Ricardo Choren Alessandro Garcia

Holger Giese Ho-fung Leung
Carlos Lucena Alexander Romanovsky (Eds.)

o
S
-
(<P)
S
e
Tl
5
(¢F)
e
(O
e
o)

Survey

Software Engineering for
Multi-Agent Systems V

Research Issues
and Practical Applications

LNCS 4408

Springer

T3S

\
e

1% .
' ‘{ *. | / :‘}

= , Ricardo Choren Alessandro Garcia
> 90 Holger Giese Ho-fung Leung

Carlos Lucena Alexander Romanovsky (Eds.)

Software Engineering for
Multi-Agent Systems V

Research Issues
and Practical Applications

\\
\
)
\ Iz " J
\ “ 13 :‘ :’ ', /
\‘\. { / ».’
\'m

i

@ Springer E2007003053

Volume Editors

Ricardo Choren
PUC-Rio, Rio de Janeiro, Brazil
E-mail: choren@les.inf.puc-rio.br

Alessandro Garcia

Lancaster University

United Kingdom

E-mail: garciaa@comp.lancs.ac.uk

Holger Giese

University of Paderborn
D-33098 Paderborn, Germany
E-mail: hg@uni-paderborn.de

Ho-fung Leung

The Chinese University of Hong Kong
Hong Kong, China

E-mail: Ihf @cse.cuhk.edu.hk

Carlos Lucena
PUC-Rio, Rio de Janeiro, Brazil
E-mail: lucena@inf.puc-rio.br

Alexander Romanovsky

University of Newcastle

Newcatle upon Tyne, UK

E-mail: Alexander.Romanovsky @newcastle.ac.uk

Library of Congress Control Number: 2007931241

CR Subject Classification (1998): D.2,1.2.11, C.2.4, D.1.3, H.3.5
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-73130-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73130-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12078462 06/3180 543210

Preface

Software is present in every aspect of our lives, pushing us inevitably towards a world
of distributed computing systems. Agent concepts hold great promise for responding
to the new realities of large-scale distributed systems. Multi-agent systems (MASs)
and their underlying theories provide a more natural support for ensuring important
agent properties, such as autonomy, environment heterogeneity, organization and
openness. Nevertheless, a software agent is an inherently more complex abstraction,
posing new challenges to software engineering. Without adequate development tech-
niques and methods, MASs will not be sufficiently dependable, thus making their
wide adoption by the industry more difficult.

The dependability of a computing system is its ability to deliver a service that can
be justifiably trusted. It is a singular time for dependable distributed systems, since
the traditional models we use to express the relationships between a computational
process and its environment are changing from the standard deterministic types into
ones that are more distributed and dynamic. This served as a guiding principle for
planning the Software Engineering for Large-Scale Multi-Agent Systems (SELMAS
2006) workshop, starting with selecting the theme, “building dependable multi-agent
systems.” It acknowledges our belief in the increasingly vital role dependability plays
as an essential element of MAS development.

SELMAS 2006 was the fifth edition of the workshop, organized in association with
the 28th International Conference on Software Engineering (ICSE), held in Shanghai,
China, in May 2006. After each workshop edition, it was decided to extend its scope,
and to invite several of the workshop participants to write chapters for books based on
their original position papers, as well as other leading researchers in the area to pre-
pare additional chapters. Thus, this volume is the fifth in the Software Engineering for
Multi-Agent Systems LNCS series.

In planning this volume, we sought to achieve both continuity and innovation. The
papers selected for this volume present advances in software engineering approaches
to develop dependable high-quality MASs. In addition, the power of agent-based
software engineering is illustrated using actual real-world applications. These papers
describe experiences and techniques associated with large MASs in a wide variety of
problem domains.

This book brings together a collection of 12 papers addressing a wide range of is-
sues in software engineering for MASs, reflecting the importance of agent properties
in today’s software systems. The papers in this book describe recent developments in
specific issues and practical experience. At the end of each chapter, the reader will
find a list of interesting references for further reading. The papers are grouped into
five categories: Faulty Tolerance, Exception Handling and Diagnosis, Security and
Trust, Verification and Validation, and Early Development Phases and Software Re-
use. We believe that this carefully prepared volume will be of particular value to all
readers interested in these key topics, describing the most recent developments in the
field of software engineering for MASs.

VI Preface

The main target readers for this book are researchers and practitioners who want to
keep up with the progress of software engineering in MASs, individuals keen to un-
derstand the interplay between agents and objects in software development, and those
interested in experimental results from MAS applications. Software engineers in-
volved with particular aspects of MASs as part of their work may find it interesting to
learn about using software engineering approaches in building real systems. A num-
ber of chapters in the book discuss the development of MASs from requirements and
architecture specifications to implementation.

We are confident that this book will be of considerable use to the software engi-
neering community by providing many original and distinct views on such an impor-
tant interdisciplinary topic, and by contributing to a better understanding and cross-
fertilization among individuals in this research area.

Our thanks go to all our authors, whose work made this volume possible. Many of
them also helped during the reviewing process. We would also like to express our
gratitude to the members of the Evaluation Committee who were generous with their
time and effort when reviewing the submitted papers. In conclusion, we extend once
more our words of gratitude to all who contributed to making the SELMAS workshop
series a reality. We hope that all of us will feel that we contributed in some way to
helping improve the research on and the practice of software engineering for MASs in
our society.

February 2007 Ricardo Choren
Alessandro Garcia

Holger Giese

Ho-fung Leung

Carlos Lucena

Alexander Romanovsky

Foreword

Although agent-based systems originated in the artificial intelligence community,
they have become, over the past decade, an important topic for software engineering
research. The reason for this is quite simple; the agent paradigm is extremely useful,
if not essential, for solving many problems in software construction in the modern
world of highly distributed, service-oriented, telecommunications and Internet-based
systems. In many senses, there is nothing all that new about agents. After all, learning,
goal-based behavior, planning and so on have been the subject of study for decades.
Basic definitions of agents always include the concept of autonomy, defined (usually
by example) as the ability to decide whether to accept a communication or not. But
this ability is inherent in all software. Just look at operating systems or any reactive
system! The idea of an open system also predates agents, e.g., actor systems, the
Internet, etc. What is different about agents is the novel combination of these ingredi-
ents ‘in one package’ and the degree to which characteristics such as autonomy and
being open are driving forces in the construction of these systems.

In this sense, it is quite natural to ask questions about agent system construction
from the point of view of software engineering. As with any piece of software, we
would expect that the software will be properly engineered, and not developed ac-
cording to the paradigm described by the old joke about Al: How does an Al pro-
grammer develop software? He begins with the empty program and debugs until it
works!

We know a lot about properly engineering software systems, even if this knowl-
edge is not always deployed, but is there anything new that needs to be added in order
to adapt the existing techniques and tools to support the construction of agent sys-
tems? As an example, Jean-Pierre Briot notes in the foreword of the 2004 SELMAS
volume that the FIPA Agent Communication Language standard is an extension of
the middleware idea inherent in CORBA to support the kind of communication re-
quirements of business systems. There has been much discussion in the literature of
platforms for agent-based systems, such as JADE, Grasshopper, JACK, Zeus, etc. In
my view, these are middleware proposals, analogous to CORBA. Of course, they are
more structured than CORBA and support more multidimensional interaction. But
they are still middleware concepts. (Unfortunately, they are often referred to as ‘archi-
tectures’, leading to confusion when discussing software architectures. See below.)
The past volumes of SELMAS and the current volume address issues in software
engineering that investigate how standard ideas in software engineering apply to the
construction of agent-based systems and the extent to which they have to be adapted.

What seems remarkable to me is the robustness of existing software engineering
techniques with respect to this change in domain of application. One only has to pe-
ruse the section titles in the present volumes to see this historical resonance: ‘Fault
Tolerance’, ‘Exception Handling and Diagnosis’, ‘Security and Trust’, ‘Verification
and Validation’, ‘Early Development Phases and Software Reuse’. Of course, the
papers might thus be uninteresting to the wider community if the change in domain, to
multi-agent systems, did not require substantial work in adapting and extending these

VIII Preface

techniques. This is certainly what made the papers in the volume of great interest to
me.

In my own area of interest, software architecture, I noted above a confusion that
has crept into the agent literature. There is much discussion about architecture, but it
seems to relate to the internal architecture of the middleware component of relevant
platforms. There is very little discussion of software architecture, per se, in relation to
the application itself, other than at the gross level of components. One of my own
students is doing ‘archaeology’ on multi-agent system designs in the literature to
determine what the software architecture of these designs might be. Initial investiga-
tion would seem to indicate that most such applications have an implicit software
architecture and it is a standard one from the software architecture literature. Layered
architectures and blackboard architectures are common. Against our expectations, it is
hard to spot any new software architectures emerging from the agent world. This is
extremely surprising and might be a fruitful topic for further investigation and discus-
sion at a future instance of SELMAS!

Tom Maibaum
McMaster University

Evaluation Committee

Natasha Alechina
Mercedes Amor
Carole Bernon
Rafael Bordini
Jean-Pierre Bnot
Giacomo Cab~i
Grui a Catalin-Roman
Mehdi Dastani
Mark Greaves
Zahia Guessoum
Giancarlo Guizzardi
Alexei Iliasov
Christine Julien
Rogerio de Lemos
Michael Luck
Viviana Mascardi
Haralabos Mouratidis
Andrea Omicini
Juan Pav6n
Gustavo Rossi
John Shepherdson
Viviane Silva
Danny Wcyns

Additional Reviewers

Juan Botia
Davide Grossi
Yuanfang Li

Organization

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

-

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4408

Lecture Notes in Computer Science

For information about Vols. 1-4525

please contact your bookseller or Springer

Vol. 4613: EP. Preparata, Q. Fang (Eds.), Frontiers in
Algorithmics. XI, 348 pages. 2007.

Vol. 4612: 1. Miguel, W. Ruml (Eds.), Abstraction, Re-
formulation, and Approximation. XI, 418 pages. 2007.
(Sublibtary LNAI).

Vol. 4611: J. Indulska, J. Ma, L.T. Yang, T. Ungerer,
J. Cao (Eds.), Ubiquitous Intelligence and Computing.
XXIII, 1257 pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.), ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovic, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4607: L. Baresi, P. Fraternali, G.-J. Houben (Eds.),
Web Engineering. XVI, 576 pages. 2007.

Vol. 4606: A. Pras, M. van Sinderen (Eds.), Dependable
and Adaptable Networks and Services. X1V, 149 pages.
2007.

Vol. 4605: D. Papadias, D. Zhang, G. Kollios (Eds.),
Advances in Spatial and Temporal Databases. X, 479
pages. 2007.

Vol. 4604: U. Priss, S. Polovina, R. Hill (Eds.), Con-
ceptual Structures: Knowledge Architectures for Smart
Applications. XII, 514 pages. 2007. (Sublibrary LNAI).

Vol. 4603: F. Pfenning (Ed.), Automated Deduction —
CADE-21. XII, 522 pages. 2007. (Sublibrary LNAI).

Vol. 4602: S. Barker, G.-J. Ahn (Eds.), Data and Appli-
cations Security XXI. X, 291 pages. 2007.

Vol. 4600: H. Comon-Lundh, C. Kirchner, H. Kirch-
ner, Rewriting, Computation and Proof. XVI, 273 pages.
2007.

Vol.4599: S. Vassiliadis, M. Berekovic, T.D. Himildinen
(Eds.), Embedded Computer Systems: Architectures,
Modeling, and Simulation. XVIII, 466 pages. 2007.

Vol. 4598: G. Lin (Ed.), Computing and Combinatorics.
XII, 570 pages. 2007.

Vol. 4597: P. Perner (Ed.), Advances in Data Mining. XI,
353 pages. 2007. (Sublibrary LNAI).

Vol. 4596: L. Arge, C. Cachin, T. Jurdzinski, A. Tarlecki
(Eds.), Automata, Languages and Programming. XVII,
953 pages. 2007.

Vol. 4595: D. Bosnacki, S. Edelkamp (Eds.), Model
Checking Software. X, 285 pages. 2007.

Vol. 4594: R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.),
Artificial Intelligence in Medicine. XVI, 509 pages.
2007. (Sublibrary LNAI).

Vol. 4592: Z. Kedad, N. Lammari, E. Métais, F. Meziane,
Y. Rezgui (Eds.), Natural Language Processing and In-
formation Systems. XIV, 442 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4590: W. Damm, H. Hermanns (Eds.), Computer
Aided Verification. XV, 562 pages. 2007.
Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-

Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4588: T. Harju, J. Karhumiki, A. Lepistd (Eds.),
Developments in Language Theory. XI, 423 pages. 2007.
Vol. 4587: R. Cooper, J. Kennedy (Eds.), Data Manage-
ment. XIII, 259 pages. 2007.

Vol. 4586: J. Pieprzyk, H. Ghodosi, E. Dawson (Eds.),
Information Security and Privacy. XIV, 476 pages. 2007.
Vol. 4585: M. Kryszkiewicz, J.F. Peters, H. Rybinski,
A. Skowron (Eds.), Rough Sets and Intelligent Systems
Paradigms. XIX, 836 pages. 2007. (Sublibrary LNAI).
Vol. 4584: N. Karssemeijer, B. Lelieveldt (Eds.), Infor-
mation Processing in Medical Imaging. XX, 777 pages.
2007.

Vol. 4583: S.R. Della Rocca (Ed.), Typed Lambda Cal-
culi and Applications. X, 397 pages. 2007.

Vol.4582:J. Lopez, P. Samarati, J.L. Ferrer (Eds.), Public
Key Infrastructure. XI, 375 pages. 2007.

Vol. 4581: A. Petrenko, M. Veanes, J. Tretmans, W.
Grieskamp (Eds.), Testing of Software and Communi-
cating Systems. XII, 379 pages. 2007.

Vol. 4580: B. Ma, K. Zhang (Eds.), Combinatorial Pat-
tern Matching. XII, 366 pages. 2007.

Vol. 4579: B. M. Hammerli, R. Sommer (Eds.), Detec-
tion of Intrusions and Malware, and Vulnerability As-
sessment. X, 251 pages. 2007.

Vol. 4578: F. Masulli, S. Mitra, G. Pasi (Eds.), Appli-
cations of Fuzzy Sets Theory. XVIII, 693 pages. 2007.
(Sublibrary LNAI).

Vol. 4577: N. Sebe, Y. Liu, Y.-t. Zhuang (Eds.), Multi-
media Content Analysis and Mining. XIII, 513 pages.
2007.

Vol. 4576: D. Leivant, R. de Queiroz (Eds.), Logic,
Language, Information and Computation. X, 363 pages.
2007.

Vol. 4575: T. Takagi, T. Okamoto, E. Okamoto, T.
Okamoto (Eds.), Pairing-Based Cryptography — Pairing
2007. XI, 408 pages. 2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
X1, 375 pages. 2007.

Vol. 4573: M. Kauers, M. Kerber, R. Miner, W. Wind-
steiger (Eds.), Towards Mechanized Mathematical As-
sistants. XIII, 407 pages. 2007. (Sublibrary LNAI).

Vol. 4572: F. Stajano, C. Meadows, S. Capkun, T. Moore
(Eds.), Security and Privacy in Ad-hoc and Sensor Net-
works. X, 247 pages. 2007. ¢

Vol. 4571: P. Perner (Ed.), Machine Learning and Data
:Mining in Pattern Recognition. XIV, 913 pages. 2007.
(Sublibrary LNAI).

Vol. 4570: H.G. Okuno, M. Ali (Eds.), New Trends in
Applied Artificial Intelligence. XXI, 1194 pages. 2007.
(Sublibrary LNAI).

Vol. 4569: A. Butz, B. Fisher, A. Kriiger, P. Olivier, S.
Qwvada (Eds.), Smeart Graphics. IX, 237 pages. 2007.

Vol. 4566: M.J. Dainoff (Ed.), Ergonomics and Health
Aspects of Work with Computers. XVIII, 390 pages.
2007.

Vol. 4565: D.D. Schmorrow, L.M. Reeves (Eds.), Foun-
dations of Augmented Cognition. XIX, 450 pages. 2007.
(Sublibrary LNAI).

Vol. 4564: D. Schuler (Ed.), Online Communities and
Social Computing. X VII, 520 pages. 2007.

Vol. 4563: R. Shumaker (Ed.), Virtual Reality. XXII, 762
pages. 2007.

Vol. 4562: D. Harris (Ed.), Engineering Psychology and
Cognitive Ergonomics. XXIII, 879 pages. 2007. (Subli-
brary LNAI).

“Vol. 4561: V.G. Dufty (Ed.), Digital Human Modeling.
XXIII, 1068 pages. 2007.

Vol. 4560: N. Aykin (Ed.), Usability and International-
ization, Part I1. XVIII, 576 pages. 2007.

Vol. 4559: N. Aykin (Ed.), Usability and International-
ization, Part I. XVIII, 661 pages. 2007.

Vol. 4558: M.J. Smith, G. Salvendy (Eds.), Human Inter-
_face and the Management of Information, Part IT. XXIII,
1162 pages. 2007.

“Vbl. 4557: M.J. Smith, G. Salvendy (Eds.), Human Inter-
face and the Management of Information, Part 1. XXII,
1030 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in

Human-Computer Interaction, Part I XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I11. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I1. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4549: J. Aspnes, C. Scheideler, A. Arora, S. Madden
(Eds.), Distributed Computing in Sensor Systems. XIII,
417 pages. 2007.

Vol. 4548: N. Olivetti (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. X, 245 pages.
2007. (Sublibrary LNAI).

Vol.4547: C.Carlet, B. Sunar (Eds.), Arithmetic of Finite
Fields. XI, 355 pages. 2007.

Vol. 4546: J. Kleijn, A. Yakovlev (Eds.), Petri Nets and
Other Models of Concurrency — ICATPN 2007. X1, 515
pages. 2007.

Vol. 4545: H. Anai, K. Horimoto, T. Kutsia (Eds.), Alge-
braic Biology. XIII, 379 pages. 2007.

Vol. 4544: S. Cohen-Boulakia, V. Tannen (Eds.), Data
Integration in the Life Sciences. XI, 282 pages. 2007.
(Sublibrary LNBI).

Vol. 4543: A K. Bandara, M. Burgess (Eds.), Inter-
Domain Management. XII, 237 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4541: T. Okadome, T. Yamazaki, M. Makhtari
(Eds.), Pervasive Computing for Quality of Life En-
hancement. IX, 248 pages. 2007.

Vol. 4539: N.H. Bshouty, C. Gentile (Eds.), Learning
Theory. X1I, 634 pages. 2007. (Sublibrary LNAI).

Vol. 4538: E. Escolano, M. Vento (Eds.), Graph-Based
Representations in Pattern Recognition. XII, 416 pages.
2007.

Vol. 4537: K.C.-C. Chang, W. Wang, L. Chen, C.A. El-
lis, C.-H. Hsu, A.C. Tsoi, H. Wang (Eds.), Advances in
Web and Network Technologies, and Information Man-
agement. XXIII, 707 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4534: 1. Tomkos, F. Neri, J. Solé Pareta, X. Masip
Bruin, S. Sdnchez Lopez (Eds.), Optical Network Design
and Modeling. XI, 460 pages. 2007.

Vol. 4533: F. Baader (Ed.), Term Rewriting and Appli-
cations. XII, 419 pages. 2007.

Vol. 4531: J. Indulska, K. Raymond (Eds.), Distributed
Applications and Interoperable Systems. XI, 337 pages.
2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture- Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4529: P. Melin, O. Castillo, L.T. Aguilar, J.
Kacprzyk, W. Pedrycz (Eds.), Foundations of Fuzzy
Logic and Soft Computing. XIX, 830 pages. 2007. (Sub-
library LNAI).

Vol. 4528: J. Mira, J.R. Alvarez (Eds.), Nature Inspired
Problem-Solving Methods in Knowledge Engineering,
Part II. XXII, 650 pages. 2007.

Vol. 4527: J. Mira, J.R. Alvarez (Eds.), Bio-inspired
Modeling of Cognitive Tasks, Part 1. XXII, 630 pages.
2007.

Vol. 4526: M. Malek, M. ReitenspieB, A. van Moorsel
(Eds.), Service Availability. X, 155 pages. 2007.

AP,

Table of Contents

Fault Tolerance

On Fault Tolerance in Law-Governed Multi-agent Systems

Maira A. de C. Gatti, Gustavo R. de Carvalho, Rodrigo B. de Paes,
Carlos J.P. de Lucena, and Jean-Pierre Briot

On Developing Open Mobile Fault Tolerant Agent Systems............

Budi Arief, Alexei Iliasov, and Alexander Romanouvsky

Exception Handling and Diagnosis

Challenges for Exception Handling in Multi-Agent Systems............

Eric Platon, Nicolas Sabouret, and Shinichi Honiden

Exception Handling in Context-Aware Agent Systems: A Case Study . ..

Nelio Cacho, Karla Damasceno, Alessandro Garcia,
Alexander Romanovsky, and Carlos Lucena

Exception Diagnosis Architecture for Open Multi-Agent Systems.

Nazaraf Shah, Kuo-Ming Chao, and Nick Godwin

Security and Trust

SMASH: Modular Security for Mobile Agents........................

Adam Pridgen and Christine Julien

Reasoning About Willingness in Networks of Agents..................

S. Dehousse, S. Faulkner, H. Mouratidis, M. Kolp, and P. Giorgini

Verification and Validation

Towards Compliance of Agents in Open Multi-agent Systems

Jorge Gonzalez-Palacios and Michael Luck

Towards an Ontological Account of Agent-Oriented Goals

Renata S.S. Guizzardi, Giancarlo Guizzardi, Anna Perini, and
John Mylopoulos

Early Development Phases and Software Reuse

Improving Multi-Agent Architectural Design

Carla Silva, Jaelson Castro, Patricia Tedesco, Jodo Araijo,
Ana Moreiral, and John Mylopoulos

21

41

57

T

99

XII Table of Contents

Objects as Actors Assuming Roles in the Environment................
Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi Ichiyama

A Framework for Situated Multiagent Systems
Danny Weyns and Tom Holvoet

Author Index : is: ssi0s ssiwmivivsisisnias

On Fault Tolerance in Law-Governed
Multi-agent Systems

Maira A. de C. Gatti', Gustavo R. de Carvalho', Rodrigo B. de Paes',
Carlos J.P. de Lucena', and Jean-Pierre Briot

" Software Engineering Laboratory, PUC-Rio,
Rio de Janeiro, Brazil
{mgatti, guga, rbp, lucena}@les.inf. puc-rio.br
* Laboratoire d'informatique de Paris 6 (LIP6),
Universit’e Pierre et Marie Curie, Paris, France
Jean-Pierre.Briot@lip6.fr

Abstract. The dependability of open multi-agent systems is a particular
concern, notably because of their main characteristics as decentralization and no
single point of control. This paper describes an approach to increase the
availability of such systems through a technique of fault tolerance known as
agent replication, and to increase their reliability through a mechanism of agent
interaction regulation called law enforcement mechanism. Therefore, we
combine two frameworks: one for law enforcement, named XMLaw, and
another for agent adaptive replication, named DimaX, in which the decision of
replicating an agent is based on a dynamic estimation of its criticality.
Moreover, we will describe how we can reuse some of the information
expressed by laws in order to help at the estimation of agent criticality, thus
providing a better integration of the two frameworks. At the end of the paper,
we recommend a means to specify criticality monitoring variation through a
structured argumentation approach that documents the rationale around the
decisions of the law elements derivation.

Keywords: Multi-Agent Systems; Open Systems; Law-Governed Approach;
Dependability of Open Systems; Fault Tolerance: Requirements; Criticality;
Availability, Reliability.

1 Introduction

There are many definitions in the literature for agents and, consequently, multi-agent
systems. And despite their differences, all of them basically characterize a multi-agent
system (MAS) as a computational environment in which individual software agents
interact with each other, in a cooperative manner, or in a competitive manner, and
sometimes autonomously pursuing their individual goals. During this process, they
access the environment’s resources and services and occasionally produce results for
the entities that initiated these software agents [1]. As the agents interact in a
concurrent, asynchronous and decentralized manner, this kind of system can be
categorized as a complex system [2].

R. Choren et al. (Eds.): SELMAS 2006, LNCS 4408, pp- 1-20, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 M.A. de C. Gatti et al.

The absence of centralized coordination data makes it hard to determine the
current state of the system and/or to predict the effects of actions. Moreover, all of
the possible situations that may arise in the execution context led us to be uncertain
about predicting the behavior of agents. However, in critical applications such as
business environments or government agencies, the behavior of the global system
must be taken into account and structural characteristics of the domain have to be
incorporated [10].

A particular issue that arises from this kind of software is: how we can ensure their
dependability (which is the ability of a computer system to deliver service that can
justifiably be trusted [3]) considering the reliability of critical applications and
availability of these agents. There are some proposals to address such problem
([31[41[5]1[6], for instance, for fault tolerance and [7][8] for reliability) which have
been proposed in the last few years using different approaches; each one solved a
restricted problem involving dependability.

In this paper we propose an approach to increase the availability of multi-agent
systems through a technique of fault tolerance known as agent replication, and to
increase its reliability through a mechanism of agent interaction regulation called law
enforcement mechanism. Therefore, we will combine two frameworks. The first
framework, named XMLaw, manages law enforcement to increase reliability and
correctness. The second framework, named DimaX, manages adaptive replication of
agents in order to increase fault-tolerance. In DimaX, the decision of replicating an
agent is based on a dynamic estimation of its criticality given by a criticality
monitoring strategy. The agent criticality defines how important the agent is to the
organization and consequently to the system. The estimation of the criticality of an
agent can be based on different information, as the messages it sends or receives, or
the role it plays, etc. In this paper, we will describe how we can reuse some of the
information expressed by laws, and supported by XMLaw, in order to further
contribute to the estimation of agent criticality, thus providing a better integration of
the two frameworks. The novelty of this contribution is in the proposed combination
of law-based governance and replication-based fault-tolerance, rather than in specific
contributions in law-based governance or in fault-tolerance.

We also propose a means to specify the criticality monitoring strategy through a
structured argumentation [24] that documents the rationale around the decisions of the
law elements derivation. However, it will not be detailed in this paper. Moreover,
we also provide a framework that implements the criticality monitoring variation
behavior specified.

The subsequent sections are organized as follows: Section 2 presents an
introduction to the agent replication-based fault tolerance for multi-agent systems, and
Section 3 presents the law enforcement approach for increasing the reliability of these
systems. Section 4 states a scenario for the problem description. Section 5 details the
proposed solution for the problem as an integrated architecture. This architecture is
the integration of both approaches presented in Section 2 and 3. Section 6 presents
one of the case studies implemented to validate the concepts and the architecture. And
finally, Section 7 concludes this paper and presents future works.

On Fault Tolerance in Law-Governed Multi-agent Systems 3

2 Fault Tolerance in Multi-agent Systems: Agent Replication

The multi-agent systems deployed in an open environment, where agents from various
organizations interact in the same MAS, are distributed over many hosts and communicate
over public networks, hence more attention must be paid to fault tolerance.

Several approaches ([4][14][15]) address the multi-faced problem of fault tolerance
in multi-agent systems. Some of them handle the problems of communication,
interaction and coordination of agents with the other agents of the system. Others
address the difficulties of making reliable mobile agents, which are more exposed to
security problems. Some of them are based on replication mechanisms [9], and as
mentioned before they have solved many problems of ubiquitous systems.

Agent replication is the act of creating one or more replicas of one or more agents,
and the number of each agent replica is the replication degree; everything depends on
how critical the agent is while executing its tasks. Among the significant advantages
over other fault-tolerance solutions, first and foremost, agent replication provides the
groundwork for the shortest recovery delays. Also, generally it is less intrusive with
respect to execution time. And finally, it scales much better [9]. There is a framework,
named DimaX [6], that allows dynamic replication and dynamic adaptation of the
replication policy (e.g., passive to active, changing the number of replicas). It was
designed to easily integrate various agent architectures, and the mechanisms that
ensure dependability are kept as transparent as possible to the application. Basically,
DimaX is the integration between a multi-agent system called Dima and the dynamic
replication architecture for agents called DarX.

There are two cases that might be distinguished: 1) the agent’s criticality is static
and 2) the agent’s criticality is dynamic. In the first case, multi-agent systems have
often static organization structures, static behaviors of agents, and a small number of
agents. Critical agents, therefore, can be identified by the designer and can be
replicated by the programmer before run time.

In the second case, the agent criticality cannot be determined before run time due
to the fact that the multi-agent systems may have dynamic organization structures,
dynamic behaviors of agents and a large number of agents. Then it is important to
determine these structures dynamically in order to evaluate agent criticality. The
approach detailed in [16] proposes a way of determining it through role analysis. It
could be done by some prior input from the designer of the application who specifies
the roles’ weights, or there would be an observation module for each server that
collects the data through the agent execution and their interactions. In the second
approach, global information is built and then used to obtain roles and degree of
activity to compute the agent criticality.

Another way of dynamically determining these structures to evaluate agent
criticality is to represent the emergent organizational structure of a multi-agent system
by a graph [6]. The hypothesis is that the criticality of an agent relies on the
interdependences of other agents on this agent. First, the interdependence graph is
initialized by the designer, and then it is dynamically adapted by the system itself.
Some algorithms to dynamically adapt and describe it are proposed in [6].

We will present here an enhancement of these approaches and it will be further
described in Section 5. Basically, we improved the agent criticality calculation
through dynamic elements present during interactions with other agents. These

4 M.A. de C. Gatti et al.

elements will be described in the next section while the law enforcement approaches,
especially the one that was chosen, are exposed.

3 Law-Governed Interaction

In open multi-agent systems the development takes place without a centralized
control, thus it is necessary to ensure the reliability of these systems in a way that all
the interactions between agents will occur according to the specification and that
these agents will obey the specified scenario. For this, these applications must be built
upon a law-governed architecture.

In this kind of architecture, enforcement that is responsible for the interception of
messages and the interpreting of previously described laws is implemented. The core
of a law-governed approach is the mechanism used by the mediator to monitor the
conversations between agents.

Note that law-governed approaches have some relations with general coordination
mechanisms (e.g., tuple-space mechanisms like Tucson [26]) in that they specify and
control interactions between agents. However, the specificity of law-governed
mechanisms is about controlling interactions and actions from a social (social norms)
perspective, whereas general coordination languages and mechanisms focus on means
for expressing synchronization and coordination of activities and exchange of
information, at a lower (not social) computational level.

Among the models and frameworks that were developed to support law-governed
mechanism (for instance, [7][8][17][18]), XMLaw [7] was chosen for three main
reasons. First, because it implements a law enforcement approach as an object-
oriented framework, which brings the benefits of reuse and flexibility. Second, it
allows normative behavior that is more expressive than the others through the
connection between norms and clocks. And finally, it permits the execution of Java
code through the concept of actions. Thus, in this section, we explain the XMLaw
description language [7] and the M-Law framework [19].

M-Law works by intercepting messages exchanged between agents, verifying the
compliance of the messages with the laws and subsequently redirecting the message to
the real addressee, if the laws allow it (Figure 1). If the message is not compliant, then
the mediator blocks the message and applies the consequences specified in the law.

This infrastructure, whenever necessary, can be extended to fulfill open system
requirements or interoperability concerns. M-Law architecture is based on a pool of
mediators that intercept messages and interpret the previously described laws.

Agent A Communication Agent B
O =i O
o Interception Redirection

'M-Law (mediator) eds>

@En’orcsm&n XMLaw

Fig. 1. M-Law Architecture

