € {9}.

(i) For each set A, @ & 24.

(1) For each set 4, @ C 24.

(k) There are no members of the set {D}.
() Let 4 and B be sets. If 4 C B, then 24 C 25,

* The compound statement “P if and only if @, is the conjunction of the two
statements “If P then @ and, “If @ then P.” A statement of the form “P if and
only if @” may also be phrased “If P then @ and conversely.”

6



Set Operations: Union, Intersection, and Complement Sec. 3

(m) There are two distinct objects that belong to the set
{99 {@l} .

2. Let A, B, C be sets. Prove that if A C B and B C C, then
ACC.

3. Let A, ..., A, besets. Provethat if A; C 4,, A: C A, ...,
A, 1 CArand A, C Ay, then 4, = A, = ... = A,.

4. Let A be a set to which there belong precisely n distinct objects.
Prove that there are precisely 2* distinct objects that belong
to 24,

3 Set Operations: Union, Intersection,
and Complement

If z is an object, A a set, and z € A4, we shall say that z is an
element, member, or point of A. Let A and B be sets. The
antersection of the sets A and B is the set whose members are
those objects x such that # € 4 and # € B. The intersection
of 4 and B is denoted by

ANB

(read, “A4 intersect B”’). The union of the sets A and B is
the set whose members are those objects z such that z belongs
to at least one of the two sets 4, B; that is, either x € 4 or
2 € B.* The union of 4 and B is denoted by

AUB
(read, “A union B”).

The operations of set union and set intersection may be
represented pictorially (by Venn diagrams). In Figure 1, let
* The logical connective “or” is used in mathematics (and also in logic) in the
inclusive sense. Thus, a compound statement “P or " is true in each of the three

cases: (1) P true, @ false; (2) P false,  true; (3) P true, § true, whereas “P or @” is
false only if both P and @ are false.



Ch. 1 Theory of Sets

the elements of the set A be the points in the region shaded
by lines running from the lower left-hand part of the page to
the upper right-hand part of the page, and let the elements
of the set B be the points in the region shaded by lines sloping
in the opposite direction. Then the elements of A \J B are
the points in a shaded region and the elements of 4 N B are
the points in a cross-hatched region.

Let A CS. The complement of A in S is the set of ele-
ments that belong to S but not to 4. The complement of A4
in S is denoted by Cs(4) or by S — A. The set S may be
fixed throughout a given discussion, in which case the comple-
ment‘of 4 in § may simply be called the complement of 4 and
denoted by C(4). C(A) is again a subset of S and one may
take its complement. The complement of the complement of
4 is 4; that is, C(C(4)) = A.

There are many formulas relating the set operations of
intersection, union, and complementation. Frequent use is
made of the following two formulas.

Theorem (DeMorgan’s Laws) Let A C S, BC 8. Then
®.1) ({4 U B) = C(4) N C(B),
(8.2) C(4d N B) = C(4) U C(B).
Proof. Suppose t EC(A U B). Thenae ESanda & 4 U B.



Set Operations: Union, Intersection, and Complement Sec. 3

Thus, € A and s & B, or 2 € C(4) and ¢ & C(B). Therefore
z € C(4) N C(B) and, consequently,

C(4 U B) C C(4) N\ C(B).

Conversely, suppose € C(4) N C(B). Thenz € S and 2z € C(4)
and 2 € C(B). Thus, z & A and x & B, and therefore z & 4 U B.
It follows that = € C(4 U B) and, consequently,

C4) NCB) CCA4U B).
We have thus shown that
C4) N CB) = C(4 U B).

One may prove Formula 3.2 in much the same manner as 3.1
was proved. A shorter proof is obtained if we apply 3.1 to the two
subsets C(4) and C(B) of 8, thus

C(C(4) U C(B)) = C(C(4)) N C(C(B)) = AN B.
Taking complements again, we have

C(4) U C(B) = C(C(C(4) U C(B))) = C(4 N B).

Exercises

1. Let A C S,B C 8. Prove the following:

@ @ = C(S). M AUA=A.
(b) S = C(D). (g A4US=S.
© AN CA) = 0. () AN S = A.
d) 4 U C) = 8. G AUD = 4.
(&) AN 4= A G ANP=9.

k) ACBifandonlyif 4\U B = B.

) ACBifandonlyif AN B = A.
(m)AUB=PBifandonlyif A N B = A.
m) ACCB)ifandonlyif AN B=0.
(o) C(4) CBifandonlyif 4 U B = 8.
(p) 4 C B if and only if C(B) C C(4).

(@) 4 C C(B) if and only if B C C(4).



