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INTRODUCTION

This issue of the proceedings contains all but one of the papers presented at the conference on Advances in Resist
Technology and Processing, held 2-3 March as part of SPIE’s 1987 Santa Clara Symposium on Microlithography,
1-6 March 1987. This conference is the fourth in the highly successful series of annual conferences on this
subject. The principal themes of this meeting were chemistry and physics of resist processing; new resist materials
for photo, electron-beam, x-ray, and ion-beam lithography; materials and processes for multilayer resist
technology; and exposure and development modeling. These themes were presented in four oral sessions dealing
with resist materials, resist processing from both the chemical and processing points of view, and advanced
materials and processes. The conference concluded with a poster session covering all themes.

We are approaching the dawn of submicron device lithography, and this places numerous constraints on hardware
design, resist chemistry, and processing technology. The purpose of this conference is to emphasize recent
advances in the science and engineering of high-resolution resist materials and processing. Itis interesting, in this
regard, that the bulk of the papers presented deal with ““old"’ technology, namely, positive photoresist chemistry and
processing based on the dissolution inhibition of novolac matrices by naphthoquinone diazides. In spite of the fact
that resists based on this chemistry have been used for over 30 years, we are only just now learning to design them
atthe molecular level, thereby gaining insight into their mode of operation. The trend toward multilayer processing
continues and several papers deal with organometallic resist systems specifically designed to withstand reactive-
ion etching. There is considerable interest, for example, in gas-phase silylation as a means of achieving all-dry
processing. Interestingly, in spite of rapid advances in the development of laser systems for deep-UV lithography,
only one paper was presented that revealed a novel resist structure specifically designed for 250-nm exposure.

Judging from the attendance at the meeting and the uniform high quality of the papers in both the oral and poster
sessions, the conference was extremely successful. For this, | sincerely acknowledge the capable assistance of my
cochairs, Daryl Ann Doane (DAD Technologies, Inc.), Scott A. MacDonald (IBM/Almaden Research Center),
Toshiaki Tamamura (NTT Corp.), and S. Richard Turner (Eastman Kodak Co.) in soliciting papers and servingonthe
program selection committee. | would also like to thank Lois Damick of Bell Communications Research for handling
many of the administrative tasks associated with organizing the technical program. Finally, | would like to thank the
staff of SPIE, without whose dedication this conference would not have taken place.

Murrae J. Bowden
Bell Communications Research, Inc.
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NEW DIAZOKETONE DISSOLUTION INHIBITORS FOR DEEP U.V. PHOTOLITHOGRAPHY
C. Grant Willson, Robert D. Miller, Dennis R. McKean and Lester A. Pederson
IBM Research, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Manfred Regitz

Tnstitute for Organic Chemistry, Universtit Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, West Germany

Abstract

The results of studies directed toward the design of diazoketone dissolution inhibitors for deep U.V. photolithography
are described. This work has identified a useful chromophore, the 1,3-diacyl-2-diazo linkage which has the requisite spectral
characteristics for use in the deep UV. Incorporation of appropriate hetero-atomes into the structure has allowed synthesis
of analogs that survive common processing sequences. A detailed study of the photochemistry of these analogs led to an
understanding of the importance of the stability of the ketene photoproduct on resist contrast. Imaging results are presented
for a trilayer application and for excimer laser projection printing.

Introduction

The continuing drive toward higher circuit density in microelectronic devices has led to a quickening interest in exposure
technology based an short wavelength or deep U.V., ultraviolet radiation. This interest derives from the fact that for a given
lens system, the resolution is directly proportional to the exposure wavelength. Several manufacturers have made! or will
soon make available sophisticated aligners designed to provide deep UV (248 nm) radiation at the resist surface. Most of
these systems are based on the use of excimer laser light sources and refracting optics. The performance of these tools is
currently resist limited' since the diazoquinone/novolac (DQN) materials available for general use were designed for exposure
at longer wavelength. These DQN materials have a high initial absorbance in the deep UV and do not bleach adequately
upon exposure. The consequence of the unbleachable, strong absorbance is to produce sloping resist side walls. This
performance degradation was predicted by modeling studies? and has now been documented by experimentation.!

Results and Discussion

For some time, we have been working toward the design of a deep UV resist system that would mimic the familiar and
attractive processing characteristics of the DQN systems yet function properly in the deep UV such that the potential for
improved resolution that these new exposure systems offer might be realized. Our goal was to design a two component
system analogous to the DQN system using a base soluble matrix resin analogous to novolac and a dissolution inhibitor
analogous to the diazoquinones. To date, our efforts have focussed mainly on the chemistry of the dissolution inhibitor.

The ideal deep UV dissolution inhibitor should

1) have significant absorbance in the deep UV

2) have photo products that are transparent in the deep UV
3) act as a dissolution inhibitor for base soluble resins

4) provide a photoproduct that is not a dissolution inhibitor
5) have thermal stability consistent with normal processing
6) have solubility in common casting solvents.

We have imposed a 7th less critical requirement for “self-filtering.” That is, the chromophone should absorb in the deep UV
but not in the near UV such that low transmission, narrow band-pass filters in the condensor system are not required to
achieve high resolution imaging. (Figure 1.) This requirement is not essential to excimer laser powered systems but is
important for systems such as the Perkin Elmer Micralign 500 which have deep UV compatible optics but use a broad band,
mercury discharge lamp as the light source and are thus flux limited.

5-diazo Meldrum'’s acid, 2,2-dimethyl-4,6-dioxo-5-diazo-1,3-dioxolane (Figure II) fulfills all of the requirements
described above. Our detailed study of this interesting material> however, revealed that though it functions as desired, the
parent compound is evolved (sublimed) from the matrix resin to a significant extent during the baking cycle that is required
to remove casting solvent after spin coating. All attempts to modify the structure of Meldrum'’s diazo led to either materials
that wege virtually insoluble in common casting solvents or materials that like the parent compound, sublimed during
baking.

During the course of continued analog studies we prepared the diazo pyrazolidinedione derivative,
1,2-diphenyl-4-diazo-pyrazolidine-3,5-dione (DPD) (Figure III). This compound has spectral characteristics that are
essentially the same as Meldrum’s diazo. However, upon casting films in novolac, unlike Meldrum’s diazo and it’s soluble
analogs, DPD is not evolved from the film during baking (Figure IV). DPD functions as a dissolution inhibitor for novolac
and we have successfully imaged resist formulations based on DPD albeit, with rather low contrast. The photochemistry of
DPD is different from Meldrum’s diazo in that some acid is formed from the insipient ketene through reaction with water
but the ketene also undergoes decarbonylation in a sequence of steps that ultimately produce a stable photoproduct that is,
its self, a dissolution inhibitor.? Hence, though bleaching occurs, to the extent that material is lost to the decarbonylation
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against volatilization during the baking process.

pathway the chemical changes that result from photolysis are not particularly efficient in generating solubility rate changes.
The important discovery that emerged from analysis of DPD was that incorporation of the lactam linkage provided stability

L If\
i \\ |
St |
o
sl 'y
=3 Y
|y
A
\\\\ \
~10msoA\ao- ——7
200 250 300

400
A(nm)

Figure 1. Absorbance curves for ideal deep U.V. resist components. The absorbance spectrum of a typical novolac resin is
provided for reference.
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Figure 2. Synthesis and photochemistry of Meldrum’s diazo. Note that the photolysis yields all volatile products.
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material loss occurs during this bake.

The experiments with Meldrum’s diazo and DPD have provided two important general, structural principles to guide
further work. The first is that the 1,3-diacyl-2-diazo chromophone is perfectly matched to our spectral requirements. The
second is that the lactone linkage is not effective toward minimizing material loss through sublimation during baking but the
lactam linkage is. This latter observation is presumably the result of improved hydrogen bonding interactions between the
inhibitor and the weakly acidic resin.

Based on these general principles, we designed new sensitizers based on the tetramic acid and homotetramic acid
(piperdinedione) ring systems. (Figures V and VI). These materials have the two requisite structural features and they have
an acylcarbon-carbon bond available for insertion of the photogenerated carbene. This insertion is favored over insertion
into the lactam linkage during the Wolff rearrangement. It was reasoned that this improved reactivity would maximize the
desired pathway to the keto-ketene and ultimately to the keto-acid derived through nucleophilic addition of water. In fact,
the Wolff rearrangement proceeds essentially 100% via carbon carbon bond insertion to give a single keto-ketene. The ring

contracted keto-ketenes thus generated are extremely stable to subsequent irradiation under low temperature, matrix
isolation conditions in novolac resin.
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Figure 5. Synthesis of diazotetramic acid.
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Resist formulated from analogs of diazotetramic acid and diazopiperdinedione provides useable function in deep UV
imaging abiet with less than desirable contrast (Figure VII). We have excercized analogs of these materials in novolac of
various isomeric composition, in styrene-malemide copolymers, in polyglutarimide, poly(p-hydroxystyrene) and other base
soluble, matrix resin materials with reasonable optical transmission at 248 nm. In all cases, the sensitivity of the systems is
about 100 mJ/cm? but the contrast is low compared to diazoquinone sensitizers in the some matrix resin. The low contrast
is manifested in sloping resist side walls (Figure VIII). Interestingly, excimer laser projection printing of these materials
seems to provide improved performance. Figure IX shows the improvement in image quality achieved by projection printing
in a full wafer scanning tool using an excimer laser source.* One possible explaination for this observation is involvement of
multiphoton chemistry. We are exploring this hypothesis and measuring the reciprocity response of these interesting
materials.
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Figure 7. Thickness versus time plot for exposed and unexposed resist formulate from novolac and diazopiperdinedione.
The developer is AZ2401: water 1:4.5.
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Figure 8. Scanning electron micrograph of images printed on  Figure 9. Scanning electron micrograph of images printed in
Micralign 500 in U.V.-2 using diazopiperdinedione resist. diazopiperdinedione resist using 248 nm, full wafer scanning
Note the sloping sidewalls. tool with excimer laser light source.

Though the sloping resist side walls are not useful for device manufacturing directly because of the difficulty in
controlling critical dimensions over topography, such images can be used in trilayer application. In trilayer application, the
resist is imaged over a planarizing layer. Hence, the effect of sloping side walls on critical dimension control is reduced.

We have exercized these resists in such a process. Hard baked photoresist was used as the planarizing layer. We studied
both commercial “spin on glass” and polysilane,*S as the barrier layer. Image transfer was accomplished by CF,-RIE of the
barrier layer followed by low pressure O,-RIE for image transfer through the planarizing layer. One micron dimensions were
printed with this process on a Perkin Elmer Micralign 500 in the UV-2 mode (Figure X).

One explaination for the poor contrast of resist systems based on analogs of diazotetramic acid and diazopiperdinedione
emerged from matrix isolation infrared studies of the photoactive component of DQN photoresists, substituted sulfonate
esters of the 2-diazo-1-naphthalenone chromphore. To examine the thermal stability of the ketenes produced
photochemically from these sensitizers in novolac resins under vacuum, samples were irradiated using a Pyrex filter. The IR
spectrum of the bis-ketene produced by irradation of a typical bifunctional diazo-5-sulfonate ester of an aliphatic diol is
shown in Figure XI. The ketene derivative thus produced is relatively stable in the hostile matrix environment under vacuum
even at temperatures of 0°C or above. If the vacuum is released during the warmup, the ketene band at 2130 cm™!
disanpears immediately due to rapid reaction with water in the air. When the sample is maintained under vacuum the ketene
disappears very slowly through reaction with the phenolic hydroxyl groups of the resin to form resin sulfonate esters.
Although the thermal stability of the ketene derivatives of this type varied somewhat with the nature and position of the
substituents, all were relatively stable below 0°C. The relative stability of the ketenes in novolac resins coupled with their
high reactivity with water is of course important to the utility of the diazonaphthoquinones as sensitizers in positive resist
formulations.

The difference in the matrix stability of the ketenes generated from the classical diazonaphthoquinones and those
produced from the diazohomotetramic acids is striking. In this regard, irradiation at 254 nm of a typical derivative,
N-(f-phenethyl)-3-diazopiperdine-2,4-dione, in a novolac resin at 77°K rapidly produces the corresponding ketene derivative
as suggested by the observation of a strong ketene band at 2140 cm~! (Figure XII). The structure of the proposed ketene
was assured by irradiation the same material in a 1:1 ethanol-dioxane solution at room temperature and the isolation of the
corresponding ethyl ester in >90% yield. The structure of the ethyl ester was confirmed by its analytical and spectral data.
The ketenes derived from diazotetramic acid and diazopiperdinedione are, however, quite unstable in the resin even at low
temperatures as evidenced by the rapid disappearance of the ketene band as the temperature of the matrix is raised from
77°K where the irradiation was performed to -78°C (Figure XIII). Interestingly, however, the product from the photo
decomposition of the diazopiperdinediones at -78°C is not the expected ketoamide as evidenced from the appearance of a
strong carbonyl band concurrent with the disappearance of the ketene band at 1630 cm~! which is consistent with the direct
formation of the enol (Figure XIV). The absorption at 1630 cm~! decreases upon standing at room temperature with the
formation of new bands at 1740 cm~! and 1690 cm~! characteristic of the ester-amide structure (Figure XV). We attribute
this behavior to the addition of the phenolic hydroxyl group of the resin to the ketene via a cyclic six-membered transition
state. This curious behavior presumably results from the rigid cisoid conformation of the a-ketenyl lactam enforced by the
peripheral carbocyclic skeleton. This would suggest that the instability of these ketene derivatives is due in part to the cisoid
conformation of the reactive functionality. constitent with this hypothesis, preliminary studies on ketene derivatives derived
from acyclic diazo-f-ketoamides suggest that the corresponding ketenes are considerably more stable in the novolac matrix
presumably due to availability of a number of non-cisoid conformations for the ketene intermediates.
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Figure 10. Scanning electron micrograph of trilayer structure Figure 11. Matrix isolation study of ketene stability.
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Figure 13. Stability study of ketene derived from
Figure 12. Changes in the infrared spectrum following low  diazopiperdinedione in novolak resin. Note rapid
temperature photolysis of diazopiperdinedione to generate disappearance of ketene band at -78°C. This should be
the corresponding keto-ketene. compared to Figure 11.
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of the ketene derived from photolysis of diazopiperdinedione.  the initially formed enol to the ester amide.

Note absence of an ester band. The spectrum after 1 hour

at -78°C is consistent with formation of the unusual enol

which tautomerizes at higher temperature.

In the continuing search for photochemical precursors to ketenes whose thermal stability in novolac resins mimics those
produced from classical diazonaphthoquinone photosensitizers, we have studied the photodecomposition of a number of
acyclic phosphorous and sulfur substituted diazoketones. These materials are synthetically available, thermally stable,
absorb strongly in the deep U.V. and survive the baking process. Irradiation of these analogs in a novolac host at 77°K
produced the expected ketene as evidenced by the appearance of a strong band at 2120 cm™! (Figures XVI and XVII). These
ketenes are quite stable and survive for sometime even at temperatures of 0°C or above. (Figure XVIII). Similar thermal
stability was observed for ketenes produced from the sulfonyl derivatives. The observed thermal stability of the ketenes
produced photochemically from these derivatives is encouraging and suggests that materials such as these whose optical and
physical properties may be varied by altering the substituents on the basic chromophore may be useful as dissolution
inhibitors for deep U.V. resists.

Low Temperature Irradiation

Stock solutions containing ~50% by weight of a standard metacresol novolac resin containing the appropriate
quantities of each diazo derivative were prepared so that the dry film concentration was ~0.8 molal (mmol of sensitizer/gram
of resin). Films were prepared by spinnning these solutions onto a CsI wafer (4000 RPM) and baking at 90°C for
15 minutes. Films prepared in this manner were irradiated for 1-2 hours at 77°K using a variac EIMAC mercury-xenon
lamp employing a 254 nm solution chemical isolation filter.” The progress of the photolyses was monitored by IR for those
examples where the position of the ketene band of the product and the diazo band of the starting material were sufficiently
different. For other samples, the irradiation was continued until all of the diazo material was destroyed as evidenced by the
lack of IR absorption between 2000- and 2200 cm™! upon warmup and opening of the cryostat to air.

Preparation of Dissolution Inhibitors

The sensitizers of interest for this study have been prepared by diazotization of the corresponding 1,3-dicarbonyl
compound. The preparation of diazo Meldrum’s acid was carried out by the reaction of Meldrum’s acid with tosyl azide in
the presence of triethylamine.® Similarly the diazopyrazolidinedione derivatives were prepared by the diazotization of
4,5-dialkyl-1,3-pyrazolidinedione.®

Diazopiperidinedione sensitizers were prepared in several steps (Figure VI). The method is analogous to the published
procedure for the preparation of the five membered ring (tetramic acid) series.’ A primary amine was added to methyl
acrylate and the resulting Michael adduct was condensed with ethyl hydrogen malonate in the presence of
dicyclohexylcarbodimide to give the corresponding diester. The diester was then cyclized in the presence of sodium
methoxide to give an intermediate which on heating with aqueous acid produced the keto-lactam. Finally diazotization with
tosyl azide in the presence of triethylamine gave the desired material. These materials were characterized by satisfactory
combustion analysis and by nmr, U.V. and IR spectroscopy.
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the corresponding phosphinylketene. the corresponding sulfonylketene.

The diarylphosphinylacyldiazomethane derivatives are prepared by the diazotization of diarylphosphinoacylmethanes
(Figure X1X). The latter compounds are available from the Arbuzov reaction of diarylethoxyphosphine with
a-halocarbonyl compounds.!! Alternatively, the diazo compounds are available from the reaction of a-bromocarbonyl
compounds with the silver salt of diarylphosphinyldiazomethane (Figure XIX).

! A Michaelis-Arbuzov Reaction
O

- o
l Ph__ I Ph__
O C P—OCH; - BrCH;—C—R _P—CH,—C—R
I Ph” ph Il I
(Ph),P—C—Ph (e] [¢]
¢ TsN F’h\
3
E— pP—C—C—R
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O N, O

~——— 180 min
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B Electrophilic Diazoalkane Substitution

CHA0 CH30
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Figure 18. Infrared spectra of the phosphinylketene in Figure 19. Synthetic routes to diazophosphinylketones.

novolac resin. The stability of this ketene should be
compared with those in Figures 11 and 13.
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