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Invited Paper

Statistical Design of Stack Filters

Jaakko Astola and Pauli Kuosmanen
Signai Pro. ~<ing Laboratory. Tampere University of Technology.
P.O.Box 553, FIN-33101 Tampere. Finland

ABSTRACT

Nonlinear signal processing elements are increasigly needed in current signal processing systems. Stack filters form a
farge class of nonlinear filters. which have found a range of applications. giving excellent results in the area of noise
filtering. Naturally. the development of fast procedures for the optimization of stack filters is one of the major wims
in the research in the field. In this paper we study optimization of stack filters with a simplified scenario: the ideal
signal 1s constant ant the noise distribution is known. The objective of the optimization method presented in this
paper is to find the stack filter producing optimal noise attenuation and satisfying given constraints. The constraints
may limit the search into a set ~f <tack filters with some common statistical description or they may describe certain
structures which must be preso. . - or deleted. The objective of this paper is to illustrate that desing of nonlinear
filters is possible while using suitable signal and noise models.

1. INTRODUCTION

Desing of stack filters is naturally one of the most important issues in stack filtering and has been the subject of,
various papers and reports. The design problem can be formulated as follows: find the stack filter which restores the

noisy signal close to the ideal document. Various closeness criteria have been developed, some are classic, e.g.. the

mean square error (MSE), the mean absolute error (MAE) and the minimax error; while some are relatively newer,

e.g., associative memory”® and shape preservation criteria.!” Naturally, the resulting optimal filter depends on

the used optimality/closeness criterion (or cost function), which should be carefully chosen - a perfect optimization

method with wrong optimization criterion will give undesirable results.

Also various optimal desigi- - "iniques have been proposed for selecting the best filter in the class of stack filters.
In almost all the classical papers, the approch taken was an analytical one, based on the availability of signal and
noise models. This approach is ofter referred as model based approach. Another approach, training approach is based
on a representative training set, containing the ideal signal and the corrupted signal. The efficiency of the first
approach depends on the model precision. Unfortunately, increased precision usually increases the model complexity
at the same time. This is the modelling dilemma that should be solved in every case when stack filters are designed
by using models for signals and noise. The efficiency of the second approach in turn depends on how sufficient the
training set is and how well generalizes to other similar problems. Our opinion is that this particular problem is
almost completely unsolved at the moment.

In this paper we study optimization of stack filters with a simplified scenario: the ideal signal is constant ant the
noise distribution is known.!®> If this approach the aim is to seek an optimal stack filter, which produces the best
noise attenuation and, at the same time, satisfies the given constraints. We show that the optimal stack filter, which
achieves the best noise atten:un...n subject constraints, can usually be obtained in closed form for self-dual filters.
We present also an algorithm for finding this closed form.

2. STACK FILTERS

Stack filters are a class of sliding window nonlinear filters, first introduced by Wendt et al.>® They perform well in
many situations where linear filters fail. Thus, stack filters have been used in many applications, c.f. e.g.3?!

Let X(t) denote a signal to be filtered. Now, the argument ¢ in this paper is a time and/or spatial index. At
time ¢ the filter has available a fixed number, N, of samples of the signal X(-). For one-dimensional signals the
available samples are typically obtained as follows: x = (X(t — Ny),..., X(t = 1), X(¢),X(t + 1),..., X(t + N2)) =
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N ), Xait), . oo Natf)), where N = Ny + Vo 4+ 1. Thus. the filter can be understood as in operation wiiose
window shides over the signal and at every time instant f operates on signal values inside the filter window  In nmage
processing applications. we consider the way to arrange the samples inside the vector x to be known and fixed.

The output of a stack filter at each window position is the result of a sum of a stack of binary operations operaring
on thresholded versions of the samples appearing in the filter's window.

The key to the analysis of stack filters comes from their definition by threshold decomposition.=? =% By threshoil
decomposition we can divide the analysis of stack filters into smaller and simpler parts. In other words. most of th.
analysis can be done by studying binary signals.

Consider a vector x = (zy,zo,...,2x), where z; € {0,1,.... M — 1}. The threshold decomposition of x means

decomposing x into M — 1 binary vectors x',x*,...,x* =1 according to the thresholding rule

1. fz,>m
= T} = G’ i1
" m(zn) 0. otherwise. :

Thus, the binary vector x™ is obtained by thresholding the input vector at the level m, for 1 < m < M — 1. An
element % of the binary vector x* takes on the value 1 whenever the element of the input vector r,, is greater than
or equal to k.

It is important to note that this thresholding process can also be applied to all signals that are guantized 1o a
finite number of arbitrary levels.

From (1) we see that the original multi-valued (M-ary) vector can be reconstructed from its binary vectors

M-1
X = E x™
m=1

or equivalently
M-1

§: m
In = In-

m=1
Let x and y be binary vectors (signals) of fixed length. Define
x <y if and only if =z, <y, forall n.

As the relation defined by (2) 1s reflexive. antisymmetric, and transitive. it defines a partial ordering in the so
binary vectors of fixed length. Now. consider a signal x and its thresholded binary signals x'. x?, .. .. xM =1 Cleariy.
x'<xif P>

Thus. the binary signals x*. x?.. . x" =" are non-increasing in the sense of the partial ordering of {2)

It has turned out that by defining filtering operations based on those binary operators f( 1 for which 1t houis
SIS ()il iz 5

we obtain a class of filters with many useful properties. This requirement lead to the definition of stack filters based
on positive Boolean functions.??

A Boolean function f(-) is called a positive Boolean function (PBF) if it can be written as a Boolean expression
that contains only uncomplemented input variables. For a PBF f(-) it holds

f(x) = fly)if x>vy. (14

The property (4) is called the stacking property. A complete proof for that (4) holds for PBFs can be found .-~
As (4) holds for PBFs. also (3) holds for them as required.
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Fizure 1. /llustration of stack filtering operation using threshold decomposition. The broad arrows sihow the overall
hltering operation. The slender arrows show the same operation wn the threshold decomposition architectuie.  The
Boolean function used in the llustration s f(x) = r_yzo+r_ L1+ 20>y, which corresponds to the three pomnt mediun
filter.

DEFINITION 1. A stack filter Sy(-) is defined by a positive Boolean function f(-) as follows
M-1
Sy(x) = Z f(x™). (5)
=1

Thus, filtering a vector x with a stack filter Sy () based on the PBF f(-) is equivalent to decomposing x to binary
vectors x™, 1 < m < M —1, by thresholding, filtering each reshold level with the binary filter f(-) and reconstructing
the output vector as the sum (5). This procedure is depicted in Figure 1, where we have used a three point median
filter as an example. In median filtering the samples within the moving window are sorted by magnitude and the
centermost value, the median of the samples within the window, is the filter output.

By (5) stack filters are completely characterized by their operation on binary vectors. The importance of this
property arises from the fact that binary vectors are easier to analyze than multi-valued vectors. Also filtering
each binary vector independently allows the operation to be done in parallel, and single binary filters are easy to
implement.

Next the definition of continuous stack filter is reviewed.”®  Continuous stack filters operate on real signals.
An attractive property of continuous stack filters is the possibility of deriving analytical results for their statistical
properties.

DEFINITION 2.  The output of the continuous stack filter defined by a positive Boolean function f(x|,Zz2,...,zx)
with input vector x = (X1, X»,..., Xn) is given by
Sy(x) =max{f# € R: f(T5(Xy1),....T5(Xn)) = 1},

where the thresholding function is defined by (1).

The following proposition yields an important isomorphism between the continuous stack filter Sy (-) and the PBF
f(-) it corresponds to.*

ProprosITION 1. Let x = (X}, X,...,Xn) be an input vector to a stack filter Sy () defined by a positive Boolean

function f(£1,z2,...,zn). Then
K

f(rl.I'_r.---,IN)=Z HED

where P, are subsets of {1,2,..., N}, if and only if the stack filter S(-) corresponding to f(z),...,zx) is

Sy(x) = max{min{X; :j € P}, min{X; : j € P},...,min{X; : j € Px}}.



Thus. the real domain stack filter corresponding to a PBF can be expressed by replacing AN vl OR wirhy MIN
and MAN respectively. For example. the three point median filter over real variables X_;. N .. and [V, See also
Figure 1) is a stack filter defined by the PBF flo_; zg,21) = zoi2a — 210y = rary. ie

MED{NX_;. X0, N1} = MAX{MIN{.X_;,.Xo}, MIN{ X b MINY,, Y}

The output distribution of a stack filter can be expressed using the {ollowing proposition ¥

ProposiTiON 2. Let the input values X}, in the window B of a stack filter Sy(-) defined by a positive Boolean
function f{-) be independent random variables having the distribution functions ®.(¢), respectively. Then the output
distribution function W¥(¢) of the stack filter Sy(-) is

i)=Y T @u(t)@uir) -

x€f~!(0)bEB

where f~1(0) is the pre-image of 0, i.e., f~'(0) = {x : f(x) = 0} and binary values in the exponents are to be
understood as real 0’s and 1's. In the case of independent and identically distributed (i.1.d) input values we get the
following corollary.

COROLLARY 1. Let the input values X, in the window B, |B| = N, of a stack filter Sy(-) defined by a positive

Boolean function f(-) be independent, identically distributed random variables having a common distribution function
@(t). Then the distribution function of the output ¥(t) of the stack filter Sy(-) 1s

N
V() =D A1 - (1)), (6)
i=0
where the numbers A; are defined by
A= [{x: f(x) =0, wh(x) = i}| (7)
and wy(x) denotes the number of 1's in x. i.e., its Hamming weight.
In order to guarantee that the stack filter is not defined by the trivial PBFs fix) =0 or fix) = L. we require
Ag=1 and Ay =0 ey

As Ay = 0. we can leave out 7 = .V from the sum (6).

PROPOSITION 3 The numbers 4, satisfy

N _ .
03.4,5( > i=1.2.. N
1

3. OPTIMIZATION OF STACK FILTERS WITH CONSTANT IDEAL SIGNAL
AND KNOWN NOISE DISTRIBUTION

In the theory of linear systems the power spectrum of the input signal together with the transfer function of the
system determine the power spectrum of the output signal. It is not possible to get equally simple strong connections
between the input process and the output process for stack filters. Explicit information of the statistical properties
of the output can only derived for the case of constant signal plus noise. Even then we need to assume the noise
to be white. However. this result makes possible numerical optimization of noise attenuation of stack filters under
different constraints which quarantee that the filter satisfies prescribed specifications

We first review a method to calculate the output moments of stack filters by using the coefficients {,. Kuosmanen
et al.'3



Let the input values x = (X, .\, Ny of astack filter Sv(-) be independent, identically distributed random
variables h:tv“]g a cominon distribution function (1) and l[«'n.\ll_\" o(t). Then the v-order moment about the origin
of the output of a stack filter can be expressed as

N=1
WS BN = D AM(®5 V).
where " .
M(D.5, N.i) :/ r’ i'— (1= D)) D)) dr. i=0.1.... .. V- 1.
o ar

By using the output moments about the origin we easily obtain output central moments. denoted by
Ily — E{(’:,u{ - E{Yout})-’} .

for example the second order central output moment equals

2

N=1 N-1 =
pt= > AM(®. 2N - (Z A M(®, 1.1\".,')) . (9)
1=

1=0

The second order central output moment is quite often used as a measure of the noise attenuation capability of a
filter. It quantifies the spread of the input samples with respect to their mean value. Equation (9) gives an expression
for the second order central output moment. M(-) is a function of the input distribution &, the window size N and
index t.

In the following the properties (without proofs) of the numbers M (®,v, N, i) are reviewed.!> Henceforward we
assume that the input distribution ®(¢) is symmetric with respect to its mean p,, which is assumed to exist. We
assume that the set Q = {t : &(t) > 0} is a union of countable number of disjoint intervals of positive measure. This
means, that if ¢(¢) # 0, then there exists an interval J; C (—o0, oc) of positive measure such that t € I; and #(u) > 0
for all u € I, and that there are countable number of intervals I;. Without loss of generality, we assume

pr =0.

Therefore,
B(t) =1—d(—1),

which implies
o(t) = o(=t).
PROPOSITION 4. The numbers M (®,, N, ) have the following recurrence formula
M(®, v, N,i) = M(® 4N -1,i—1)=M(@7,N,i-1), 1<i<N

with initial values < d
M(<I>"\/,N,O):/ £ —(®(z)¥)dz, i=0,1,....N—1, 0<N.
—e dz =

PROPOSITION 5.  The numbers M(®, v, N, 1) satisfy

M(®,4,N,)=) (f)(_l)‘-fM(rp,7,N —j,0), 0<i<N.

j=o M

ProprosiTION 6.  The numbers M (®, v, N, 1) satisfy the following symmetry property

- M(®,v,N,N —i) = (=1)"H'M(®,v, N, i).



PROPOSITION 7. If - is odd. then

. >0, r=0.\
N, N, 1) { < 0. otherwise,
and if - is even. then
=0. i=N/2
V(b4 Vi) >0, 1=0o0r N/2<i<N
< 0, otherwise.

PROPOSITION S. [f ~ is odd. then

M(®, 4, N.i) < M(®. v, N, i+ 1),
M(P.v. N.i) > M(®,v, Ni+ 1),

and if ~ 1s even, then

M(®.~, N.i) < M(®,5,N,i+1),
M(®, 4. N.i) > M(®,7,N,i+1),

0<i<N/2-1.
i=0or N/2<i<N—1.

D<i< N—-1,
t=0,N—1.

The following Proposition gives an estimate of the increase of M(®,2, N, i+ 1) — M (®,2..V. 1)

PROPOSITION 9.

Let ®(t) be a distribution function such that its density function o(t) satisfies the following

conditions:
(1) o(t) = o(=t) forallt € R,
(2)  o(t) is piecewise twice differentiable and the first derivative ¢'(t) satisfies
¢ >0, t<0
"’(‘){go, t>0.
Then .
P i+ 1 Doar . .
M@ 2. N.7+1) > v -AM(®,2,N, i), forall0 <7< NV —1. 10y
Ly =
When we write (10) in the form
N - N S5 A
<A l>‘\[(<l>.2..\.:+ 1) > ( _);\]((b.'_’_ NoT)
!+ 1
and notice that A; < (?) we can observe that if the aim is to minimize the second order moment abour the origim
the smaller values of 7 have more important rdle than the large values of 7.
Now, we return back to the calculation of the second order central output moment of the output of @ stack riter
S¢(-). Let
a:(:\n.Al ...... AN 1)
denote the a-vector of a stack filter S¢(:) and
M., = (M (P, 7. N O). M(d,~, N, 1),....] V(P 4. N.N=1))
denote the M. -vector. Then () can be rewritten as
#Z:aM?—(aMr)z‘ (1
where T denotes matrix transpose.
In case of self-dual filters (11) is reduced to
’u’) = aMg‘_ (12)



Note that winte mmimizing second order central output moment we are 1n fact mininmizing the mean square error
in the followine <itaation. '™ =" Assunme that the mput .Y, ol astack filter S¢ () with window length V. is a constant
signal s plus adaitive white noise n;. that is.

X, = 54 ny, B
where ¢ stands for the 7" sample We denote the N samples inside the filter window X, . . Xyv. The output
s= 5N Ve Ny oof the stack filter 5/(-) 1s an estimate of s The mean square error is defined as {ollows

E{(s = s)?).

Since s 1 (13) is o constant signal we can recast E{(s — s)?} into the form (11). Thus. when second order cenrral
output moment 1s minimized. the mean square error E{(s — s)*} is also minimized. This gives an explanation why
the second order central output moment can be used as a measure of the noise attenuation capability of a filter.

The vectors v (11) and (12) are independent of the filter, while the vector a can be understood as a tinction
of the filter I '« optimization process we aim at finding the vector a = (4. Ay, .. ... \v_y) minimizing (11) or
i12).

In the follc . 2. we give an improved idea of the optimization problem for self-dual filters. Let the size of the
moving window . be odd. We write (12) as

u’ = amedl\/l:_,r - anl\/I-_,T —+ a,MQT.

where ameq is the a-vector of tiie standard N point median filter, that is,

N N N
amed=(1.(1>,(,2),,...(llg__lJ)O.O,...,O), (14)

and the vectors ap = (0, A7, ,-1(:’,. .. "AlEL_T—']’O'O' ...,0) and a, = (O.vO. ..., 0, -lxll_.,._,J Ai#" . ...:{"\,_1) satisfy

A)=Aj_;, 1<i<N-1L (15)

Now, ameaM3 is independent on the filter and therefore it is a constant which can be left out in optimization. Thus,
the optimization of self-dual filters is reduced to finding vectors ap and a; minimizing

—aMJ +a;MJ. (16)
Proposition 6. together with equation (15), implies that
v
— A M(B,2.N, i) = AN M(B,2, N, N —i), 1<i< l ;"IJ ,
Thus. (16) is further reduced to
v T
agM, ,
where a;] and I\/I; are truncated ap- and Ms-vectors given by
agz(o,A°,Ag,...,A°l~+,J) (17)
and i
M, = (M(®,2,N,0), M(®,2,N,1),..., M(,2, N, [ - lJ)),
respectively.

The coefficient A? gives the number of binary vectors of Hamming weight ¢, 1 < i < LN,_Tl J, which the stack filter

maps to 1, that is,
A,o + A = <‘V>
i

The above considerations show that half of the numbers A; define the second order central output moment
completely for self-dual stack filters.

Yang et al.?® used M; to denote A?.



3.1. Constraints for the Numbers .,

Some basic conditions that A4; have to satisfy are considered in Kuosmanen ¢t al..'> These condirions wre istea
below and are called Basic Constraints (BC).

(BC1):
\, € Z4
(BC2):
1o=1,4xy=0
(BC3):
N i
03.4.-5(,), i=1,2,..., V.
i
(BC4):
< X ia iz \
|+1_:i+1-.. t=U. k.. ond — 1.

The constraint (BC2) guarantees that the resulting optimal stack filter is not defined by the trivial positive
Boolean functions f(x) = 0,V¥x € {0,1}" or f(x) = 1,vx € {0, 1}¥.

We also have a special constraint for self-dual filters:
(SDCQ): If it is required that the filter is self-dual, then

N '
#; =() —An_i, i=0.1,....N.

1

Different kinds of constraints have been studied cf. e.g.!®!®2% In the following we briefly review several such
constraints. First we review so valled rank selection constraints (RSC) which determine some output characteristics
that the optimal filter ought to have. In other words, by rank selection constraints we limit our search into a set of
stack filters with some commion statistical description.

Prasad et al.2? defined so called rank selection probabilities as follows:

DEFINITION 3. Let ¥ be the output of a stack filter defined by a positive Boolean function f(-). Then the i’® Rank
Selection Probability (RSP) is denoted by P[Y = X(;], 1 <1< N, and is the probability that the ourput ¥" = 1.
The Rank Selection Probability Vector is the row vector r = (ry,ra,...,7n), where r; = P[Y = X;;]. 1 </ = N
KKuosmanen et al. derived a simple relationship between coefficients A; and rank selection probabilities r, **  This
connection is stated in the following proposition.

PRrRoPOSITION 10.  The #** rank selection probability of a stack filter with window size V' is given by
po ANoj AN-j4
7= N - N '

(;) (21

From Proposition 10 we obtain for instance the following corollaries, the proofs can be found in Kuosmanen «/
15
al..

COROLLARY 2. The coefficients A; of a stack filter S(-) of window size N and rank selection vector r =
(ry.ra, .. .. 7N satisfy

1 R Ny ( v ) i =0.1,....N -1
A= | — =Ty = —A - | . rN—¢. =0.1,....N = 1.
ERACES VA IS i+ 1 ie1) VT

j=12... . N is



ane

7 N N=y
( ) Y‘ r, < A ShkT N~
Rt Y
COROLLARY 3 The coeficients .1, of a stack filter S(-) of window size .\ sanisfy
N = . .
tra1 & 4, i=01....¥=1
+ 1
and
N-1
Aig1 < A;. when 1> .

74

By using the above proposition and corollaries the foliowing constraints can be obtained

(RSC1)

If it s required that

Pl = =2irps=0
then
AN_] = -"N—’.’ =0 = ANl = 0.

(RSC2):

If it is required that

Tk =Tk41=...=1n =0,

then o
Ay = () i=12,. . N—-k+1

Before presenting the third rank selection constraint we need to fix some notations. Let the Greek letters denote
arbitrary binary relations for a while. Then, for example, we use

= Al
z<{ 32 by ifandonlyif X { B2 } ¥
73 r3

to denote, that z is in relation a with y if and only if X is in relation A with Y'; z is in relation 3 with y if and only
if X is in relation B with Y; z is in relation v with y if and only if X is in relation ' with Y. Thus. the superscripts
indicate what two relations are connected. '

(RSC3):
If it is required that for some i, 1 <# <V, and a € [0,1] it holds

>1
>'Z
ri{ =3%a
<4
<5



