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PREFACE

Quantumn mechanies can take different forms. The Schrodinger picture of quantum
mechanics is very useful in atomic and nuclear physics. The Heisenberg picture is
the basic language for the covariant formulation of quantum field theory. Is there
then any need for a new picture of quantum mechanics? This depends on whether
there are branches of physics where the Schrddinger or Heisenberg picture is less
than fully effective.

Quantum optics and relativistic bound-state problems are relatively new ficlds.
In quantumn optics, we deal with creation and annihilation of photons and linear
superposition of multiphoton states. It is possible to construct the mathematics
of harmonic oscillators in the Schrodinger picture to describe the photon's states.
However, the mathematics becomes complicated when we attemnpt to describe gen-
eralized coherent states often called the squeezed states. Is there a language simpler
than the Schrodinger picture?

Quantum field theory accommodates both the uncertainty principle and spe-
cial relativity. However, it is less than fully effective in describing bound-state
problems or localized probability distributions. It is possible to construct models
of relativistic hadrons consisting of quarks starting from the Schrédinger picture of
quantum mechanics. The question then is whether it is possible to formulate the
uncertainty relations in a covariant manner (Dirac 1927).

The phase-space picture of quantum mechanics provides.the answer to these
questions. Starting from the Schrédinger wave function, it is possible to construct
a distribution function, often called the Wigner function, in phase space in terms
of the c-number position and momentumn variables. In this picture, it is possible to
perform canonical transformations as in the case of classical mechanics. This will
bring us a deeper understanding of the uncertainty principle. .

This phase-space picture of quantum mechanics is not new. The earliest ap-
plication of the Wigner phase-space distribution function was made in quantuin
corrections to thermodynamics in 1932 (Wigner 1932a). Since then, the Wigner
function has been discussed in many branches of physics including statistical me-
chanics, nuclear physics, atomic and molecular physics, and foundations of physics.
However, it is difficult to sce the advantage of using the Wigner function over the
existing method in those traditional branches of pliysics.

In this book, we discuss applications of the Wigner function in quantum optics
and the relativistic quark model which are relatively new subjects in physics and
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whicl still need a basic scientific langnage. From the mathematical point of view,
the Wigner function for the ground-state harmonic oscillator s the basic language
for these new branches of physics. However, its symmetry properties eonstitute the
most interesting aspect of this new scientific language.

Indeed, the symmetry property of the Wigner function in phase space is that
of the Lorentz gronp. The Lotentz group is known to be a difficult subject to
mathematicians, because it is a non-compact group. To physicists, group theory is
a difficult subject when its representations have no physical applications. However,
the situation is quite the opposite when the representation can extract physical
implications.

In this book, we discuss the physical consequences of the symmetries of the
Wigner function in phase space. This book is written for those scientists and stu-
dents who wish to study the basic principles of the phase-space picture of (uantum
mechanics and physical applications of the Wigner distribution functions. This
hook will also serve a useful purpose for those who simply wish to study the physi-
cal applications of the Lorentz group.

We are indebted to Professor Engene P. Wigner for encouraging us to formulate
a group theoretical approach to the phase-space picture of quantum mechanics.
Professor Wigner suggested the use of the light-cone coordinate system for the
covariant formulation of the Wigner function. Indeed, Chapter 10 of this book 1s
based on Professor Wigner’s ideas. He suggested the possibility that the work of
Inonn and Wigner (1953) on group contractions be extended to study the space-
time geometry of relativistic particles (Kim and Wigner 1987a and 1990a). He also
suggested the use of the concept of entropy when the measurcnient process is less
than complete in a relativistic system (Kim and Wigner 1990c).

While this book was being written, we rcceived helpful comments and sug-
gestions from many of our colleagues, including K. Cho, D. Han, C. H. Kim, M.
Kruger, P. McGrath, H. S. Pilloff, L. Rana, Y. H. Shih, J. Soln, C. Van Hine, and
W. W. Zachary.

September 1990
YSK and MEN



INTRODUCTION

The concept of phase space ariscs naturally from the Hamiltonian formulation of
classical mechanics, and plays an important role in the transition from classical
physics to quantum theory. However, in quantum mechanics, the position and mo-
mentum variables cannot be measured simultaneously. In the Schrédinger picture,
the wave function is written as a function of either the position or the momentum
variable, but not of both. For this reason, in quantum mechanics, the density ma-
trix (Von Neumann 1927 and 1955) replaces phase space as a device for describing
the density of states. It therefore appears that phase space is not a useful concept in
quantum mechanics. We disagree. The role of phase space in quantum mechanics
has not yet been fully explored.

Starting from the density matrix, is it possible to develop an algorithm of
quantum mechanics based on phase space? This question has been raised repeatedly
since the publication in 1932 of Wigner's paper on the quantum correction for
thermodynanic equilibrium (Wigner 1932a). Since it is not possible to measure
simultaneously position and momentum without error, it is meaningless to define
a point in phase space. However, this does not prevent us from defining an area
element in phase space whose size is not smaller than Planck's constant. Since the
measurement problem is stated in terms of the least possible value of the product
of the uncertainties in the position and momentum, it is of interest to sec how the
uncertainty product can be stated in phase space.

The basic advantage of this phase-space picture of quantum mechanics is that
it is possible to perform canonical transformations, just as in classical mechanics.
The purpose of this book 1s to study the physical conscquences derivable from
canonical transformations in quantum mechanics. Using these transformations, we
can compare quantum mechanics with classical physics in terins of many illustrative
examples. In addition, the phase-space picture of quantum mechanics is becoming
a new scientific language for modern optics which is a rapidly expanding field.
Furthermore, the Lorentz transformation in a given direction of boost is a canonical
transformation in the light-cone coordinate system. This allows us to state the
uncertainty relation in a Lorentz-invariant manner.

There are still many questions concerning the uncertainty relations for which
answers are not well known. For instance, in the Schrédinger picture, the free-
particle wave packet becomes widespread, and the uncertainty product increases
as time progresses or regresses. Is it possible to state the uncertainty rclation



viii Introduction

in terms of the quantity which remains constant? Can phase space provide an
answer to this questiou? The answer to this question is YES. In the phase space-
picture, the uncertainty is define in terms of the area which the Wigner distribution
functicn occupies. The spread of a wave packet is an area-preserving canonical
transformation in the phase-space picture of quantum mechanics.

Quantum optics is a rapidly expanding subject, and it is increasingly clear that
coherent and squeezed states of light will play a major role in a new understand-
ing of the uncertainty principle, and will provide innovations in high-technology
industrial applications. These optical states are minimum-uncertainty states, and
transformations among these state are therefore canonical transformations. Indeed,
the phase-space pictuire of quantum mechanics is the natural lai guage for these
relatively new quantum states.

Most physicists these days learn classical mechanics from Goldstein’s textbook
(Goldstein 1980). However, Goldstein’s book does not emphasize the importance
of linear canonical transformations, which are discussed in more advanced books
(Arnold 1978, Abraham and Marsden 1978, Guilemin and Sternberg 1984). In this
book, we shall discuss the group of linear canonical transformations in phase space
which is the inhomogencous symplectic group (Han et al. 1988). For a single pair of
canonically conjugate variables, the group is the inhomogeneous symplectic group
ISp(2), and it is ISp(4) for two pairs of conjugate variables.

If we do not take into account translations in phase space, the symmetry groups
become those of homogeneous symplectic transformations. The groups Sp(2) and
Sp(4) are locally isomorphic to the (2 + 1)-dimensional and (3 + 2)-dimensional
Lorentz groups. Thus the study of the symmetries in phase space requires the study
of Lorentz transformations.

The Lorentz transformation is one of the most fundamental transformations in
physics, and this subject can be formulated in terms of the inhomogeneous Lorentz
group (Wigner 1939). Since this group governs the fundamental space-time sym-
metries of elementary particles, there are many papers and books on this subject
(Kim and Noz 1986). In this book, we treat Lorentz transformations as canonical
transformations.

One of the persisting question in modern physics is whether the uncertainty
relations can be Lorentz-transformed. Does Planck’s constant remain invariant
under Lorentz transformations? Is localization of the probability distribution a
Lorentz-invariant concept? It is very difficult to answer these questions in the
Heisenberg or Schrédinger picture of quantum mechanics. The basic limitation of
these pictures is that they do not tell us how the uncertainty relations appear to
observers in different Lorentz frames. The question of whether quantum mechanics
can be made consistent with special relativity has been and still is the central issue
of modern physics.

We shall address this question within the framework of the phase-space pic-
ture of quantum mechanics. It is interesting to note that the Lorentz boost in a
given direction is a canonical transformation in phase space using the light-cone
variables. This allows us to state the uncertainty relations in a Lorentz-invariant
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manner. Feynman’s parton picture (Feynman 1969) and the nucleon form factors
are discussed as illustrative examples.

In the first two Chapters, we discuss the forms of classical mechanics and
quantum mechanics useful for the formulation of the Wigner phasc-space picture
of quantum mechanics, which is discussed in detail in Chapters 3 and 4. Chapters
5 and 6 are for the applications of the Wigner function to coherent and squeczed
states of light. It is seen in these chapters that the study of the Wigner function
requires the knowledge of the Lorentz group.

In Chapters 7 and 8, we present a detailed discussion of the physical represen-
tations of the inhomogencous Lorentz group or the Poincaré group which governs
the fundamental space-time syinmetries of relativistic particles. By constructing the
representation based on harmonic oscillators, we study the phase-space picture of
relativistic extended particles. Chapters 9 contains a detailed discussion of experi-
mental observation of Lorentz-squeezed hadrons. Finally, in Chapter 10, we discuss
some fundamental issucs in space-time symmetries of relativistic system, including
the unification of space-time symmetries of massive and massless particles and the
entropy increase due to the incompleteness in measurements.

Since we are combining the Wigner function with group theory, we have
reprinted in the Appendix Wigner's 1932 paper on the Wigner function as well
as his 1939 paper on the representations of the inhomogeneous Lorentz group. The
study of phase space requires a knowledge of harmonic oscillators. P.A.M. Dirac
was interested in coustructing representations of the Lorentz group based on four
dimensional harmonic oscillators. We have therefore included Dirac’s 1945 paper
on the Lorentz group and his 1963 paper on the de Sitter group.

There are many other interesting subjects which can be studied within the
framework of the phase-space picture of quantum mechanics but are not discussed
in this book. However, there are now a number of review articles (Wigner 1971,
O’Connell 1983, Carruthers and Zachariasen 1983, Hillery et al. 1984, Balazs and
Jennings 1984, Littlejohn 1986) containing applications of the Wigner phase-space
distribution function to various branches of modern physics. The scope of this book
is limited to the simplest form of the Wigner function with maximum symmetry
applicable to the branches of physics in which the phase-space picture is definitely
superior to other forms of quantum mechanics.
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Chapter 1

PHASE SPACE IN CLASSICAL
MECHANICS :

The concept of phase space originates from classical mechanics in its Hamiltonian
formalism, in which a given dynamical system depends on a number of independent
coordinate variables and the same number of conjugate momentum variables. The
Cartesian space consisting of these 2n coordinate variables is called phase space
(Goldstein 1980).

This phase-space formalism is the starting point for the modern approach to
classical mechanics (Arnold 1978, Abraham and Marsden 1978), including nonlinear
dynamics and chaos. Traditionally, the phase-space formalism of classical mechanics
plays the role of a bridge between classical mechanics and quantum mechanics. In
this Chapter, we shall study the properties of classical phase space which will be
shared by the phase-space formulation of quantum mechanics.

Of particular interest are linear canonical transformations which correspond to
unitary transformations in the Schrédinger picture of quantum mechanics. The
mathematics for linear canonical transformations is that of the symplectic group
which is relatively new in physics (Weyl 1946). The linear transformations of
the n pairs of canonical variables is governed by the group Sp(2n) (Gilmore 1974,
Guillemin and Sternberg 1984). In this book, we will be primarily concerned with
physical problems requiring one and two pairs of canonical variables. With this
point in mind, we shall start this section with the Hamiltonian formulation of clas-
sical mechanics.

1.1 Hamiltonian Form of Classical Mechanics

Classical mechanics starts with Newton’s second law stating that force is propor-
tional to acceleration. There are scveral reformulations of this law such as the
Lagrangian and Hamiltonian formalisms. The Lagrangian form is useful when we
do not wish to consider constraint forces. It plays the key role in quantum field
theory. It is also serves as the bridge between Newton’s second law and the Hamil-
tonian formalism.
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If there are n independent coordinates ¢y, ¢z, - -, ¢, In a given dynamical system,
the Lagrangian is a function of these coordinates and their time derivatives, as well
as the time variable:

L=L(41,¢121‘"aQn§dh‘bv"‘s¢in§t)- (11)
From this, the momentum variable conjugate to ¢ is defined as

oL

=5 (12)
For each i, the equation of motion is
JL
p; = — ) 1-3
b= 5 (1.3)

This is the Lagrangian form of the equation of motion.
The Hamiltonian is defined as

H= Zd.'p.‘ -~ L. (14)
Then, from the Lagrangian equations of motion,
. R OH
8H =3~ (4ibpi — pibas) + 5ot (1.5)

Thus, for each i, we can write the Hamiltonian equation of motion as

oH 8H
p=29 500 1.6
G=gp P o (1.6)
Now the Hamiltonian can be regarded as a function of ¢,,¢2,--,¢» and pi,ps,
‘*3Pn-
As far as the time dependence is concerned, from the definition of the Hamilto-
nian given in Eq. 1.4, ’ .

oL oH
The total derivative of the Hamiltonian is
dH O0H .,  OH, OH
F =L ("a—qjqi + 5;;?.‘) + 5 (1.8)

As a consequence of the equations of motion, the quantity in parenthesis vanishes,
and

= e = e, 1.9

dt ot at (1.9)
Thus, if the Lagrangian does not depend on time explicitly, the Hamiltonian is a
constant of motion.
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Let us consider some examples. The Hamiltonian for a free particle is naturally
H = p?/2m, and the Hamiltonian for n particles is

H=3p/2m, (1.10)

=1

which is the total energy. The equations of motion lead to p; = 0 for every 1.
The Hamiltonian for a charged particle in an electromagnetic field generated by
the vector potential A and the scalar potential ¢ is

1 e, \?
H= —2—-"-;<p—-zA) +ed, (1.11)
where e is the charge of the particle. In this case, the momentum vector p is not the
mass times the velocity, but the quantity L g -~ %A) is the velocity. Since the mag-
netic field does not change the magnitude of velocity, the above Hamiltonian is the
total energy of the system. This form of the Hamiltonian has been discussed exten-
sively in standard textbooks on classical and quantum mechanics (Goldstein 1980,
Schiff 1968). Since the potential can be gauge-transformed, the above Hamiltonian
is not invariant under gauge transformations. However, the resulting equations of
motion are invariant under gauge transformations.

For example, for a particle in a constant magnetic field along the z direction,
B = é,B, the vector potential can be written as

1
A=¢zB or = E(éyz ~ é&y) B. (1.12)
The difference between the two potentials is % (é,z + €,y) B. This is the gradient

of the scalar function zyB/2. These two potentials give the same set of equations
of motion.

For the first choice of A, the Hamiltonian can be written as

H= 51; (P2 +(py — ezBJe)}. (1.13)

Thus, according to the Hamiltonian equations of motion,

:i-‘(1> .__1 (eB)I
- m Pz, y—'mpy me b

Pe = (55) (pf, - “B) , Py =0. (1.14)

me c

From the first two equations,

pz=mi, p,=my+exB/c (1.15)

The substitution of these into Eq. 1.14 leads to the familiar set of Newton’s equa-
tions for the circular orbit with the cyclotron frequency eB/mc. The Hamiltonian
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equations of motion will take a different form for the second vector potential in
Egq. 1.12, but they will lead to the same set of Newton’s equations.
The Hamiltonian for the one-dimensional harmonic oscillator is

1Y 2 (K ) 2
= { — _ . 1
H (2m>p + 2/ (1.16)
According to the equations of motion, p = mz, and Kz = —p. This result is well

known, This form of the Hamiltonian plays the central role in modern optics and
relativistic quantum mechanics, and will be discussed extensively in this book.

Let us consider the Galilei transformation of this system, where the coordinate
is transformed as

=z + vt (117)

This means that the above harmonic oscillator is on a truck which moves with the
velocity v. Then to the observer on the ground, the Hamiltonian will be

— l 2 (I\.) r 2
H= (2m)p +(5) @ -t (1.18)
The equations of motion are

P =K' —vt), #F=p/m. (1.19)

This leads to the conclusion that the acceleration in the truck frame is the same as
that on the ground. Furthermore, the Lagrangian can be written as

— 2 2 _Il) L 2
L-(z)z (2 (z' ~ vt)?, (1.20)
which leads to p’ = mé&’ = m(z + v). Thus
P =p+mu. (1.21)

Thus, in terms of z and p, the Hamiltonian becomes

H= (2—171-) (p+ mv)? + (%) 3 (1.22)

This is consistent with what we expect from the Galilei transformation.

1.2 Trajectories in Phase Space

It is quite clear that, in the Hamiltonian formalism, the dynamical system of n
degrees of freedom is described by n coordinate variables g, ¢2, -+, ¢n, and their
conjugate momenta p;, Pz, -, pPa. It 1s then possible to consider a 2n-dimensional

space spanmed by n coordinate and n momentum variables. This space is called
phase space.
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Figure 1.1: Phase-space description of the Kepler problem. If the total energy is negative, the
orbit is closed. If the energy is positive, the orbit is open. The particle comes in with & negative
momentum and goes out with a positive momentum. This figure gives an iuieresting description of
the transition from negative to positive energy. If k is negative, the potenti: ! is repulsive, and the
momentum takes its maximum value at an infinite distance.

If there is one degree of freedom, then a two-dimensional phase space consisting
of z and p can completely determine the dynamical system. For one free particle
with a given momentum p, the particle trajectory is a line parallel to the z axis with
a fixed value of p. For the one-dimensional harmonic oscillator, the Hamiltonian is
the total energy, and the trajectory is an ellipse in the phase space of z and p.

Let us next consider a simple pendulum whose Hamiltonian is (Goldstein 1980)

H = p}[2I + mgé(1 — cosh). (1.23)

Here again the Hamiltonian is the total energy. The angular momentum is given
by ps. If the energy is very small, the small-angle approximation can be made, and
thus the energy becomes

E = p}/21 + (mgt/2)6". (1.24)

Thus the trajectory in the phase space of 8 and py is an ellipse. If however, the
energy is much larger than mgf, then the potential energy terms can be ignored,
and the encrgy becomes that of a free particle.

It is possible to give a phase space description of the Kepler problem. The total
energy can be written in terms of the radial momentum and the effective potential
as (Goldstein 1980):

E =p*/2m + 62 /2mr? — k/r, (1.25)

where £ is the total angular momentum. If k is positive, the system can have a
bound state. Then the trajectory in the phase space of r and p, is closed for a
negative value of E. If the energy is positive, the trajectory is open as is indicated



