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INTRODUCTION

The aim of this book is to provide a comprehensive introduction to the theory of
distributions through solved problems. It was originally written for undergraduate
students in Mathematics but it can be used by a wider audience, engineers, physicists
and also by more advanced students.

The first six chapters deal with the classical theory with special emphasis on the
concrete aspect. The reader will find many examples of distributions and learn how to
work with them.

The last chapter, written for more advanced readers, is a very short introduction to
a very wide and important field in analysis which can be considered as the most
natural application of distributions, namely the theory of partial differential equa-
tions. The reader will find exercises on the classical differential operators (Laplace,
heat, wave 4, elliptic operators), on fundamental solutions, on hypoellipticity,
analytic hypoellipticity, on Sobolev spaces, local solvability, on the Cauchy problem
etc. At the beginning of each chapter the theoretical material used in it is briefly
recalled. Moreover, the more difficult problems are indicated by one (or more)
star(s).

At the end of the book the interested reader will find an index of words, an index of
notations and a short bibliography where he will be able to find material for further
study.
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CHAPTER 1

Preliminaries

PROGRAMME
Spaces whose topology is defined by a collection of semi-norms

Space C* (Q) (0 < k < + ) of k-times differentiable functions on an open subset
of R”

Space Z(Q2) (or C3'(2)) of C” functions with compact support in .
The Leibniz formula

The Taylor formula with integral remainder.







CHAPTER 1, BASICS

BASICS CHAPTER 1

a) Notations

A multi-index « € N" can be written o = («,, ..., a,), a; € N. We shall denote
lod =0y + -+ al =l a— = ( ~ B, .., — B
(a _ o!
B)  Bx = p)
If o and f are two multi-indices in N” we write « < fifa, < f,i = 1, ..., n. For xe R"
and @ € N" we set x* = x}' ... x™ Moreover we shall set
x x X, 6
0* = 07 -+ 0y where 0, = —
I ox
The expression P = Y a,(x)0" will be called a differential operator of order m e N
|| <m

and the functions a,(x) the coefficients of the operator.
The support of a function f, denoted by supp f, will be the closure of the set
{x: f(x) # 0}

b) Spaces whose topology is defined by a collection of semi-norms.
Let E be a vector space on a field K (R or C). A semi-norm on Eis a map p from E to
R, = {x e R, x > 0} such that

1) p(Ax) = |A|p(x) VxeE Viek
i) p(x + y) < p(x) + p(») VxeE VyeE

We say that p is a norm if moreover p(x) = 0 implies x = 0.
Let 7 be a subset of R and (p,),, a collection of semi-norms on E. For every x, € E,
& > 0 and for all finite subset F of I we set

V(xo, & F) = {x € E, p(x — x,) < &, i€ F}

The collection V(x,, &, F), when ¢ > 0 and F ranges over the finite subset of 7,
defines a filter of neighborhoods of x, and thus generates a topology on E
which is compatible with the linear structure on E (which means that the maps
(x,») b x+ yfrom E x E to E and (4, x)> Ax from K x E to E are continuous).
We say then that E is a locally convex topological vector space (l.c.t.v.s). Let us
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CHAPTER 1, BASICS

assume that / is countable (we may take / = N) then the topology defined by the
collection (p,),., is metrizable. Indeed if for x and y in E we set

< |

1 px =)

2 1+ p(x—y

one can show that dis a distance on E and that the topology defined by dis equivalent
to the one defined by the collection (P)ien-

Let (E, (p))ic1), (F, (g));c;) be two l.c.t.v.s. Let T be a linear map from E'to F. Then T'is
continuous if and only if:

For every semi-norm g, there exists a positive constant C and a semi-norm p: such
that:

d(x, y) =

9,(Tx) = Cp(x)

for every x € E.
The reader interested in these questions may consult reference [4].

¢) The spaces C* (Q)
Let Q be an open subset of R" and k € N (or k = + 00). We denote by C*(Q) the space
of functions defined in Q with values in C which are k times (or infinitely)
differentiable. It is equipped with the semi-norms

px(m) = Y sup|0®u(x)| where K is a compact subset of Q (if k € N)

la|<k xekK

Px,;(#) = Y sup|d%u(x)| where K is a compact subset of Q and je N

la|<j xeK

(ifk = +o0)

They give the topology of uniform convergence, on every compact, of the derivatives
of order less or equal to k (if k € N) and of all derivatives (fk = +o0).

These topologies are metrizable and then the spaces CX(Q) are complete for
0 <k < oo.

d) The space 2(Q) or C3(Q)

It is the space of all C* functions on Q with compact support. To define the topology
of 2(Q) one has to introduce the notion of inductive limit topology. The reader may
consult [4]. For the sequel it will be sufficient to know how the sequences converge.
One has the following result.

A sequence (9))jen of elements of 2(Q) converges to zero in 2(Q) if and only if:

i) There exists a compact subset X of Q such that for every j e N, supp ¢ < K.
ii) For every a € N” the sequence (0°9,);en converges uniformly in K to zero.

14



CHAPTER 1, BASICS

. 0 .
If ais a C” function on Q the maps ¢ > agp and ¢ + % are continuous from 2(Q2)

i
to itself.

If Kis a fixed compact subset of Q we shall denote by 2,(Q) the space of all u in 2(Q)
such that supp u < K.

e) The Leibniz formula
Let u and » be two functions in C*(Q). Then for all « € N” such that || < k one has

Fw-v)= Y (;) o 0%y

f<a

f) The Taylor formula with integral remainder
Let xo€ R" and ¢ be a C™ function in a neighborhood of x,. Then for every Ne N and
all x in a neighborhood of x, we have

WD = T = %) @) +

Jal<N ¥

1
+ f a-o» ) N ok | (x = x0)%(0%) (1x + (1 — 0)x,)drt
0

w <+ O

g) The polar coordinates in R".
They are defined for x = (x,, ..., x,) € R" and (r, 6,, ..., 8,) €
10, oo[ % ]0, [ x --- x ]0, o[ x 10, 2z[, by the formulas

X, = rcos 6,
X, = rsin 6, cos 6,

X,y =rsinf,sin@, - sinf,_,cosb,_,
X, =rsinf, sin@, - sinf,_,

Then we have dx = r"~'(sin 0,)" (sin 6,)"---sin 6, ,drdod, --- dé,_,. We shall
write shortly x = r-w, 0 = (w,, . . ., ®,), and one can see that |w| = 1, which means
that o belongs to the unit sphere $”~'. Then dx = "' dr dw where dw is the measure
on S"7'. If f € L'(R") one can write

f S(x)dx = f f Sr - o)r" 'drdw
R” 0Js !
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CHAPTER 1, STATEMENTS, EXERCISES 1-4

STATEMENTS OF EXERCISES* CHAPTER 1

Exercise 1: Borel’s theorem
Our purpose is to prove that given a sequence (a))jen of complex numbers there

./
exists a function f € C*(R) such that I:dd_x’ f:l ©) =a,j=012, ...

a) Let ¢ € 2(]—2, 2[) such that ¢ = 1 for |x| < 1.
Prove that we can find a sequence (4,),. Of real numbers such that if we set

) £, = 2 x4, %)

n!

d k
<E> Ja(x)

b) Prove that the series Z /f.(x) defines a function f(x) which is C* and solves our

n=0

then

(2) sup <2" for0<k<n-—1

xeR

original problem.

Exercise 2
Let Q be an open set of R", kK and m be two positive integers such that k > m and

P(x,0) = Y a,(x)d" be a differential operator of order m whose coefficients are in
|la|<n:

C Q).

Prove that P is continuous from C*(Q) in C*~"(Q).

Exercise 3

Prove that there is no function J in C2(R) (the space of continuous functions with
compact support) (resp. in L'(R)) such that é * f = f for all fin C°(R) (resp. in
L'(R)).

(Hint: Use the equality /(0) = [ f(x)é(—x)dx).

Exercise 4

Let 9 € 2(R) and M > 0 such that supp ¢ = {x e R: x| < M}. If n e N we set
1 & X )

=i 3900 — Zﬁ(a’(O) for x # 0

n+1
x =M

w(x) =
1 n+
m (0( ”(0) forx =0
*Solutions pp 18 to 24
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