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Chapter 1

Introduction to the Problems

1.1 Introduction

As computing has made possible the analysis of increasingly complex sit-
uations, modern decision making has come to rely more and more upon
mathematics. The discipline which has evolved to serve the needs of deci-
sion makers is operations research—the process of formulating and solving a
problem to reach a decision affecting the operation of an organization.

Operations research as a discipline had its beginnings during World War
II, although some of the underlying mathematical ideas are much older.
The problems presented by troop movements, antisubmarine warfare, crew
scheduling, radar deployment, and other aspects of warfare led British mil-
itary leaders to employ teams of scientists to seek solutions. Their clear
success motivated other nations to adopt a similar approach.

The emergence of operations research continued as mathematicians and
managers sought nonmilitary applications after the war. Large corporations
competing for profits were among the first to employ the new techniques.

Gradually the problems to be addressed were classified into types, as
discussed in the next section. Among the tools that emerged to solve them
is mathematical programming. This approach builds a mathematical model
to reflect the range of managerial options, and a solution is obtained by a
programmable process called an algorithm.

This young discipline took advantage of the increasing power of com-
puters. Advances in computing and developments in algorithms for solving
mathematical programming problems proceeded in tandem.

A major milestone [6] was achieved in 1947 when George Dantzig in-

1



2 Chapter 1. Introduction to the Problems

troduced the simplex algorithm. This approach, which promptly assumed
a major role in the solution of linear problems, will be the central topic in
Chapter 3. Dantzig wrote a comprehensive introduction to the discipline of
linear programming in [7).

Today mathematical programming is an important tool employed by
operations research staffs in most large organizations and by academic de-
partments in many universities.

Our objective here is to provide the essential background for anyone who
may need to employ mathematical programming. A basic understanding of
the fundamentais will prove valuable whether the manager does his or her
own problem analysis or relies on the work of others.

The basic understanding to be gained can be summed up in four goals:

e The ability to recognize a problem appropriate for solution by mathe-
matical programming.

e The ability to formulate a managerial problem as a mathematical pro-
gram.

é An understanding of the mathematics underlying the methods of math-
ematical programming.

e Mastery of the algorithms used and familiarity with their computer
implementation.

We will address all four of these goals—minimizing, however, our atten-
tion to the actual computer implementation of algorithms. The Appendices
provide introductions to some useful software, and some of the'examples and
exercises will require computing for their solution.

We do not consider the actual use of the information gained from the
mathematical treatment of a problem. However, the managerial value of
these methods should become evident, particularly in the discussions of du-
ality theory and sensitivity analysis in Chapter 3, of the critical path method
in Chapter 4, and of integer programming in Chapter 7. Chapter 9 offers
the reader experience with more open-ended problems where the appropriate
method of solution is not apparent from the location of the problem in the
text.

The implementation of any conclusions reached can often be expected to
require personal leadership characteristics of management—-an area that is

clearly beyond our scope here.



Section 1.2. Types of problems to be considered
1.2 Types of problems to be considered

Solution of the examples in this introductory chapter must await mastery
of the underlying mathematical foundations. However, the sample problems
serve to indicate the types of application possible, and many will be revisited
as the bases of exercises in later chapters.

In reading over the examples, the reader should try to identify exam-
ples of some of the most common types of problem, as described below:
allocation, sequencing, routing, blending, scheduling, project management,
network, and knapsack.

Allocation problems

The solution of an allocation problem allows an organization to allocate re-
sources in order to optimize some measure of success. The most frequent
objectives are to maximize profit or to minimize cost. Resources might
include such things as land, money, manufacturing time, or raw materials.
Often an allocation problem results in a decision involving how many of each
of several possible products to produce. We call this a product miz problem.

A good example is discussed in [4]. That model considers the production
process from the availability of raw materials through manufacturing to the
demand for the products. The analysis of the process led to an altered
inventory policy, a reduction in the number of products offered, and an
increase in profit. As a result of the improved utilization of the existing
production facilities management concluded that a planned expansion would
probably not be needed.

Because of the easy accessibility of the language of the applications, we
will occasionally consider allocation problems drawn from farming. However,
accessibility is not our only motivation, since [19] indicates that such models
can be of considerable value to the small farmer.

Sequencing problems

The objective of a sequencing problem is to schedule multistage operations
in the most efficient manner. Examples include ordering the way in which
different products are manufactured on the same equipment or the sequence
in which several cities are visited on a sales trip. The latter, called a traveling
salesman problem, will be considered at length in Chapter 7.
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While the model is introduced in terms of a salesman, among the impor-
tant applications is guiding an automated drill [15] to drill holes for mounting
components on a circuit board. A few minutes, or even seconds, saved in a
repetitive operation such as this becomes highly valuable over the product’s

total production.

Routing problems

The goal of a routing problem is to plan the movement of goods in an efficient
manner. Here efficient usually means lowest cost, but in special instances,
such as those involving a perishable good, efficient may mean fastest.

The trucking industry comes to mind in this connection. Besides improv-
ing the profit margin and efficient movement of goods, the routing applica-
tion can help reduce employee turnover. The scheduling technique known as
swap and drop [37], where two drivers meet midway, trade loads, and then
return to their starting points, serves driver morale by giving them more
time at home as well as enhancing the movement of goods.

Blending problems

A blending problem occurs when two or more resources are combined to
produce a product having certain characteristics—for instance, to produce
a wine with a given alcohol content by mixing several other wines, or to
achieve certain characteristics by mixing paints. A problem is seldom purely
a blending problem, and often it includes other requirements.

A complex mix of chemical, economic, managerial, and technological is-
sues made blending in the oil industry an early fruitful application of math-
ematical programming. The discussion in [5] shows the importance of the
problem as well as the influence of policy and government regulation on the

solution.

Scheduling problems

A scheduling problem involves planning production to meet customer de-
mand within capacity and supply constraints in an optimal fashion. Objec-
tives may include minimizing costs such as overtime, shipping, storage, and
back orders. We will see that some scheduling problems share many of the
mathematical characteristics of routing problems with physical destinations

replaced by points in time.



Section 1.2. Types of problems to be considered 5

In an interesting scheduling application, the manager of four McDonald'’s
franchises developed a scheduling algorithm [26] for his employees. The
result was to cut the time needed to make out the schedule by at least 80%
while lowering costs by reducing staff at slack times. Another result was
to improve employee morale by being able to schedule more people at their
preferred times.

A special type of scheduling problem has as its goal the determination of
the optimal order quantity to achieve efficient inventory management. Such
a problem is often referred to as an economic lot size problem.

A significant application of such a model [1] was achieved by a group of
seniors at the Air Force Academy. Their project dealt with a 250,000 item
spare parts inventory. The pilot project saved $600,000 with a forecast total

savings of $7 million.

Project management problems

The goal of a project management problem is to plan the tasks to be ac-
complished so that the project is completed on time. Issues that might be
considered include keeping the cost within budget and allocating additional
resources to tasks to shorten the time required for their completion.

A critical issue in many industries is the shutdown of production facilities
for maintenance and inspection. The loss of production is expensive, and
every day-saved in the process can be valuable. In the example discussed in
[31], the cost of each day of shutdown at a Weyerhaeuser paper production
facility was pegged at $500,000. Oue tool used to improve their use of
shutdown time is the critical path method to be discussed in Chapter 4.

Network problems

A network problem is one that seeks to in some way link locations in an
efficient manner. Reliable and efficient communication are among the cen-
tral objectives of connection problems. It is not an accident that one of
the fundamental papers on the subject [29] appeared in a journal related
to the telephone industry. The application suggested there and to be dis-
cussed in Chapter 4 is stated in terms of secure communication within an
underground group, but has obvious parallels in telephone connections and
computer networks.

Some network problems involve the selection of the location for critical
components in a network. In a model [14] designed to improve its overall
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production and inventory management, the Agrico Chemical Co. also con-
sidered the location of facilities as well as the production and shipping. The
result was an estimated savings of more than $18,000,000 in the first three

years.

Knapsack problems

The knapsack problem takes its name from the process of choosing items to
take on a back-packing trip. The goal is to take items which will have the
maximum utility but will not exceed the weight limit that you are willing
to carry. The solution is a set of decisions as to whether or not each item
should be included in the knapsack.

Among the applications is the choice of tax strategies that a small busi-
ness or individual professional might employ. This model, discussed in [13],
has the goal of maximizing the tax savings within the constraint of the cash-

flow budget.

1.3 Sample problems

Listed below are examples of some of the types of problems we have dis-
cussed. The reader should try to classify the problems according to type. In
a few cases we consider the first steps toward a solution: the identification
of the variables and the formulation of the equations or inequalities that

express the circumstances.
Nearly all the expressions associated with these problems will be linear,

i.e., they will be of the form
4z, + 2x5 + 3z3

where ,z3, and 3 are variables. Such an expression might represent the
profit of a company or the number of units of a resource required. Frequently
the variables will represent the number of units to be produced of each of
the products made by a company. The coefficients will be drawn from the
data given in the problem. Thus, an equation using this expression would

have the form
4z1 + 2x9 + 323 = 50

and an inequality the form
4z + 2z2 + 3z3 < 150.



