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FOREWORD

This present volume on fluidization and fluid-particle systems is a result of a
selected group of papers presented at the 76th Annual Meeting of the American
Institute of Chemical Engineers at San Francisco in November of 1984. At this
meeting four sessions on the topic covered both fundamental and applied
contributions in addition to a session on heat transfer in fluidization.

Solids handling by fluidization technology and fluid-particle system continues to
be prevalent in industry and the research laboratory. Many new findings and novel
applicatons are surfacing each year. This present volume represents a composite
summary of this fast changing field.

The contents can be roughly characterized by contributions to modeling internal
bubble behavior and distributors and disengaging sections of fluidization beds. In
addition, heat transfer, three phase beds, magnetic beds and inclined beds are
presented. Filtration and pneumatic transport topics are contributions to the fluid-
particle systems area.

' George E. Klinzing; editor
Carnegie-Mellon University
Pittsburgh, PA 15213
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CHARACGTERISTIGS OF ERUPTING BUBBLES
IN A THREE DIMENSIONAL FLUIDIZED BED

0PE

3 bubbles erupt from the surface of a gas
luidized bed, particles are projected upwards
ito the freeboard. Some are subsequently
rried from the bed by their initial momentum
\d the gas motion, while others fall back onto
e bed surface. In developing a mechanistic

] to relate the basic characteristics of
fluidized bed to elutriation rate, it is
essary to have information on quantities

as the size of the erupting bubbles, the
uency with which they erupt and the gas
ocities within the bubble and in the sur-
nding region. Theories are available on the
olute rise velocity of ‘a bubble as a func-
on of size, superficial gas velocity and

imum fluidization velocity and correlations
e been developed to predict the size of a

1 addition, the two-phase theory of fluidiza-

ion is commonly used to relate bubble fraction

nd bubble frequency to other bubbling para-
eYs .

In the existing study, measurements of the

bling processes at the free surface of a

ree dimensional bed were made using 264 micron
ass beads and 4304 micron puffed millet

articles to determine the effects of bed depth

fluidizing velocity on the eruption fre-

ncy, size and area fraction occupied by the
ing bubbles. Calculations were then

ried out using existing bubble growth corre-
jons, bubble velocity models and a medified

le as a function of fluidization conditions.

Levy, |. Alkan and H. Caram ® Lehigh University, Bethlehem, Pennsylvania

ﬁdeasuremems were made of the bubbling processes at the free surface of a three dimensional fluidized bed to determine
¢ effects of operating conditions on the characteristics of the erupting bubbles; and calculations were carried out to
rmine the magnitude of the bubble through-flow coefficient and effective area of flow. The results show that the bubble
ugh-flow coefficient is much larger than is predicted by classical bubble models, ranging from two to eight for glass
articles and fourteen to nineteen for puffed millet bed material. The percentage of coalescing bubbles increased with
perficial gas velocity to values approaching 25 percent. Horizontal coalescence between bubbles was found to have a
agligible effect on the height to which the bulge and wake materials are ejected during an eruption process.

two-phase theory of fluidization to attempt
to predict the measured eruption frequencies
and bubble fractions on a theoretical basis
and to determine the magnitudes of the bubble
through-flow coefficient and effective area
of flow. b

Experiments were also performed where
the relative importance of individual bubbles
and bubbles which coalesce vertically during
eruption was measured. In addition, the®
effect of horizontal interactions between
adjacent bubbles at the free surface of the
bed was studied. iy

CONCLUSIONS AND SIGNIFICANCE

From measurements of the erupting
bubbles at the free surface, relationships
were obtained between the maximum frontal
diameter, D;, and the equivalent diameter, De,
where with the glass beads Di/De = 1.154 and
for the larger puffed millet particles D;/De =
1.254. The data on bubble size as a function
of bed depth and fluidizing velocity were
compared to three bubble growth correlations
and were found to be in very good agreement
with the correlation due to Kato and Wen.
Data on the absoluie rise velocity of the
bubbles as they reach the free surface were
obtained for both kinds of particles and were
found to agree with the standard expression
for bubble rise velocity.



Equations, based on a modified form of
the two-phase theory of fluidization were de-
rived which account for variations in both

the through flow coefficient m and on the equi-

valent diameter for bubble gas flow across the
horizontal plane at the surface of the bed.
Using measured data for bubble eruption fre-
quency and for the number of bubbles at the
free surface, the experimental data were

used to compute the values of ¢¢ and m. The
results show that the through-flow coefficient
m is much larger than is predicted by the
Davidson bubble analysis, being in the range
~of 2 to 8 for the glass particles and 14 to

19 for puffed millet. In both cases the
effective flow diameter D., is smaller than
the equivalent spherical diameter, Dg, with
values of ¢¢ = 0.6 for millet and 0.85 to
Tty g]ass

It is physically reasonable to expect
relatively high values of m at the free sur-
face of the bed, because of the nature of the
boundary conditions exerted on the gas flow
in the vicinity of the bubble as the bubble
approaches the free surface. However, addi-
tional work is needed in analyzing this
situation and in obtaining direct experimental
confirmation of the values of m. In addition,
careful experimental measurements. are needed
to obtain more reliable information on the
velocity of the gas in the emulsion phase.

Data were obtained on the proportion of
the bubbles erupting at the free surface which
were individual isolated bubbles and the
fraction which were bubbles in the process
of undergoing vertical coalescence. It was
found that the percentage of double bubbles
increased with superficial gas velocity to
values approaching 25 percent. Data were
ainalyzed on bubbles undergoing horizontal
coalescence; and this was found to have negli-
gible effect on the height to which the bulge
and wake materials are ejected during an
eruption process.

THEORETICAL DEVELOPMENT

The original two-phase theory of fluidi-
zation developed by Toomey and Johnstone (1),
proposed that all the gas flow in excess of
the minimum needed to fluidize the emulsion
phase passes through the bed in the form of
bubbles. The resulting theoretical visible
bubble flow rate consistently overpredicts
actual measurements; and the difference
between the two is generally attributed to
~either one of two factors:

Fluidization and Fluid Particle Systems

AIChE SYMPOSIUM SERIES

o Some investigators, (2 to 5) relate
the failure of the basic two-phase
theory to an increase in dense phase
gas velocity to values in excess of
On the other hand, Geldart (6)
awgues that U is approx1mate1y equal -
to U i

o Other 1nvestigators have argued that
the failure of the basic two-phase
theory is due primarily to gas flow
within the bubble. This leads to a
‘modified form of the two-phase
theory, where the gas inside a rising
bubble has a mean velocity mU
relative to the bubble.

Modeling the flow of the emulsion
phase around a bubble void as an
incompressible irrotational fluid
and calculating the gas flow field
relative to the moving bubble from
Darcy's law, Davidson (7) derived
expressions for the flow of gas
through the bubble and found that

= 0 for fast bubbles and three for
slow bubbles. When Davidson's values
for m are used with the two-phase
theory modified to account for the
presence of gas through-flow, the
theory still predicts visible bubble
flow rates which are much higher
than those measured. Based on measure
ments of erupting bubbles as seen
from the top of the bed, point
frequency measurements, bed expan-
sion measurements and other types
of data, numerous investigators
(for example, 5, 8, 9, 10) have
reported values of m far in excess
of three. Reasons for the discrep-
ancy have been attributed to bubble-
bubble interactions, bubble wall
jinteractions and the effect of
bu?b]e shape on through flow (9 to
13)+

Because of the need in the present work
to develop a procedure for accurately pre- |
dicting bubble eruption frequency and bubble
size as functions of the operating properties
of the bed, a careful review of bubble theory
was undertaken. A derivation of the mass
conservation equations in terms of variables
important to this work is described in the
following. |
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Assuming the gas flow is steady and in-
compressible and applying the conservation
of mass principle to the surface of the bed
gives

) A (1)

Uvo = (csVGI + (1.=8) 0 o

£

The absolute velocity of the gas flowing
through the bubble VGI can be expressed as

*
Ver = Up t mU (2)

GI

Combining (1) and (2) to obtain the fraction
of the surface area occupied by bubbles

| S
§ & Do (3)

= = 2
Ub my - Ue

| If the gas flow aEea provided by each
. erupting bubble is WDE /4, the number of
g

~ simultaneously erupting bubbles is
il 6A0
T 2
E(¢fDe)
§ or
(Uo - Ue) 4Ao
N = (4)
2 x
¢¢ D LUy + mU. - U]

‘where the quantity D, can be related to the
_equivalent bubble diameter De through

b¢ = De/D, | (5)

The fraction of the surface occupied by
bubbles is also related to the visible bubble
flow rate :

SAoUb 3 nvbubb]e (6)

This can be combined with Equation (3) to
give the bubble frequency

e (Uo = Ue) AOUb (7)

& T 3
(Ub +mU - Ue) E*De

Both the values of n and N can be measured
experimentally and Equations (4) and (7) can
~ be used to determine the values of the shape
- factor ¢, and the through flow coefficient m
if the vg1ues for U , U,, and D are provided

. correlated by Chiba et al (14)

by experiménts-of correlations.

The absolute bubble velocity Ub is usually
computed from the relation

S
Uy = U, - U+ 0.711 /gD, (8)

while the equivalent bubble diameter can be
obtained from the Kato & Wen (13) correlation

; U
L
O T4 o, el (9)
e PP Umf. eo

This requires the initial bubble diameter Deo

o i 0.4
Deo = 0.347 [AO(Uo Umf)/No] (10)
Assuming the bed expansion is due to the
existence of bubbles, the bed height L is
obtained from the relation
L-L u -uU .
mf 4 0 * = (-I-I)
Ub +mU - Ue

EXPERIMENTAL APPARATUS AND PROCEDURE

A1l of the experiments described in this
paper were performed in a 76 x 76 cm square
bed. The front wall was made of plexiglass
to permit visualization of bubble surface
eruptions. The distributor was a steel plate
drilled with 484 holes (0.4 cm diameter).
Room temperature air at atmospheric pressure
was supplied to the bed from a laboratory
compressor. Air flow rate to the bed was
measured using orifice meters designed
according to ASME specifications.

A11 the bubble eruption measurements
were made using a Videologic Co. INSTAR high
speed video system. This system is capable
of recording and playing at a rate of 120
frames per second and has a slow motion feature
which ‘allows the user to observe the film
frame by frame. The dual cameras make it
possible to take pictures of two different
parts of the bed at the same time and display
these simultaneously on a split screen. Most
of the experiments were performed using both
video cameras, one focusing on the bed surface
through a tilted mirror .located above the bed,
the other looking directly through the front
wall of the bed. ' IS !



A1l experiments were performed in a
freely bubbling mode. At each bed height, -
different flow rates were recorded until the
flow rate was so high that the eruptions
became chaotic and effective flow visualiza-
tion became difficult. Each run was played
back in slow motion and the number of bubbles
at the free surface, bubble frequency, bubble
eruption diameters, bulge and wake ejection
heights, fraction of double bubbles and the
nature of horizontal coalescences were
recorded for each set of conditions.

The bubble count-N (number of bubbles
at the free surface at a given instant of
time) was analyzed using recordings taken
from above the bed. Only bubbles through
which gas was flowing were included in this
quantity. These are referred to here as
"active" bubbles and were characterized by
the upward motion of the bulge material.
Bubbles were included in N if their bulges
were rising in consecutive video frames.
When the wake of a bubble was first observed,
the bubble was no longer considered active
and at that point was no longer counted as
being part of N. Bubble eruption frequency
(n/A_) was measured from the same film
sequgnces, where the rate of surface eruptions
was counted with the film advancing in slow
motion.

The bubbte eruption diameters, D. were

_measured from the front wall of the béd, where
the largest width of the observed bubble is
defined here as the eruption diameter

(Figure 1). At least 100 bubbles were

counted at each bed height and flow rate and
the arithmetic average of the diameters of

the bubbles was computed.

Two different types of particles were
used in the experiments: glass beads with a
mean diameter of 264 microns and 4304 micron
puffed millet particles. Both fall into the
range of group B particles according to
Geldart's classification (15). The glass
beads have a density of 2.50 g/cm’ and the
density fog the puffed millet particles was
0.131 g/cm”. The sphericity of the millet
particles was 0.766.

The minimum fluidization velocity for the
glass particles was calculated to be 5.68
cm/s, with a measured value of 5.97 cm/s. In

the case of the puffed millet, even though the

bed appeared to fluidize normally, the pressure
drop-flow rate characteristics were unusual
in that the bed pressure drop continued to
increase beyond the minimum fluidization point.
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Minimum fluidization was observed to occur
at a velocity of 11.6 cm/s; and the minimum
bubbling velocity was found to be 17.6 cm/s.

b2 e SR FREE
e SURFACE

Figure 1. Sketch of bubble at free surface illustrating
definitions of frontal diameter, D;, and equivalent
spherical diameter. De.

RESULTS

Separate experiments were carried out
with both the small glass beads and the
puffed millet particles over a range of bed
depths and superficial gas velocities, where
video sequences were taken of the bubbling
behavior at the side and top of the bed at
the free surface. There are three charac-
teristic diameters of importance in this
study.

o D,, the effective diameter of the
cfrcu1ar eruption areas through
which gas flows vertically across
the free surface of the bed

o D., the frontal bubble diaﬁeter
méasured‘at the sidewall as shown ' 4
in Figure 1 :

D_, the equivalent bubble diameter
défined as the diameter of a sphere
having the same volume as the actual
bubble.

Almost all of the bubble growth correla-
tions are expressed in terms of the equivalent
bubble diameter, De’ but this is a gquantity
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which cannot be measured directly. As an al-
“ternative, Di’ was obtained from the video
sequences. With the assumption that the bed
sidewall cuts the bubbles into equal halves,
photographs of the bubble cross sections were
taken. These were divided into small elemental
areas and the individual volumes of the re-
sulting discs of revolution were computed

and added together to determine total bubble
volume. This then was set equal to the volume
of a sphere of equivalent diameter D_ and the
bubble shape factor ¢. = D./D_ was eYaluated
(see Figure 1). The results Show average
values of ¢. of 1.154 for the glass particles
and 1.254 for the puffed millet. Bubble

shape seems to depend slightly on superficial
gas velocity and bed depth, but the average
values given above were found to work well

in subsequent analyses.

v The measured values of D., converted

to D, were compared to three different bubble
growth models (13, 16, .and 17). It was

found that the Kato and Wen model (13) gave
the best results, agreeing well with the
measurements for both the small and large
particles (see Figure 2).
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o | | | 1 : | ' 1 s | | ! | ]
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F@gure 2. Gomparison of measured bubble eruption
diameters with the Kato & Wen bubble growth cor-
relation. :

Absolute bubble rise velocities were
measured by obtaining the relationship
between the vertical position of a given
bubble and time from the video sequences. The
resulting velocity at the instant that the top
of the bubble crosses the undisturbed free
surface of the bed was interpreted as the
absolute bubble rise velocity at the free
surface. This velocity is plotted in Figure 3
as (e {2 g £ ) in the case of the glass
parti?]es AR LU R R b)) in the case
of the puffed mi?]et. OThes®’results, obtained
for bubbles over a range of conditions, show
that Equation 8, the standard =quation for
bubble rise velocity, agrees with measurements
at the free surface. Similar conclusions
were reached by Levy et al (18) with styrene
particles and glass beads. ;
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Figure 3. Absolute bubble rise velocity at free surface
of bed.

Data on the number of active bubbles
N and the frequency of bubble eruptions (n/A)
were obtained from video sequences taken of
the bed surface from the freeboard. The
results for glass, summarized in Figures 4
and 5 show that N and n/A are both decreasing
functions of bed height and excess flow
velocity. Similar results were obtained for
the puffed millet.

Equations 4 and 7 provide two theoreti-
cal relationships for N and n/A in terms of
the parameters U_, m, ¢f,D and U.. The
bubble rise ve1o§ity U, wa$§ compu%ed from
Equation 8, the equiva?ent diameter was found
from the Kato and Wen correlation; and the
gas velocity in the emulsion phase U was
assumed equal to Umf for the glass b8ads and



U . for the millet. Using the measured values
f@P N and n/A, Equations 4 and 7 were then
solved simultaneously for m and ¢., the re-
sults of which are shown in Figurgs 6 and 7.
In the case of the millet, ¢. = 0.6 and is
relatively independent of bofh bed depth and
superficial gas velocity. On the other hand
with the glass particles, ¢, ranges from 0.85
to 1 and is a strong functign of bed depth.
The through-flow coefficient m appears to
depend primarily on bed depth, ranging from
two to values exceeding eight with glass. In
%he case of the puffed millet, m ranged from
4 -°to sl

As part of this effort, data were
obtained on the nature of the interactions
between bubbles as they erupt from the free
surface. Two types of .interactions were of
interest (i) the vertical coalescence of two
rising bubbles and (ii) horizontal inter-
actions between adjacent bubbles. Previous
investigations have shown that the mechanisms
by which solids are ejected into the freeboard
depend critically on the type of bubble
eruption pattern (19). Isolated single bubbles
behave completely differently from bubbles
which coalesce vertically as they erupt; and
these, in turn, may erupt differently from
bubbles which interfere with one and other
horizontally. In determining the relative
importance of each eruption mechanism, it is
important to know what fraction of the total
number of bubble eruptions is of each type.
Figure 8 is the fraction of the total bubble
eruptions which occur as vertical coalescences
(double bubbles) for the 264 micron glass
beads. The percentage of double bubbles is
a strong function of the superficial gas
velocity and bed depth, increasing to values
above 20 percent.

As a single bubble erupts from the
free.surface, material at the nose of the
bubble is carried upward to a certain height
before falling back toward the bed surface.
This, in turn, is followed by the wake material
which typically rises to a smaller vertical
height than the bulge. Data on the nature of
these eruptions for the glass bead material
were obtained by observing a large number of
bubbles. The results show that the dimen-
sionless heights reached by the bulge and wake
increase very slightly with both bed depth
and gas velocity. Mean values are

(H/D;)

1°max

(H/D.)

1 max

u

0.75 for the bulge

0.48 for the wake
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Levy et al (18) previously reported the
values

(H/D;)

1°max

0.6 for the bulge

(H/Di)max

0.33 for the wake

.and the differences may be due to differences
in the sizes of the beds employed in the two
experiments.

Similar analyses for two bubbles-erupting
side by side, show that the dimensionless
heights to which the bulge and wake materials
are ejected are the same as for isolated
bubbles. Horizontal coalescence appears to
have no effect on the heights to which the
bulge and wake materials are projected.
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Figure 4. Variation of number of active bubbles at free
surface with excess gas velocity.
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Cross sectiona] area °f the ‘bed; { & 71 BiAd 2 ?naétioh of the surface area
: occupied by bubbles -

Equivalent spherical diameter of the _
bubble : °p ;‘ - Particle dens1ty
.Equ1va1ent bubb]e diameter r1ght §£ ,,FHT“ “aﬁ &

above the distributor . o

ﬂf Fidw ves shape factor
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. Effective bubb]e diameter for gas
flow across free surface of bed i % Bubble shape factor
o ‘bubble frontal B e KhOT
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Particle diameter i :  Lavige e

- Acceleration due to gravity

- - Height to which the bulge or wake
;material rises

- Vertical distnﬂ hove the d1str1- .

ﬁb;glute bubble rise veTocity

Méiocity of gas in the emulsion
phase

b; @ﬁnimum fluidization ve]oc1ty

“774 Minimum bubb]ipg_ve]ocity

‘r‘Superficial gas velocity

: ; éa$ velocity at either minimﬁm : . A 5]

fluidization or at minimum bubbling
condition, whichever applies

- Absolute velocity of the gas flowing
through the bubble



