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Paper presented at Conf. on Ceramics in Energy Applications, Sheffield, April 1990
Session 1

The performance of materials used for ceramic radiant and immersion
tubes

A.J. Jickells, S. Matthews, P. Sihre

Midlands Research Station, Wharf Lane, Solihull, West Midlands.
B91 2JW

ABSTRACT: The past 5-10 years has seen a number of developments in
indirect gas-fired heating systems. Two such systems, namely
radiant (700-1250°C) and immersion tubes (450-900°C) have recently
exploited the higher temperature capabilities of ceramics. The
tubes are fabricated from silicon nitride bonded silicon carbide
(SNBSC), however, during field trials of both applications initial
problems were encountered with variable tube lives. Laboratory
studies and examination of used tubes confirmed that the principle
cause of failure was oxidation of SNBSC. Service performance
is a function of the tube manufacturing route and further work is
concentrating on adjusting the base material to achieve a more
consistent product with improved oxidation resistance.

1. INTRODUCTION

In many applications of industrial gas heating, there is a requirement
to control the furnace atmosphere in order to preserve or modify the
properties of the material being heated. At the same time there is a
need to maximise the thermal efficiency of the heating process to
minimise operating costs. To meet these demands gas fired radiant
tubes with waste heat recovery have been developed. In many low
temperature applications, metallic tubes are used, but at higher
temperatures and in more hostile environments ceramic tubes are
required.

The Midlands Research Station of British Gas has developed ceramic
radiant tubes for the indirect heating of furnaces with controlled
atmospheres and ceramic immersion tubes to heat molten zinc and
aluminium with the tube immersed in the molten metal. After initial
development, licensees have produced and marketed commercial versions.
The introduction of the technology into a number of different
applications (Table 1) was conducted via production field trials
during which the performances of all aspects of the technology could
be monitored and any problems identified and rectified. During two of
these field trials, initial problems were encountered with variable
tube 1life. This paper describes the identification of the cause of
these failures and the improvements which have subsequently led to
economically and technically acceptable tube lives being obtained in
these applications.

© 1990 British Gas
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FIG. 1. SCHEMATIC OF CERAMIC RADIANT TUBE

2. TUBE DESIGN AND OPERATION

The gas fired ceramic radiant tubes have been developed primarily for
operation in the temperature range 900°C to 1250°C. The tube design,
Figure 1, consists of an open ended outer (radiant) tube and an inner
(recirculation) tube fitted with a small recuperative burner at one
end and a ceramic plug at the other. Each end of the tube is
supported in the furnace wall using robust mounting techniques which
accommodate thermal expansion and reduce tensile stresses in the
material. The recuperator pre-heats the incoming air prior to mixing
with the fuel gas at the burner nozzle. Combustion takes place inside
the tunnel which is designed to provide a high velocity jet of
combustion products to promote recirculation around the inner tube.
This gives a uniform temperature along the outer tube.

The outer tube, which has a diameter of 170 mm and working length of
1.4 metres, can dissipate up to 40 kW/m? of heat from the radiating
surface with the outer tube surface temperature upto 1350°C and the
inner tube at a higher temperature of up to 1450°C. The inner tube
and the inside surface of the outer (radiant) tube are therefore
exposed to the combustion flue gases (72%N_, 17%H_0, 9%CO0_, 2%0.)
whilst the outer surface of the radiant tube is exposed to the furnace
atmosphere. The thermal efficiency based on the gross calorific value
of the fuel is 50 to 55% with the use of a recuperative burner. 1In
practice this resulted in improvements of between 25% and 50% of the
thermal efficiency of the plant compared to the previous equipment.
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The ceramic immersion tube is of a similar design, except that a
closed end tube is wused. The burner is mounted vertically facing
downwards into the tube. The tube is immersed in the molten metal and
the outside surface of the radiant tube is exposed to three
environments, air in the upper portion, a zone incorporating a
flux/melt/air interface and a zone of molten metal.

3. TUBE MATERIAL SELECTION

Since tubes were intended for use in range of corrosive and oxidising
environments, there were limitations on types of material which could
be considered. The combination of these external conditions and the
high operating temperatures required the careful selection of a
non-oxide ceramic with a high thermal conductivity in order to
maximise thermal efficiency and thermal shock resistance. The
strength of the material was not a major consideration. Finally the
material had to be capable of being formed into large, tubular
components at an acceptable cost.

The material selected as most closely meeting these specification
requirements was silicon nitride bonded silicon carbide, SNBSC.

4. TUBE MANUFACTURE

The tubes are manufactured from a controlled mixture of coarse, medium
and fine silicon carbide grains together with a controlled size of
silicon metal powder and green and permanent binders. The mixture is
then shaped into the green tube. The method of shaping varies with
manufacturer; two manufacturers have provided the vast majority of the
tubes wusing specific processing routes of either manual pressing
(Manufacturer 1) or isostatic pressing (Manufacturer 2). After
drying, the "green" tube is hand ground to produce a relatively smooth
surface finish. The final stage of manufacture involves firing the
tube in a nitrogen atmosphere at around 1400°C. The silicon metal

reacts with the nitrogen to produce a continuous bonding phase of
silicon nitride.

The finished material from both manufacturers contains about 75% SicC,
23% Si,N4 with a residual porosity of around 15%.

5. LABORATORY STUDIES

Two investigational routes were followed. A programme of laboratory
testing of sample materials was initiated and studies were also made
on materials from used radiant and immersion tubes.

5.1 Comparison of Unused Material

An examination of the unused material shows differences in the
microstructure of the materials produced by Manufacturers 1 and 2. In
both cases the major phase is silicon carbide. The distribution
of the fine, medium and coarse silicon carbide grains is reasonably
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even although agglomerations of similarly sized particles have been
observed in both materials. The bonding phase of Material No. 1 is a
mixture of silicon and cristobalite, Si0,, whereas the bond of
Material No. 2 consists of silicon nitride and silicon oxy-nitride,
Si,ON, . The cristobalite present in Material No. 1 has been measured
at levels of 5% to 8% in an unused sample (Fig 2). Optical microscopy
shows that it is present principally around pore sites. It is less
easy to distinguish between silicon nitride and silicon oxy-nitride in
Material No. 2. There are small pockets of unreacted silicon metal in
the bonding phase of both materials. The mean density of each
material was determined (from fifty, one centimetre cubes). A value
of 2.63gecm 3 was obtained for both materials, but the standard
deviation of the cubes from Material No. 1 was three times that of
Material No. 2. The crush strengths of the unused materials are very
similar at around 220-240MPa.

Bar width
= 100 pm

FIG. 2. MATERIAL No. 1; AS RECEIVED

5.2 Oxidation Studies

Test cubes (lcm®) were cut from unused tubes produced by Manufacturers
1 and 2. The materials were exposed to air and combustion product
environments for 500 hours at temperatures in the range 800°C to
1200°C (ten cubes for each test condition). The material property
changes were examined in terms of weight and volume changes, x-ray
diffraction (XRD), fourier transform infrared spectroscopy (FTIR),
optical microscopy, scanning electron microscopy (SEM) and cold crush
strength. In addition some limited Thermo-gravimetric analysis (TGA)
scans were conducted on the material.
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5.3 WEIGHT CHANGE

Isothermal oxidation tests (Table 2) show that in both air and
combustion products Material No. 2 experienc~s significantly higher
weight gains than Material No. 1. This holds for every test

condition. Material No. 2 also shows markedly higher weight gains in
combustion products (900-1150°C) compared to air. The same effect is
observed in Material No. 1 above 1000°C. Weight changes were

estimated from ten samples thus a spread of individual weight gains
was obtained. In general the weight gains for Material No. 1 were
subject to quite a large scatter particularly, for example, at 950°C
in air. The effect of temperature on weight change (Fig. 3) reveals
quite different behaviour in Materials No. 1 and 2. At the lowest
temperature, 800°C the weight changes are only significant in Material
No. 2. As the temperature is increased, however, the weight gains
gradually rise, and in the case of Material No. 2 peak at 900°C in air
and 1000°C in combustion products. Beyond these temperatures the mean
weight gains fall off. The oxidation behaviour of Material No. 1

is not characterised by such readily discernible peaks. Instead the
weight gains are seen to increase steadily throughout the range of
temperatures investigated.

—e— Material No. 1(comb)
—a— Material No. 1(air)

—o0— Material No. 2(comb)

—0O— Material No. 2(air)
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FIG. 3. WEIGHT CHANGE VS. TEMPERATURE
LAB TESTS IN AIR AND COMBUSTION PRODUCTS

5.4 Volume Change

Contrary to the weight change data the volume changes (Table 2) are
much the same for both materials. Oxidation to silica is accompanied
by a volume expansion which occurs because the silica has a lower
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density, 2.20gem 3 than the silicon carbide/silicon nitride,
3.20gcm 3. However, measurements would be influenced by surface
irregularities, e.g. scales and protrusions. In particular above
1100°C material No. 2 was covered in a surface glaze which affected
the measurements. Material No. 1 was also covered in a surface
deposit, but this was quite different in nature to a glazing effect.

5.5 FTIR Analysis

FTIR analysis (Table 2) was carried out on one cube from each test
regime. This technique has been specially adapted to provide a
quantitative assessment of cristobalite, SiO, in samples of SNBSC. As
cristobalite is the principal oxidation product the degree of
oxidation can be defined by this technique. Tests on the unused
material indicate that whilst Material No. 2 does not contain any
cristobalite, Material No. 1 contains quite significant quantities
(5-8%). The levels of cristobalite production in Materials No. 1 and
2, as a result of oxidation, are reasonably similar, although there is
greater variability in Material No. 1. The cristobalite content of
Material No. 2 increases with the test temperature between 800°C and
1050°C. Above 1050°C the cristobalite levels fall off slightly.

5.6 XRD Analysis

XRD results (Table 2) confirm that cristobalite is produced in both
materials over the range of test temperatures. It is not clear which
species (Si, SiC, Si N , Si ON, ) have been oxidised as there are only
very minor phase difterences’ between samples. The technique is
semi-quantitative and can therefore only differentiate between
unoxidised and oxidised samples.

5.7 Crush Strength

In these tests oxidation appears to strengthen the material (Fig. 4).
All of the test samples are stronger than the unused material. There
is an increase in strength as the test temperature increases from
800°C in air. The strength peaks at 900°C (Material No. 1) and 1050°C
(Material No. 2). These effects are less prominent after tests in
combustion products.



