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Editor’s Statement

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathermatics, and are the most likely to
survive change of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order. but will be organized into sections, each one comprising
a recognizable branch of present-day mathematics. Numbers of volumes
and sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied
but where it has not yet penetrated because of insufficient information.

GIAN-CARLO ROTA

We are happy to inaugurate the Combinatorics Section of the Encyclo-
pedia. Professor Tutte, one of the founders of graph theory, is presenting
here the jewels of a subject rich in deep results, in a volume that will long
remain definitive.

Xiii



Foreword -

It is both fitting and fortunate that the volume on graph theory in the
Encyclopedia of Mathematics and Its Applications has an author whose
contributions to graph theory are—in the opinion of many—unequaled.
Indeed, the style and content of the book betray throughout the influence of
Professor Tutte’s own work and the distinctive flavor of his personal
approach to the subject—a flavor familiar to those of use who have heard
his beautifully constructed lectures on many occasions and are delighted to
see so much’of this exposition now recorded in permanent form for a wider
audience.

The book deals with many of the central themes that one might
expect to find in books on graph theory, such as Menger’s Thecrem and
network flows, the Reconstruction Problem, the Matrix-Tree Theorem, the
theory (largely created by Professor Tutte) of factors (or matchings) in
graphs, chromatic polynomials, Brooks’ Theorem, Grinberg’s Theorem,
planar graphs,-and Kuratowski’s Theorem. However, this is by no means
“just another book on graph theory,” since the treatment of all these topics
is unified into a coherent whole by Professor Tutte’s highly individual
approach. Moreover, the more customary topics are leavened with some
*“pleasant surprises,” such as the author’s attractive theory of decomposition
of graphs into 3-connected ““3-blocks” (not found in other books except [5]),
an interesting and remarkable approach to electrical networks, and— perhaps
particularly— the classification theorem for closed surfaces. This theorem is
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Xvi Foreword

usually considered as part of topology, but Professor Tutte shows us that it
fits admirably into a work on graph theory, where indeed the essentially
combinatorial nature of the arguments may be more at home.

- From these remarks, it will be clear that the book has much to offer
to any reader interested in graph theory. It draws together some important
themes from the rapidly growing literature of the subject, and by no means
duplicates any other expository writing at present available. It will also
piovide an excellent preparation for some slightly more specialized topics,
including much of Professor Tutte’s own work—for example, his extensive
theory of planar enumeration and chromatic polynomials of maps, his
theorem on Hamiltonian circuits in 4-connected planar graphs, the Five-Flow
Conjecture (see Chapter IX, Sec. 1X.4), and the interactions of matroids
with graphs (see Chapter VIII, Sec. VIII.11). The treatment of minors
provides background for (among many other things) the conjecture about
well-quasi-ordering of graphs by the relationship of one graph being a
minor of another (see the second half of Note 1 at the end of Chapter II).
Current work of G. N. Robertson (a former student of Professor Tutte) and
P. D. Seymour seems to promise exciting developments related to this
problem. Some of these—and other—topics might provide ample material
for a sequel volume, if Professor Tutte, or someone close to his thinking, is
impelled to write one.

In the Introduction, Professor Tutte describes his early encounters
with graph theory, particularly as a student at Cambridge. This cannot but
provoke one’s own early recollections, a favorite topic of conversation
among graph-theorists being what first drew one’s attention to graph theory.
My own answer is “Nothing: I just invented it.” In other words, when
starting work as a research student, also at Cambridge, I felt that there
ought to be a branch of mathematics dealing with this kind of thing, and, if
there was not, I would create it. (References to binary relations in algebra
courses might have helped to foster this idea.) It is a measure of the little
known state of graph theory at that time that it took me some weeks to
discover that I was not its first inventor and to hear of the one existing
textbook on the subject, Konig's Theorie der endlichen und unendlichen
Graphen, published eighteen years earlier in 1936. After Konig, I turned to
the few research papers on graph theory then available, and I recall many
hours in the library studying Professor Tutte’s work on factors of graphs,
liberally armed with colored pencils (especially red and bue ones, of course)
to draw the diagrams needed to aid one’s imagination. The reader is advised
to equip himself similarly when he reaches Chapter VII, if indeed he has not
already found this to be essential at a much earlier stage in the study of this
or any other book on graph theory.

During the early part of my career, working in graph theory was a
rarity and an idiosyncrasy. A graph-theorist could not expect to have others
among his colleagues and might be hard pressed to find them in the same
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country: one simply did not expect to interact with other mathematicians
except through published literature. Undergraduate and even graduate
courses in the subject were virtually unknown. To some mathematicians, it
even seemed questionable whether graph theory was worthwhile mathe-
matics at all. Doubts seemed to center on its lack of elaborate techniques
and its lack of unification and relevance, in the sense that it seemed to
consist largely of solutions to isolated problems, not interacting closely with
one another or with the rest of mathematics.

However, in fairness I must say that, for every mathematician who
may have harbored such doubts, there were others who seemed sympathetic
and interested. Not least among these, when I became a University lecturer,
was my first Head of Department, Professor E. M. Wright (now Sir Edward
Wright), whose own work has taken a distinctly graph-theoretic turn in
more recent years.

In those early years, I would have thought a person almost demented
if he had predicted the subsequent explosive growth in graph theory and
other areas of combinatorial mathematics, which must be among the most
remarkable experiences of those of us who have lived through it. Writers of
futuristic novels do well to remember that truth is often stranger than
fiction. It would have seemed absurd to predict that names like G. A. Dirac,
F. Harary, and W. T. Tutte (then just meaningless cryptograms attached to
research papers) would quite soon become those of some of the mathemati-
cians whom I would know best personally, that graph theory would take me
across the Atlantic to join a ‘“Department of Combinatorics and Optimi-
zation,” where for several years Professor Tutte and I would occupy
adjacent offices, that there would be more combinatorial conferences than
any one person could attend, and that the combinatorial literature would
expand to its present size, including at least six journals (and perhaps more,
depending on the method of counting) devoted entirely to combinatorics.

The first of these to emerge, the Journal of Combinatorial Theory, has
for many years had Professor Tutte as its editor-in-chief (or in recent times,
since proliferation of material forced it to subdivide, as editor-in-chief of
half of it). The editor of this Encyclopedia, Professor G.-C. Rota, was one of
the organizers responsible for getting the Journal started, and I was reliably
informed by Blanche Descartes at that time that she had selected its title as
an anagram of OUR FOE JIAN-CARLO ROTA BIMONTHLY.

Despite all this increased recognition of combinatorics (including
graph theory) as part of mathematics, traces of the controversy about its
value still persist. In the introduction to [1], L. Lovasz rightly responds by
pointing to the increasing body of techniques and unifying theory that the
subject is acquiring. Nevertheless, some further remarks may be relevant. As
another former colleague of mine, J. Sheehan, has suggested [4], there may
still be important parts of combinatorics that do not fit well into any such
unifying framework. There is surely some satisfaction in solving an obvious,
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natural and tough problem, even if the solution seems, at least for the
present, to stand on its own. If (as sometimes seems to be suggested) a
theorem can be significant only by virtue of its helpfulness in proving or
illuminating other theorems, then one must go on to ask why those other
theorems are significant, and a reductio ad absurdum is eventually reached.
To prove that a branch of mathematics is interesting, must one necessarily
demonstrate that it is exactly like other branches of mathematics, or might
part of the appeal of mathematics lie in its diversity?

On the other hand, it is unquestionable that interplay between ideas
from different sources, and elaborate techniques successfully applied, are
among the features that make much of mathematics fascinating. Moreover,
mathematics does oftgn display a tendency to unify itself and to build up a
body of technique. Therefore one may well guess (despite my caution
against predicting the future) that graph theory, as it matures, will continue
to develop its own characteristic techniques and that many of its results will
become increasingly unified, both among themselves and with the rest of
mathematics. The present book may be expected to play a considerable part
in placing graph theory on a sound theoretical and technical footing.

F-haye written elsewhere what little I can about some aspects of the
present state of graph theory [3] and Professor Tutte’s immense influence on
it [2]. This, and an early publication deadline, must be my excuse for a
comparatively short Foreword consisting largely of random reminiscences
and reflections that may interest nobody, with the possible exception of
myself. Perhaps some future *istorian of mathematics may glean a crumb or
two of something or other from them; but I will detain the reader no longer
from the rich harvest in store.

C. St. J. A. NASH-WILLIAMS
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Introduction

The author encountered graph theory in high school, in the early thirties,
while reading Rouse Ball’s book Mathematical Essays and Recreations. He
then learned of Euler paths (Sec. VI.3), map-colorings (dualized in Sec.
£X.3), factors of graphs (Sec. VII.6), and Tait colorings (Sec. IX.5) [5].

As an undergraduate at Cambridge he joined with R. L. Brooks,
C. A. B. Smith, and A. H. Stone in the study of their hobby-problem of
dissecting a square into unequal squares [3]. This soon called for much
graph theory. It was linked, through a “Smith diagram,” with the study of
3-connected planar graphs (Sec. XI1.7), and with Kirchhoff’s Laws for
electrical circuits (Sec. VL.5). It was linked through rotor theory (Sec. VI,
Notes) with graph symmetry (Sec. 1.2). It was linked through the tree-number
(Sec. 11.2) with the theory of graph functions satisfying simple recursion
formulae (Sec. IX.1).

All this is explained in the Commentaries of [4]. That is one reason
why I do not discuss squared rectangles and the analogous triangulated
triangles in the present work. Another is that I visualize the book as a work
on pure graph theory, making no appeal either to point-set topology or to
elementary geometry.

I became acquainted with some graph-theoretical literature at Cam-
bridge. I read Sainte-Lagué’s description of the proof of Petersen’s Theorem
(Sec. VIL.6). I found the classical papers of Hassler Whitney, published in
1931-3, and the famous book of Dénes Konig, the first textbook devoted

XA



XX Introduction

entirely to graph theory. I was there at Cambridge at the time of the births
of Smith’s Theorem (Sec. 1X.5) [7] and Brooks’ Theorem (Sec. IX.3) [2].
Stone’s discovery of flexagons came a little later.

Having meditated upon these things for 45 years I now present some
of them in the present work. It is an attempt at the reference book I would
have liked to have in 1936-40. In electrical theory it is important to know
whether you have a connection between the two terminals, and what
happens when you remove a wire. Chapter I deals graph-theoretically with
these matters. Chapter 1I deals with the effect of contracting an edge, or
shall we say making a short circuit. The theory of 3-connection is discussed
in Chapter IV, and the halfway stage of 2-connection in Chapter IIL
Chapter V, on reconstruction, is less directly related to squared squares and
rectangles. I came to it by way of reconstruction formulae for some of the
above-mentioned recursive graph functions [11].

Chapter VI concerns digraphs and a generalized theory of Kirchhoff’s
Laws. It arose out of a study of triangulated triangles by the four under-
graduates. We were sometimes reproached for basing our mathematical
theory on physical laws. We protested, of course, that for us Kirchhoff’s
Laws were axioms of a purely mathematical system, but we were glad to be
able to emphasize this by introducing generalized Laws, describing a kind of
electricity that never was on land or sea.

Chapter VII derives from Sainte-Lagué’s paper, with some gaps filled
and some extensions made. Chapter VIII is about cycles and coboundaries,
generalizations of Kirchhoff flows: It attempts to describe some parts of
graph theory algebraically, and most of it derives from my doctoral thesis of
1948 [9].

Chapter VIII is about the recursive graph functions. It derives from a
paper of 1947 [8]. It discusses the dichromatic polynomial, the dichromate,
the chromatic polynomial, and the flow-polynomial, all of .which can be
referred to the theory of map-colorings and to the dual theory of vertex-
colorings. : :

So far there is one important omission, that of a theory of planarity.
The graphs of interest in connection with squared rectangles and triangu-
lated triangles are all planar, so Chapter X prepares for the introduction of
planarity by giving a general theory of maps on surfaces. But this is to be a
purely graph-theoretical work, and so the maps of Chapter X are structures
defined by purely combinatorial axioms. Surfaces are defined as classes
of maps. The discussion is an adaptation of the classical theory of
H. R. Brahana [1]. Planar maps can now be defined as maps of Euler
characteristic 2.

Chapter XI gives a theory of planarity. It gives duality theorems for
the tree-number and the dichromate, and it gives a combinatorial version of
Jordan’s Theorem. It goes on to some tests for the planarity or nonplanarity
of a given graph, MacLane’s and Kuratowski’s among them. This part
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derives from my paper “How to draw a graph,” of 1964, but it skips the
actual drawing, that being a matter of elementary geometry rather than
graph theory.

I take this opportunity to express my indebtedness to Brooks, Smith,

and Stone, without whose missionary zeal I might now be writing on some
other subject.
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Chapter I

Graphs and Subgraphs

I.1. DEFINITIONS

In this section we give a formal definition of a graph and introduce some of
the basic terminology of graph theory. We give examples of graphs and
some sample theorems. :

A graph G is defined by a set V(G) of elements called vertices, a set
E(G) of elements called edges, and a relation of incidence, which associates
with each edge either one or two vertices called its ends.

The present work is concerned only with finite graphs, those in which
the sets V(G) and E(G) are both finite. Much interesting work has been
done on the other graphs, the infinite ones. But even the theory of finite
graphs is too big to be adequately covered in one volume. Let us therefore
make the rule that from here on the word “graph” is to mean a finite graph
unless the contrary is stated explicitly.

,  The terminology of graph theory is not yet standardized. Some
authors prefer to use the terms “point” and “line” rather than “ vertex” and
“edge.” This usage may be found inconvenient in problems involving both
graphs and geometrical or topological structures. In some of the older
papers we may find “branch” used for “edge,” and “node” for “ vertex.”

An edge is called a link or a loop according as the number of its ends
is two or one. We shall however get into the habit of saying that each edge
has two ends, with the explanation that in the case of a loop the two ends

- 1



2 Graphs and Subgraphs

are coincident. The two ends of an edge are said to be joined by that edge,
and to be adjacent. Accordingly we say that a vertex is joined to itself, or is
adjacent to itself, if and only if it is incident with a loop. Two or more links
with the same pair of ends are said to constitute a multiple join. A graph
without loops or multiple joins is called a strict graph.

There are many problems of graph theory in which only strict graphs
are of interest. Accordingly some authors restrict the term “graph” to mean
what we have called a strict graph. When they have occasion to add loops or
multiple joins to their structures they speak of “multigraphs.”

Examples of graphs are not difficult to find. For one, the edges and
vertices of a convex polyhedron are the edges and vertices, respectively, of a
graph G. The ends in G of an edge are its ends in the geometric sense. We
call G the graph of the polyhedron.

A roadmap can be interpreted as a graph. The vertices are the
junctions, and an edge is the stretch of road from one junction to the next,
or from a junction back to itself. Similarly an electrical circuit may give us a
graph in which the vertices are terminals and the edges wires.

It is not difficult to see graphs in genealogical tables and computer
programs. All through mathematics they are visible to the graph-theoretical
eye of faith, for much of mathematics can be described in terms of binary
relations, and what is a binary relation but a graph?

It is customary to represent a graph G by a drawing on paper. The
vertices are drawn as dots. A link with ends x and y is represented by a
straight or curved line joining the dots of x and y, and not meeting any
other vertex-dot. A loop with end x is drawn as a curve leaving the dot of x
and returning to it again, without meeting any other vertex-dot on the way.

In such a drawing it may happen that two edge-curves intersect at
some point away from all the vertex-dots. Normally such edge-crossings are
ignored as not representing anything in the structure of G. But when we ask
what is the least possible number of edge-crossings in a drawing of G, deep
and difficult problems arise. (See [8], 122-3.)

Some examples follow. Fig. I.1.1 is a drawing of the graph of a cube,
and Fig. I.1.2 shows a graph with loops and multiple joins.

Some graphs with simple structures are thought to deserve special
names. For some purposes it is convenient to recognize a null graph, having
no edges and no vertices. A vertex-graph is an edgeless graph having exactly
one vertex (Fig. 1.1.3(1)). A loop-graph consists of a single loop with its one
end (Fig. 1.1.3(i1)), and a link-graph consists of a single link with its two
ends (Fig. 1.1.3(ii1)).

Let n be a nonnegative integer. Then an n-clique is defined as a
loopless graph with exactly n vertices and in(n—1) edges, each pair of
vertices being joined by a single link. Thus the n-cliques are strict graphs.
Evidently the null graphs are the O-cliques, the vertex-graphs are the
l1-cliques, and the link-graphs are the 2-cliques. Figure 1.1.4 shows a



