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ABSTRACT

In this work we show that almost all useful ordinal invariants in topology
studied until now (such as derived length of scattered spaces, sequential order
of sequential spaces, etc.) can be brought under the single heading of what we
call the order of a map. This helps us to perceive some close connections
among apparently unrelated corners of general topology, to view the known con-
cepts from different angles and to obtain a lot of information about the

particular cases.
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INTRODUCTION

WHAT IS AN ORDINAL INVARIANT?

Very often, the study of mathematical structures, especially the classifi-
cation of structural types, is successfully carried out by associating simpler
mathematical structures to them. By way of explanation, we mention two

instances:

(1) The well~known Ulm's theorem for countable reduced p-groups and its
recent generalizations completely solve the classification problem in a fairly
large collection of abelian groups, by associating to each group in this
collection, a well~ordered transfinite sequence of cardinal numbers.

(2) The dimension of a real vector space is a cardinal invariant which

specifies the vector space upto isomorphism.

Apart from such invariants, there are some other invariants, which give
elegant classifications of objects in some categories, though they do not

classify them completely. We give two examples.

(1) The notions of dimension, weight, density character, suslin number,
etc., of topological spaces, provide examples of cardinal invariants in
topology.

(2) The homotopy groups, homology groups, etc., are some group-invariants

occuring in algebraic topology.
The general set-up is as follows:

Let A and B be two categories. Let 6 be a map which associates to
each object of A a unique object of B. Let 8 further satisfy the condition:
If Al and A2 are isomorphic in A, then B(Al) and S(Az) are isomorphic
in B. Then 6 is called a B-invariant in A.

In some nice cases, this 6 can be taken as a functor between the two
categories, But in several interesting situations, the association of in-
variants is not of functorial nature.

We stress that the category B should be more well-known and more easily
manageable than A; otherwise it is not of much interest. The most suitable
candidates for B are the simplest ones - e.g., the cardinal numbers, the
ordinal numbers and the groups. Of these three, the cardinal numbers and the
groups have received much attention in the past. 1In the recent past, there has

been a realization that the ordinal numbers may be equally useful, if not

Received by the editors October 5, 1978.
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2 V. KANNAN

more. For instance, we may mention the extension of the notion of Krull di-
mension as an ordinal number.

Throughout this work, our concern will be with the category TOP of topo-
logical spaces, or its subcategories in place of A. All continuous maps will
be taken as morphisms. We shall fix B to be the category of ordinal numbers.
In other words, we are interested in the ordinal invariants in TOP and its

subcategories.

SOME_XNOWN ORDINAL INVARIANTS IN TOPOLOGY.
Though not so extensively studied as cardinal invariants, there are some

ordinal invariants in topology, that yield significant results. We shall
mention some of them in this section, for two reasons., First, they enable one
to appreciate the usefulness of ordinal invariants in topology. Secondly, they
have close connections with our results, which will be made explicit in the
course of this work.

The nicest of the ordinal invariants so far studied in Topology, is the
derived length of a scattered topological space. Among the important theorems
obtained by the use of this invariant, the most striking one is the following
due to MAZURKIEWICZ and SIERPINSKI: Every countable compact Hausdorff space
1s well-ordered. Further, for each such topological space, there
is an associated element of the product set wl X W, This invariant specifies
completely the space, among countable compact Hausdorff spaces, This result
has been later improved by J. deGroot, by obtaining a similar result for the
class of countable locally compact Hausdorff spaces.

The derived length was also used by M. KATETOV to prove the following
theorem: A countable regular space admits a continuous bijection onto a
compact Hausdorff space if and only if it is scattered. This theorem gives a
partial answer to a question of Banach.

Again, it was later used in a paper of the author and M. Rajagopalan to
give a direct proof of the fact that every countable scattered metric space can
be embedded in a well-ordered space.

Also, BESSAGA and PELCZYNSKI used an ordinal invariant, closely related to
the derived length, to give a complete linear topological classification of
Banach spaces C(X) for compact scattered metric spaces X.

Thus this invariant has been an efficient tool in several significant re-
sults in Topology.

Two equally interesting ordinal invariants in Topology are the sequential
order and k-order. These have been studied first by ARHANGELSKII and FRANKLIN
and later by many others. Generalizing the former of these, MEYER has studied

m-sequential orders. All these form the starting point of our theory. These
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will be precisely defined and discussed in the fifth chapter.

Defining a closure space as a generalization of a topological space, a
natural ordinal invariant in the category of closure spaces has been studied
by many. This invariant has close relations with our work and will be con-

sidered in the third chapter.

ATTEMPTS OF UNIFICATION.

The similarities among the theories of sequential order, k—order, m-net
order, etc., have been so apparent that many have been looking for a unified
approach. These theories have been developed separately by different persons
in different years; but they have so much in common that their separate treat-~
ment ceases to be attractive. To mention an example, the characterization of
Fréchet spaces as hereditarily sequential spaces, that of m~Fréchet spaces as
hereditarily m-sequential spaces and that of w-Fréchet spaces are hereditarily
w-sequential spaces have all been obtained separately in different articles.

This need for unification has already been recognized. For example, this
has been emphasized in the introduction of [F-4]. But some caution is necessary
here. A blind generalization of these results, is not only not done, but also
false: For example, k'-spaces are not the same as hereditarily k-space. Hence,
is the difficulty in the formulation of a general theory which is simultaneously
unifying and natural.

In the attempts up to now made to unify the approaches under consideration,
the following are worth mentioning: FRANKLIN's natural covers and L-spaces,
MROWKA's R-spaces and MEYER's convergence bases and sub-bases. Of these, the
first has been more successful than the others.

In all of these attempts, one finds two essential drawbacks:

(1) None of them would encompass all the mentioned theories as particular
cases. Thus for example, a possible untreated approach along the lines of
Meyer does not absorb the k-order and the alike; the E-characteristic of the
theory of natural covers does not absorb the m-net order and the alike. These
two approaches give two general theories, each having a sizable hirarchy of
particular cases. However, a more general approach that will include all of
these, is yet to be found,

(2) Secondly, in each particular case, we see that the ordinal invariant
is defined in a coreflective subcategory of TOP. Hence, it is natural to look
for one in an arbitrary coreflective subcategory of TOP that would encompass
these as particular cases. But such a nicety is not available in these

approaches.

These observations make our starting point clear. We consider a general

coreflective subcategory of TOP, develop a theory of ordinal invariant that
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generalizes all the mentioned ones and show that several theorems hold good in
the general case also.

We accomplish this and besides we show that the earlier two approaches fit
nicely as subcases of our theory of E-order; the former coincides with the case
in which E is imagive, the latter corresponds to the case in which every
member of E has a unique accumulation point. We further show that our
approach has several nice equivalent formulations, that the whole theory has a
categorical background and that it produces questions of interest to every

topologist.

ADVANTAGES OF OUR APPROACH.

We have mentioned two salient merits of our method, namely completeness
and naturality. Apart from these, there are a few other advantages of our
method that are worth mentioning here.

Our tool, namely the order of a map, is so fundamental that it connects
several corners of general topology that are apparently not much related. For
example one of our theorems brings a close connection among the following:

(i) complementation in lattices of topologies;
(ii) extremal epimorphisms in certain pull-back diagrams;
(iii) smallness under a certain ordinal invariant;
(iv) idempotency of compatible gech closures;
(v) ways of expressing a topology as a meet of other topologies;

(vi) intrinsic conditions of pure topology.

Secondly, the general method immensely enriches the particular cases. For
example, the derived length etc., also come under the reign of the order of a
map; our method suggests how to extend derived length to non-scattered spaces,
how to dualize it etc..

Among the byproducts, a few deserve a mention here. Section 6.2 completely
settles a question on hereditarily quotient maps that has been initiated by
WHYBURN and considered by some others. Section 4.3 proves a general theorem,

a corollary of which answers a question posed by ARHANGELSKII and FRANKLIN. One
of the exercises disproves a guess of theirs concerning test spaces for

sequential order.

AN OUTLINE OF THIS MONOGRAPH.

This work is self-contained; essentially, everything that is needed for
understanding our results, is built within this monograph. A knowledge of
elementary concepts of general topology and a bit of ordinal arthmetic, is the
only prerequisite assumed on the part of the reader. A separate chapter on pre-

liminaries is dispensed with; the needed concepts are explained then and there.
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The work is divided into six chapters of well-defined distinction. The
entire study rests on the notion of the order of a map, developed in the first
chapter. This ordinal-classification of maps was originally motivated by the
desire to obtain characterizations of the following elegart type: Spaces with
order < o (under some ordinal invariant) are precisely the images of spaces
in a certain nice class under certain nice maps.

The rest of the matter can be roughly divided into two parts: The first
part consisting of Chapters 2 to 5, deals with E-orders that are defined in a
proper subcategory of TOP; the second part consists of a single (but the
longest) chapter (Chapter 6), dealing with invariants defined on the whole of
TOP.

These two parts are independent to some extent. A large portion of
Chapter 6 can be studied after Chapter 1 without going through other chapters,
but for some minor definitions.

In the first part, Chepters 2, 3 and 4 develop the general theory of E-
order; particular cases, examples and counterexamples are deferred to
Chapter 5. In the general theory itself, a three-fold division is made:

(a) introduction and the study of the salient properties
of E-order;

(b) establishment of the nicety of this concept, by viewing it in
different ways, relating it to known things and furnishing it
with categorical flavour;

(c) some problems concerning E-order that are not essential for
later study, but are too natural to be excluded.

These respectively constitute Chapters 2, 3 and 4. The last three sections
of Chapter 4 can be omitted in the first reading, without affecting the study
of later chapters.

The exercises at the end include several closely related results. 1In
spite of their elegance and importance, some results have been deferred to
the exercises, in order not to retard the swiftness of our progress towards
the main results.

In the course of the work, we come across many results that are more
appreciable when seen amidst a group of similar results, than separately. 1In
order to focus them in such a way, they have been classified in some groups
and tabulated at the end. These tables and diagrams also help to understand
the naturality and a certain amount of completeness in our work.

The final appendix indicates several directions in which these investiga-
tions may be worthily continued. It includes many open problems, that may
stimulate research in this area.

The author is much indebted to the forerunners in this field, especially to

S.P. FRANKLIN, whose works have inspired and initiated him to the present work.



CHAPTER 1

ORDER OF A MAP

In this chapter, we classify maps by associating in a natural way, an

ordinal number to each map. The following three questions are considered:

(1) How nicely is this classification related to the basic concepts of
general topology?
(2) How does it behave with respect to the familiar operations on maps?

(3) How is it computable in some well-known examples?

1.1. DEFINITION AND ELEMENTARY RESULTS

Let X be any topological space, Y be any set and let f be a function

from X onto Y. Using topological structure of X, we now associate an

ordinal number o(f) to the function £.

DEFINITION 1.l1.1. Let X,Y and f be as above. Let A be any subset of Y.

Then take the pre—-image of A, take its closure in X and now take the image.
We obtain a bigger subset of Y. Repeat this process again and again. More

precisely, we let
A_ = A and

Al = g1 ).

M= O

If o dis an ordinal number and if Ai has been defined for every B < o,

then we let

J (Ai); if a=g8+1
Ag = 6
LJ Af if o 1is a limit ordinal.
B<a

This defines A? for every ordinal number o. We let

Zf = U{Agla is an ordinal number},

We define o(f) to be the least ordinal number o such that Rf = A;
for every subset A of Y. This o(f) is called the order of the map f.
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The following remarks prove the existence of o(f).

REMARK 1.1.2.

(1) As o increases, A; also increases. In other words if « < B,

then A? c A? for each A C Y,

a _ ,otl

(2) 1f for some a, we have Af Af , then A% = AB for every B > a.

£ f
~ 1_.,
(3) (Af)f = Af for every AcC Y.

(4) For a subset B of Y, the following are equivalent:

(a) B = Rf for some AcC Y,

e

(b) B =
(c) B=B

(@) £1(B) is closed.

f
1
f

(5) If o is any ordinal number whose cardinality !a| exceeds |Y\A|,

o _ ,otl
then Af = Af .

(6) 1f ‘u] > }Y\, then A? = Kf for every Ac Y.

(7) The order o(f) always exists and satisfies o(f) < the initial

ordinal of the cardinal just succeeding |Y|.

(8) If AcBcY, then Ag c Bz for every ordinal number o.

REMARK 1.1.3., Suppose now that Y is also provided with a topology.
(1) If £ is continuous, then A%

(2) Conversely if A; <A for every A C Y, then f 1is continuous.

cA for every A C Y.

(3) (By transfinite induction) If £ is continuous, then A < A; c A

for every A< Y and for every ordinal number «o.
(4) More generally, the following are equivalent for f:

(a) f is continuous.

(b) Ag c A for every AcY and for some a > 1.
(c) Kf c A for every Ac Y.
(d) A} = A for every closed subset A of Y.

(e) Kf = A for every closed subset A of Y,

% for every A cC Y.

(5) 1If £ is a closed continuous map, then A=A
(6) If f 1is a closed continuous map, then o(f) < 1.

(7) 1If we define Ef to be the closure of A for each A < Y, then
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we get another topology on Y.

(8) This "another" topology is exactly the quotient topology on Y

with respect to f.
(9) f: X—>Y 1is a quotient map if and only if Kf = A for every AcY.

(10) 1If f and g are two maps from a topological space X onto a set

Y and if A% = Aé for each subset A of Y, then o(f) = o(g).

(11) For each A c Y, let

o(a,£) = glb{a] AT = A3,

Then

o(f) = lub{a(A,f)| A < Y}.
(12) If f: X —>Y is a quotient map, then
o(f) = glb{a| A? = A for every A < Y}.

(13) If P is any subset of X, then the f-saturation of P is defined
as the bigger set f_l(f(P)). We say that P is f-saturated if it is its
own f-saturation. If f is continuous, it is true that £ takes saturated

closed sets in X to closed sets in Y, if and only if £ is quotient.

(14) One can formulate an alternate definition of o(f) in terms of the

closure of f-saturation.

(15) Let f: X —Y be a quotient map. Then o(f) = 0 if and only if Y

is discrete,

(16) 1f, in the definition of o(f), we use the interior operation in the
place of closure operation, the process stops always at the second stage and
hence we do not get an equivalent definition; however, one arrives at an
equivalent definition clearly by relacing in addition, "the saturation" of a

set by "the largest saturated subset".

1.2. QUOTIENT MAPS WITH ORDER < 1.

In this section, we give some elegant characterizations of quotient maps
with order < 1. The results of this section are very basic in our later

discussions.

FIRST TYPE OF CHARACTERIZATION. Let X be a topological space, Y a set and f

a function from X onto Y. Then f induces a "critical" topology on Y namely,

the quotient topology. To specify it by its open (closed sets, we have: a subset
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of Y is open (closed) if and only if its pre-image is open (closed) in X.
Suppose we want to specify it by "meighborhoods". Then the natural expectation
is this: "Let y belong to Y and let V be a subset of Y containing vy;
then V 1is a neighborhood of y in Y if and only if f-l(V) is a neighbor-
hood of the set f—l(y) ". But unfortunately, if we define the neighborhood
system in Y in this way, not all the axioms are satisfied (i.e., we do not
get a topology on Y), unless some conditions are put on f. When we get a
topology, it of course coincides with the quotient topology. Therefore, one
asks: If f: X->Y 1is a quotient map, what are the conditions on f to
ensure that the topology of Y can be specified directly by neighborhoods, as
described above?

Similar is the situation, when we want to describe the closure operation
in Y directly in terms of £. A natural description is this: If A is a
subset of Y, then the closure of A in Y is just the image of the closure
of its preimage . But in general, this operation fails to be idempotent. So,
we do not get a topology unless f 1is of some special type. So one asks:
What are the conditions on £ so that in the topology of Y, the closure
operation can be described directly by f, as mentioned above? Here, we have

a simple but interesting result.

PROPOSITION 1.,2.1., Let £f: X — Y be a quotient map. Then the following are

equivalent.

(1) In the topology of Y, the neighborhoods can be described directly
by f.
(2) In the topology of Y, the closure can be specified directly by f£.
(3) o(f) < 1.
PROOF., (1) dimplies (3): Let (1) hold and let A cC Y. We want to show that
A% = A, Since f is continuous Aé < A. For the reverse inclusion let
y € A, Suppose there is a neighborhood W of f—l(y) disioint from f_l(A).
Then consider £(W). Its preimage is also a neighborhood of f_l(y). Hence,
by (1), £(W) is a neighborhood of y. But since W is disjoint from f"l(A),
we get that £(W) is disjoint with A, This contradicts our assumption that
y € X; thereby proving that every neighborhood of f—l(y) must meet f—l(A).

It follows that the closure of f—l(A) must meet f_l(y) and therefore
1

£ = A for each Ac Y. It follows that

y € Aé. Thus we have shown that A
o(f) < 1.
The equivalence of (2) and (3) is obvious, when (2) is reformulated in
this way: For each A < Y, the closure of A coincides with A%.
Now let (3) be true and let us prove (1). If V 1is a neighborhood of ¥
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-1

in Y, then the continuity of f dimplies that f (V) is a neighborhood of

the set f_l(y) in X. Conversely, let V be a subset of Y such that
£71(V) 1is a neighborhood of £ T(y). Then let F = Xnf 1(V) = £ 1(xV). By
assumption, the closure of F 1is disjoint with f_l(y). It follows that vy
is not in (X\V)% and hence by (3), y is not in XV. This means that V

is a neighborhood of y.

SECOND TYPE OF CHARACTERIZATION. Now we proceed to show that the class of all

quotient maps with order < 1 coincides with some well-known classes. For
this, we first observe that a quotient map between two topological spaces,
need not be a quotient map when restricted to a subset (even saturated) of its

domain. Plenty of examples will be available after the present discussion.

LEMMA 1.2.2., Let X and Y be two topological spaces and let f: X — Y be

a continuous onto map.

(a) If AcY is such that whenever A © B C A the restriction of f
to f-l(B) is a quotient map then A% = Ai.
(b) If AcY is such that B% = Bg for each B < A, then the restric-
~1

tion of f to f "(A) is a quotient map.

PROOF. (a) Let the hypothesis of (a) hold and let x € A. Take B = A U {x}.

By our assumption flf_l(B) is a 2iotient map. We want to shoYlthat X € A%.
1f x € A, we are done. If not, f “(A) cannot be closed in £ “(B) =
f—l(A) (¥] f_l(x). Hence, f_l(A) n f_l(x) is nonempty, so that x is in A%.
Thus A% > A and the assertion follows.

(b) Let the hypothesis of (b) hold and let B < A be such that
f~l(B) is closed in f_l(A). We want to show that B 1is closed in A. If
x €EBNA, then x € B = B% (by assumption) and hence

x € FET®@) NA=£ETB) NA (since £1(B) is closed in £ 1(A))

B.

il

This proves that flf—l is a quotient map.

(45

As an immediate comnsequence of this lemma, we have

PROPOSITION 1.2.3. The following are equivalent for a quotient map £f: X —Y:

@ o) < L.

(2) For each A c Y, the restriction of f to f-l(A) is a quotient map.
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PROOF., To show (1) implies (2), apply Lemma 1.2.2(b).
To show (2) implies (1), apply Lemma 1.2.2(a).

REMARKS AND DEFINITION 1.2.4.

(a) The maps satisfying condition (2) of the above proposition, are
called hereditarily quotient maps.

(b) A. A. Arhangelskii [A-1] defines a map f: X — Y between two topo-
logical spaces to be pseudo-open if the following holds: whenever y € Y and
V 1is a neighborhood of the set f_l(y) in X, it is true that £(V) is a
neighborhood of y in Y. Obviously this is a generalization of open maps.
[A-1] proves that a continuous map is pseudo-open if and only if it is

hereditarily quotient.

(¢) Amap f Dbetween two topological spaces is said to be quasi-closed
if the image of the closure of any f-saturated set is closed. Cleatly, every

closed map is quasi-closed.

(d) Din Ne Tong [D] has defined a class of maps, which he calls "pre-
closed maps". He establishes several interesting facts about them concerning
monotoneness, extension, etc.. They coincide with the pseudo-open maps

defined above.

In terms of these definitions, we have

PROPOSITION 1.2.4. The following are equivalent for a map f from a topo-~

logical space X onto a topological space Y:

(1) f 1is pseudo-open and continuous.
(2) £ 1is quasi-closed and continuous.

(3) f 1is quotient and o(f) < 1.
PROOF. The equivalence of (1) and (3) is clear, when we notice that (1) is
equivalent to the condition (1) of Proposition 1.2.1. The equivalence of (2)

and (3) can also be proved easily.

COROLLARY 1.2,5. (a) Every open continuous map has order < 1.

(b) Every closed continuous map has order < 1.

THIRD TYPE OF CHARACTERIZATION. 1In this paragraph, we obtain a characterization

of quotient maps with order < 1, which reveals the fact that this notion is a

natural generalization of "being either open or closed".



