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Foreword

The purpose of this book is to give an exposition of the classical and
basic algebraic and analytic number theory. For lack of reference, I was
forced to include a minimum of the algebraic theory in Diophantine
Geometry. What is done there is very skeletal, and it seemed worth while
to give a more substantial treatment, which could serve, among other
things, as an introduction to the Artin-Tate notes on class field theory [3].

On the other hand, aside from the classical theory of integral closure,
discrete valuation rings, different and discriminant, I have supplemented
the unit and class number theorem by the standard Minkowski estimate
for the diseriminant, and the Artin-Whaples estimate of field elements in
parallelotopes by a more precise asymptotic estimate. Both of these tend
towards the quantitative point of view (as distinguished from the qualita-
tive point of view of Diophantine Geomelry, quoted as DG).

The four chapters on analytic number theory reproduce with no essen-
tial changes four works in or out of the literature, concerned with the
zeta function and L-functions of a number field:

Tate’s thesis, still unpublished, in Chapter VII.

The treatment of the density theorems for primes in generalized arith-
metic progressions given in a seminar by Artin some 12 years ago.

Brauer’s paper [5] proving the Siegel conjecture on the asymptotic
estimate log (hR) ~ log d'/2.

Weil’s formulation of the explicit formulas for primes [10].

In a certain sense, the plan of the book is still that used more or less by
Hilbert in his Bericht [6], although of course both the algebraic and the
analytic aspects of number theory have been updated (and the class field
theory is omitted). The Bericht contains a large number of computations
and examples which still make it very pleasurable to read. Expositions of
the theory of number fields are principally conditioned by it, and by
Artin’s Algebraic numbers and algebraic functions (and Artin’s unpublished
seminars). The point of view is global, and we deal with local fields only
incidentally. For a more complete treatment of these, cf. Serre’s book [8].
There is much to be said for a direct global approach to number fields,
and I have even inserted the main lemma used by Artin in his original
proof of the reciprocity law. I hope that the reader will thereby acquire
some insight distinet from that exhibited by alternative approaches.

SERGE LaANG
New York, 1963



Prerequisites

Chapters I through V are self-contained, assuming only elementary
algebra, say at the level of Galois theory. I have also taken for granted
some elementary theorems concerning absolute values, which are stated
in full, but whose simple proofs can be found in DG, Chapter I, and
belong properly to a basic course in algebra. Chapter VI uses the lan-
guage of point set topology (and little more).

The chapters on analytic number theory assume some analysis. Chapter
VII assumes Fourier analysis on locally compact groups. Chapters VIIT
through X assume only standard analytical facts (we even prove some of
them) except for one allusion to the Plancherel formula in Chapter X.

In the course of the Brauer-Siegel theorem, we use the formalism of
L-series and characters. The theorems which are assumed without proof
are always explicitly stated and should cause no trouble to a reader who
has reached that stage of the book.

The word ring will always mean commutative ring without zero divisor
and with unit element (unless otherwise specified).

If K is a field, then K* denotes its multiplicative group, and K its
algebraic closure. If f is a polynominal, then f’ is either its formal de-
rivative, or the reduction of f modulo a homomorphisin. The context will
always make clear what is meant.

We use the o and O notation. If f, g are two functions of a real variable,
and ¢ is always = 0, we write f = O(g) if there exists a constant C > 0
such that [f(x)] = Cg(z) for all sufficiently large . We write f = o(g) if
lim,_,, f(z)/g(x) = 0. We write f~ g if lim,_,, f(z)/g(z) = 1.

vi
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CHAPTER 1
Algebraic Integers

This chapter describes the basic aspects of the ring of algebraic integers
in a number field (always assumed to be of finite degree over the rational
numbers Q). This includes the general prime ideal structure.

Some proofs are given in a more general context, but only when they
could not be made shorter by specializing the hypothesis to the concrete
situation we have in mind. It is not our intention to write a treatise on
commutative algebra.

§1. Localization

Let A be a ring. By a multiplicative subset of A we mean a subset
containing 1 and such that; whenever two elements z, y lie in the subset,
then so does the product 2. We shall also assume throughout that 0 does
not lie in the subset.

Let K be the quotient field of A, and let S be a multiplicative subset
of A. By S~'A we shall denote the set of quotients z/s with z in A and
sin S. It is a ring, and A has a canonical inclusion in S~ 4.

If M is an A-module contained in some field L (containing K), then
STIM denotes the set of elements v/s with v € M and s € 8. Then
ST!M is an S~!A-module in the obvious way. We shall sometimes con-
sider the case when M is a ring containing A as subring.

Let p be a prime ideal of A (by definition, p = A). Then the comple-
ment of pin A, denoted by A — p, is a multiplicative subset S = Syof 4,
and we shall denote S~'4 by A,.

A local ring is a ring which has a unique maximal ideal. If o is such a
ring, and m its maximal ideal, then any element z of o not lying in m
must be a unit, because otherwise, the principal ideal zo would be con-
tained in a maximal ideal unequal to m. Thus m is the set of non-units
of o.

The ring A, defined above is a local ring. As can be verified at once,
its maximal ideal m, consists of the quotients x/s, with z in p and s in o
but not in p.

We observe that my N A = p. The inclusion D is clear. Conversely,
if an element y = z/sliessinmy, N A withz€pand s€ S, then x = sy €p
and s  p. Hence y € ).
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Let A be a ring and S a multiplicative subset. Let a’ be an ideal of

S~!A. Then
a = 87’ n A).

The inclusion D is clear. Conversely, let z € a’. Write z = a/s with
some a € A and s € S. Then sz € a’ N A, whence z € S~ !(a’ N 4).

Under multiplication by S~!, the multiplicative system of ideals of A
is mapped homomorphically onto the multiplicative system of ideals of
S~'A. This is another way of stating what we have just proved. If a
is an ideal of 4 and S™'a is the unit ideal, then it is clear that a N S is
not empty, or as we shall also say, a meets S.

§2. Integral closure

Let A be a ring and z an element of some field L containing 4. We
shall say that x is infegral over A if either one of the following conditions
is satisfied.

InT 1. There exists a finitely generated mon-zero A-module M C L such
that M C M.

InT 2. The element x satisfies an equation
2" + ana2" T a0 =0
with coefficients a; € A, and an integer n = 1. (Such an equation will
be called an 7ntegral equation.)

The two conditions are actually equivalent. Indeed, assume INT 2.
The module M generated by 1, z, ..., z" ' is mapped into itseli by the
element z. Conversely, assume there exists M = (vy, ..., v,) such that
aM C M, and M # 0. Then

Wy = a1+ - Gials

Tp = @n1¥1 + ** * + Gunln

with coefficients a;; in A. Transposing v, . . ., 2v, to the right-hand side
of these equations, we conclude that the determinant
T — a1
T — Q22
a;j;

aq;

‘ T — Qnn
is equal to 0. In this way we get an integral equation for z over A.

ProrositioN 1. Let A be a ring, K its quotient field, and x algebraic
over K. Then there exists an element ¢ # 0 of A such that cx is integral
over A.
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Proof. There exists an equation
@n" + -+ ap =0
with a; € 4 and @, # 0. Multiply it by a2 ~'. Then
(@) + -+ +aan ' =0

is an integral equation for a,x over A.
Let B be a ring containing A. We shall say that B is iniegral over A
if every element of B is integral over 4.

ProrositioN 2. If B 1s integral over A and finitely generated as an
A-algebra, then B is a finitely generated A-module.

@ DProof. We may prove this by induction on the number of ring gen-
erators, and thus we may assume that B = A[z] for some element z inte-
gral over A. But we have already seen that our assertion is true in that
case.

ProrosirioN 3. Let A C B C C be three rings. If B is integral over A
and C 1s integral over B, then C is integral over A.

Proof. Let x € C. Then x satisfies an integral equation
2" F by F -+ =0

with b; € B. Let By = Alby, ..., by_;1]. Then B, is a finitely generated
A-module by Proposition 2, and B,[z] is a finitely generated B;-module,
whence a finitely generated A-module. Since multiplication by » maps
B, [«] into itself, it follows that z is integral over A.

Prorosition 4. Let A C B be two rings, and B inlegral over A. Let o
be a homomorphism of B. Then o(B) is integral over o(A).

Proof. Apply ¢ to an integral equation satisfied by any element x of B.
It will be an integral equation for o(z) over o(4).

The above proposition is used frequently when ¢ is an isomorphism
and is particularly useful in Galois theory.

ProposiTioN 5. Let A be a ring contained in a field L. Let B be the set
of elements of L which are integral over A. Then B is a ring, called the in-
tegral closure of A in L.

Proof. Let z, y lie in B, and let M, N be two finitely generated A-
modules such that 24/ € M and yN C N. Then MN is finitely generated,
and is mapped into itself by multiplication with @ 4 y and zy.

Conrorrary. Let A be a ring, K its quotient field, and L a finite separable
extension of K. Let x be an element of L which is integral over A. Then



4 ALGEBRAIC INTEGERS [1, §2]

the norm and trace of x from L to K are integral over A, and so are the co-
efficients of the irreducible polynomial salisfied by x over K.

Proof. Tor each isomorphism ¢ of L over K, oz is integral over A.
Since the norm is the product of oz over all such o, and the trace is the
sum of oz over all such o, it follows that they are integral over A. Simi-
larly, the coefficients of the irreducible polynomial are obtained from the
elementary symmetric functions of the oz, and are therefore integral
over A.

A ring A is said to be inlegrally closed in a field L if every element of L
which is integral over A in fact lies in A. It is said to be integrally closed
if 1t is integrally closed in its quotient field.

Prorosition 6. Let A be a Noetherian ring, integrally closed. Let L be
a finite separable extension of its quotient field K. Then the integral closure®
of A in L 1s finitely generated over A.

Proof. It will suffice to show that the integral closure of A is contained
in a finitely generated A-module, because A is assumed to be Noetherian.

Let wy, . .., w, b~ a linear basis of L over K. After multiplying each w;
by a suitable element of A, we may assume without loss of generality that
the w; are integral over A (Proposition 1). The trace Tr from L to K is
a K-linear map of L into K, and is non-degenerate (i.e. there exists an
element z € L such that Tr(z) # 0). If « is a non-zero element of L,
then the function Tr(ax) on L is an element of the dual space of L (as
K-vector space), and induces a homomorphism of L into its dual space.
Since the kernel is trivial, it follows that L is isomorphic to its dual under
the bilinear form

(z, y) A~ Tr(zy).

Let wy, . . ., w, be the dual basis of wy, . .., wy, so that
Tr(waws) = 8:j:

Let ¢ % 0 be an element of A such that cw; is integral over A. Let z be
in L, integral over A. Then zcw/ is integral over 4, and so is Tr(czwy;)
for each 7. If we write

2= bywy + -+ + bywy
with coefficients b; € K, then
Tr(czw}) = cb;,
and cb; € A because A is integrally closed. Hence z is contained in

Ac wy A+« + A w,.
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Since z was selected arbitrarily in the integral closure of A4 in L, it follows
that this integral closure is contained in a finitely generated A-module,
and our proof is finished.

ProrosiTioN 7. If A is a unique factorization domain, then A s inie-
grally closed.

Proof. Suppose that there exists a quotient a/b with a, b € A which is
integral over A, and a prime element p in A which divides b but not a.
We have, for some integern = 1,

(a/b)" + an_1(a/b)" " + -+ + ag =0,
whence

a" + @u_tba™ "t + - - + @b = 0.
Since p divides b, it mu _ divide a”, and hence must divide @, contradiction.

THEOREM 1. Lelt A be a principal ideal ring, and L a finite separable
exlension of its quotient field, of degree n. Let B be the integral closure of A
in L. Then B is a free module of rank n over A.

Proof. As a module over A, the integral closure is torsion-free, and by
the general theory of principal ideal rings, any torsion-free finitely gen-
erated module is in fact a free module. It is obvious that the rank is equal
to the degree (L : K].

Theorem 1 is applied to the ring of ordinary integers Z. A finite exten-
sion of the rational numbers Q is called a number field. The integral
closure of Z in a number field K is called the ring of algebraic integers of
that field, and is denoted by Ik, or occasionally ox.

ProrositioN 8. Let A be a subring of a ring B, integral over A. Let S
be a multiplicative subset of A. Then S™'B is integral over S™'A. If A 4s
integrally closed, then S™' A 1is integrally closed.

Proof. If x € B and s € S, and if M is a finitely generated A-module
such that =M C M, then S™'M is a finitely generated S~'A-module
which is mapped into itself by s~ 'z, so that s™'z is integral over S™'A.
As to the second assertion, let z be integral over S™'A4, with = in the
quotient field of A. We have an equation

) bn—l n—1 92_
Sighgamedninn § -G gt O

b; € A and s; € S. Thus there exists an element s € S such that sz is
integral over A, hence lies in A. This proves that z lies in S~'4.

CoroLrary. If B is the integral closure of A in some field extension L
of the quotient field of A, then S™'B is the integral closure of S~'A in L.
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§3. Prime ideals

Let p be a prime ideal of a ring A and let S = A — p. If Bis a ring
containing A, we denote by B, the ring S~'B.

Let B be a ring containing a ring A. Let p be a prime ideal of 4 and
P a prime ideal of B. We say that P lies above p if B N A = p. If that is
the case, then the injection

A— B

induces an injection of the factor rings

A/p — B/%,

and in fact we have a commutative diagram:

B — B/

T T
A — Afp

the horizontal arrows being the canonical homomorphisms, and the vertical
arrows being inclusions.
If B is integral over A, then B/ is integral over A /p (by Proposition 4).

Nakavama’s LEmmA. Let A be a ring, a an ideal contained in all maximal
ideals of A, and M a finitely generated A-module. If aM = M, then M = 0.

Proof. Induction on the number of generators of M. Say Al is gen-
erated by wy, . .., w,. There exists an expression

Wy = Wy 5 * Tt Anlm
with a; € a. Hence

(I — a))wy = agwy + - - - + AnWp.

If 1 — a; is not a unit in A, then it is contained in a maximal ideal p.
Since a; € p by hypothesis, we have a contradiction. Hence 1 — a; is
a unit, and dividing by it shows that M can be generated by m — 1 ele-
ments, thereby concluding the proof.

ProrositioN 9. Let A be a ring, p a prime ideal, and B a ring containing
A and integral over A. Then pB # B, and there exists a prime ideal P of B
lying above p.

Proof. We know that B, is integral over A,, and that 4, is a local ring
with maximal ideal m,. Since we obviously have

pBy = pA,B = pA,B, = myB,,
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it will suffice to prove our first assertion when A is a local ring. In that
case, if pB = B, then 1 has an expression as a finite linear combination
of elements of B with coefficients in p,

1=a1bl+"'+anbn

with a; € p and b; € B. Let Bo = A[by, ..., b,]. Then pBy = By and
B, is a finite A-module by Proposition 2. Hence By, = 0, contradiction.

To prove our second assertion, we go back to the original notation, and
note the following commutative diagram:

B — B,
1 T (all arrows inclusions).
A— 4,

We have just proved that m,B, # B,. Hence m,B, is contained in a
maximal ideal M of By, and M N A, therefore contains my. Since m; is
maximal, it follows that

m, = M N 4,

Let B = M N B. Then P is a prime ideal of B, and taking intersections
with A4 going both ways around our diagram shows that M N A4 = p,
so that

PnAaA=ny,
as was to be shown.

Remark. Let B be integral over A, and let b be an ideal of B, b # 0.
Then b N A # 0.

To prove this, let b € b, b ¢ 0. Then b satisfies an equation
" + apyb" -+ ap=0
with a; € A, and ag # 0. But a¢ liesin b N A.

ProrositioN 10. Let A be a subring of B, and assume B inlegral over A.
Let P be a prime ideal of B lying over a prime ideal p of A. Then P is maxi-
mal if and only if p s maximal.

Proof. Assume p maximal in A. Then A /p is a field. We are reduced to
proving that a ring which is integral over a field is a field. If k is a field
and z is integral over k, then it is standard from elementary field theory
that the ring k[z] is itself a field, so z is invertible in the ring. Conversely,
assume that 9P is maximal in B. Then B/% is a field, which is integral over
the ring A/p. If A/p is not a field, it has a non-zero maximal ideal m.
By Proposition 9, there exists a maximal ideal It of B/P lying above m,
contradiction.



