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Introduction

The central theme of this work is the study of the Hodge decomposition of the
space 2%(M) of differential forms on manifolds with boundary, mainly under
analytic aspects. In the boundaryless (compact) case, the Hodge theory is a
standard tool for characterising the topology of the underlying manifold. It has
far reaching implications in complex analysis and algebraic geometry. For mani-
folds with non-vanishing boundary, results on the connection between the Hodge
decomposition on the one hand, and cohomology theory, on the other, are also
well established.

Our interest in studying the Hodge decomposition of differential forms is of
analytical rather than of topological nature, and restricted to the case of real
differentiable manifolds with boundary. We will employ such kind of decompo-
sitions, in order to solve boundary value problems for differential forms. This
approach is in the spirit of Helmholtz [1858]. He first formulated a result on the
splitting of vector fields into vortices and gradients, which can be understood
as a rudimentary form of what is now called the "Hodge decomposition”. We
will show that on the basis of an appropriate decomposition result for the space
Q%(M) of differential forms, a variety of linear boundary value problems are
solvable in a direct and elegant way.

To formulate a motivating example, we consider differential forms w € Q% (M)
of degree k as anti-symmetric k-tensors. The space Q!(M) can be identified
with the space I'(T'M) of vector fields on M. Restricting ourselves — for this
particular example — to the case of a domain G C IR® with smooth boundary
dG, we consider the boundary value problem

curl X = W on G

0.1
X|3M =0 on 0G ( )

Precise knowledge about the solvability of this problem is of crucial interest e.g.
in the Navier-Stokes theory. To formulate necessary and sufficient conditions for
the existence of solutions of (0.1), we assume that we can make sense of the
direct decomposition

I(TG) = {curlU| (curlU) =0} @ {U| curlU=0} (0.2)

of the space of vector fields into the space of ”curls” and the space of curl-free
fields. The space of curls is chosen such that its elements obey the boundary
condition (curlU)ll = 0, i.e. are have a vanishing component parallel to dG. The
splitting (0.2) is a variant of the celebrated Helmholtz decomposition of vector
fields, and follows from the Hodge decomposition for manifolds with boundary
as a special case. (In the boundaryless case G = IR? the corresponding result is
known as the "fundamental theorem of potential theory”.)
/
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In order to solve the boundary value problem (0.1) we decompose the pre-
scribed vector field W according to the splitting (0.2), yielding

W = curl Uy + Uw where (curl UW)|| =0 and curl Uy =0 .

Obviously, the vanishing of the component Uw is a necessary condition
for solving (0.1). To see that this is also sufficient, we employ the Ansatz
X = Uw + grad g for the solution, where g € C*°(G) is to be specified. Since
curl (grad g) = 0, this solves the boundary value problem in view, if and only if
one can choose the function g in such a way that

(grad g)! = —(curl Uw)!  and (gradg)-N =0 ondG . (0.3)

Here N is the unite normal field on the boundary 8G. In fact, by using the collar
theorem — as a tool from the theory of manifolds — the extension problem (0.3) is
solvable for each vector field curl Uw . This implies the solvability of (0.1) under
the integrability condition U w = 0 for the curl-free component of the prescribed
vector field W € I'(TG).

After this rough illustration of a special application of the Hodge decompo-
sition on a bounded domain in IR®, we turn towards a proper formulation of
that decomposition result in a general context. We will develop the theory for
smooth, Riemannian manifolds with boundary, rather than restricting ourselves
to (bounded) domains G C IR". Let ¥(M) be the space of smooth differential
forms of degree k over a d-manifold M, then one has the exterior derivative
d: QF(M) — Q¥+t (M) and the co-differential § : Q*(M) — Q*~1(M) acting as
natural differential operators. (These operators correspond to the curl and diver-
gence in vector analysis.) Where the boundary is concerned, we let 3 : OM — M
be the natural inclusion. Then we speak about a differential form w with ”van-
ishing tangential component”, iff tw := y*w = 0. Vice versa, w has "vanishing
normal.component”, iff nw ;= w — tw = 0.

Using this terminology, the relevant subspaces of 2¥(M) for the Hodge decom-
position are the spaces of exact and co-exact k-forms with vanishing tangential
and normal components, respectively, and the space of harmonic fields on M.
These are given by :

E¥(M) :={da|a e Q*}(M) with tw=0}
C*(M):={68|B € (M) with nw=0}
HE (M) :={AeQ*(M)|dA=0 and 61=0} .

To specify the functional analytic setting, we extend the space Q%(M) of

(smooth) differential forms to appropriate Sobolev spaces. 2¥(M) is equipped
with an inner product

KLw,n>= / WA X7 (0.4)
M .
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where * : Q¥(M) — Q"*%(M) is the Hodge operator and A the exterior mul-
tiplication. We denote the L?-completion of 2*(M) with respect to that inner
product by L2Q*(M), and identify — in slight abuse of notion — the subspaces
Ek¥(M), C¥(M) and H*(M) with their respective L2-completions. The central
result of this work is the generalisation of the classical Hodge decomposition
theorem holding for compact manifolds without boundary to d-manifolds. The
idea goes back to Friedrichs [55] and Morrey [56] :

Theorem (Hodge-Morrey-Friedrichs Decomposition)

Let M be a compact Riemannian manifold with boundary.
(a) The space L>QF(M) of square integrable k-forms on M splits into the direct
sum
L*QF (M) = e¥(M) ® c*(M) & H*(M) (0.5)

of the spaces of exact, and co-exact forms (with the prescribed boundary
behaviour), and the space of harmonic fields.

(b) The spaces H*¥(M) of harmonic fields in Q*(M) can respectively be decom-
posed into

HE (M) = {AeHFM) |tA=0} @ {ke H*(M) |k =6~} (0.6a)
HEM) = {XeH*(M) |nr=0} ® {ke H*(M) |k=de} . (0.6b)

Furthermore, the Hilbert space decompositions (0.5) and (0.6a-b), respectively,
are L2-orthogonal with respect to the inner product (0.4).

Under the identification between Q'(M) and I'(T'M) this result covers, in
particular, the Helmholtz decomposition (0.2). (The correspondence between
vector fields and differential forms will be considered in detail in Section 3.5.)
For various applications it is essential to have decomposition results also for
differential forms of Sobolev class W*P. This is of particular importance, if the
boundary value problem in view originates from a non-linear dynamical systems,
which one intends to solve e.g. by semi-group methods. In view of this, we will
establish the following regularity result, which cannot be found in the literature
in that generality :

Regularity Theorem

Let W*PQ¥(M) be the space of differential forms of Sobolev class W*? — where
s>0and1 < p < oo — and let W*PEK(M) , W*PC¥(M) and W*PH*(M)
denote the completions of the corresponding subspaces of Q¥(M) in the W*?P-
norm. Then the decomposition

WePQk(M) = WPER(M) @ W*PC*(M) & W*PHF(M) (0.7)

is direct, algebraically and topological. It is L?-orthogonal, if p > ni’;s.

The decompositions (0.6a-b) generalise accordingly.

If w € W*PQF(M), then the Hodge components da, € W*PEF(M) and 68, €
W*PCk(M) can be chosen such, that one can estimate

| "ws+1,p <C, “‘*’“Ws.p and | B ”wa+1.p <GC|lw ”ws.p .
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Thes€ results, the decomposition and the corresponding regularity theorem,
constitute the proper framework for solving boundary value problems for differ-
ential forms, by generalising the projection techniques discussed exemplarily in
the context of Eq. (0.1). We will study this in detail in Chapter 3 of this work,
after establishing the Hodge-Morrey-Friedrichs decomposition in Chapter 2.

Historical credits

As the pioneer results on the Hodge decomposition, one has to mention, besides
Helmholtz [1858], the works of Hodge [33,41], de Rham [31,55] and Weyl [40].
Hodge and de Rham established the connection between cohomology theory and
harmonic differential forms with preassigned periods. Weyl, on the other hand,
introduced the method of orthogonal projection in that context, and applied this
to solve boundary value problems in the Euclidean space. Later, Kodaira [49]
extended these decomposition results to differential forms on a general compact
Riemannian manifold.

On compact manifolds with boundary, the decomposition of L2Q*(M) goes
back to Friedrichs [55] and Morrey [56,66]. Friedrichs generalised Weyl’s method
of orthogonal projection onto the respective components of L2Q*(M). His ap-
proach, however, is based on certain density assumptions for differential forms
with prescribed boundary behaviour, which are a-priori far from being obvious.
In turn, Morrey proves the decomposition theorem by means of a variational
method, i.e. by minimising the "Dirichlet integral” on 2*¥(M). As an essential
ingredient he needs an inequality of Gaffney [51].

Regularity results for the Hodge decomposition are well-established on mani-
folds without boundary. For 9-manifolds, however, less is known. Friedrichs and
Morrey formulate their decompositions also for differential forms of Sobolev class
W12, The general case has been considered by Morrey but the result was never
published — according to an oral communication by J. Marsden.

Where boundary value problems for differential forms are concerned, the re-
sults of Friedrichs and Morrey were influenced by Duff and Spencer [52], Duff
[55] and Conner [56]. Pickard [83] generalises that approach and studied prob-
lems for the case of a non-smooth boundary. The idea to investigate boundary
value problems systematically on the basis of the decomposition technique goes
back to Morrey. This method has been used as a powerful tool in fluid mechan-
ics by Ebin and Marsden [70], and applies later also to other fields of applied
mathematics.

On the other hand, Kress [72] studied related boundary value problems for
differential forms on G C IR™, by using concepts from classical potential theory.
These methods have been applied by von Wahl [90b] to solve the particular
problem (0.1) for vector fields on G C IR®. This problem has also been con-
sidered by Borchers and Sohr [90], and earlier — under topological restrictions
on G - by Ladyzenskaja and Solonnikov (78], and Bogovskii [79]. For a previous
contribution of the author see Schwarz [94].
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Decomposition results for non-compact manifolds without boundary have been
considered by Cantor [81]. These rely on the choice of appropriately weighted
Sobolev spaces which were invented in the early 70ies, and are studied in detail
by Lockhart and McOwen [85]. Where boundary value problems for differential
forms (respectively for vector fields) in the non-compact case are concerned, a
relevant result can be found in Mé&ulen [75].

The study of the de Rham cohomology of manifolds with boundary goes back
to Duff and Spencer [52]. Corresponding Hodge decomposition results are well
established, cf. Gilkey [84] for a general reference. These rely on the choice of
suitable boundary conditions for the forms in H*¥(M), cf. also Cheeger [80]. The
results, however, are not equivalent to the Hodge-Morrey-Friedrichs decomposi-
tion, given above. The decomposition (0.6) has been considered under topological
aspects also by Wenzelburger [94]. An alternative approach was given by Briining
and Lesch [92] who applied the machinery of Hilbert complexes to the de Rham
complex, in particular for the case of manifolds with boundary. Decomposition
results for differential forms on oco-dimensional vector spaces are considered in
Arai and Mitoma [91].

The proof of the Hodge-Morrey-Friedrichs decomposition theorem which we
will present, is based on the use of functional analytic methods in the theory
of partial differential equations. Such concepts were developed around 1960 by
Nirenberg, Peetre, Schechter and others. The regularity results which we will
prove, rely in a crucial way on the theory of elliptic boundary value problem on
vector bundles, as presented in Palais [65] and Hormander [85].

About the contents

In Chapter 1 we introduce the basic notions needed to prove the Hodge-Morrey-
Friedrichs decomposition for manifolds with boundary. Since this links the geom-
etry of manifolds with the theory of partial differential equation, and since we
intend to make our results comprehensible for readers working in either of these
fields, the presentation is given in some detail.

Sections 1.1 and 1.2 are concerned with the analysis on a Riemannian mani-
folds with boundary and the calculus of differential forms w € 2¥(M) on such
O-manifolds. Particular attention is paid to the description of the differential
forms on the boundary M. Corresponding results can rarely be found in the
literature.

In Section 1.3 we consider the Sobolev theory of sections in vector bundles over
M, and of differential forms in particular. Roughly spoken, all classical results
from the Sobolev theory of functions on IR™, generalise to such section spaces,
as long as M is compact. Some arguments from functional analysis, which are
elementary but not commonly stated in that form in the literature, are given in
Section 1.5.

Section 1.6 is devoted to the notion of ellipticity. We formulate the condition
of Lopatinskii-Sapiro on the ellipticity of boundary value problems for vector
bundles over 9-manifolds, and quote fundamental theorems for elliptic operators.
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In particular we establish the ellipticity of a special problem for the Laplace
operator on QF(M), namely

Aw =1 on M

tw=0 and téw =0 on OM . U3)

Chapter 2 constitutes the central part of this work. There we study the de-
composition results of Morrey and Friedrichs for d-manifolds in detail. We start
in Section 2.1 with a generalisation of Stokes’ theorem, and establish Green'’s
formula, reading as

KLdw,>=<w,n> + / twA*nn .
oM
The basic tool for proving the decomposition theorem is the Dirichlet integral
on Q%(M), which is defined as the bilinear form

D: Wh2Qk(M) x WH2Q¥(M) — R
D(w,n) =<<dw,dn> + < bw,6n>

If the tangential component tw of w € 2%(M) vanishes on the boundary oM,
then the W2-norm can be estimated by Gaffney’s inequality as

lwlifys < Co(lwllfs +D(w,w)) - (0.9)

In Section 2.2 we study the space H%,(M) of harmonic fields which have a van-
ishing tangential component, and its L2-complement in the space of differential
forms which also obey tw = 0 on M. We denote this complement by H%,(M)®,
and employ functional analytic arguments to show :

e The space H% (M) is finite dimensional.

e The bilinear form D is W!-2-elliptic on the complement H% (M)®.
e For each k-form 7 € H% (M)®, there exists a unique element ¢p € H%(M)®
— called the Dirichlet potential of 7 — such that

<né>=D(pp,E) VE€Q (M) withté=0 . (0.10)

By applying Green’s formula to (0.10), the Dirichlet potential #p becomes a weak
solution of the elliptic boundary value problem (0.8). Correspondingly we can
construct a Neumann potential ¢y, obeying the boundary condition n¢y = 0.

In Section 2.3 we consider the regularity of these solutions. The problem (0.8)
is not covered by standard results for systems of boundary value problems, as e.g.
presented in Agmon, Douglas and Nirenberg [64]. Therefore we give an explicit
proof, to establish ¢p also as a strong solution. On the basis of this, the general
elliptic theory implies the regularity result :

e ¢p is of Sobolev class W*+2? if and only if 7 is of Sobolev class W*?.
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Making use of these preliminary observations, we establish the Hodge-Morrey-
Friedrichs decomposition in Section 2.4. By specifying a Dirichlet potential ¢p
associated to w € 2%(M), the Hodge component da,, € £¥(M) is determined by
a, = 6¢p. Correspondingly, the Hodge component 63, € C*¥(M) is given via
Bw = dén. The proof of the decomposition theorem then splits into 4 steps :

e Orthogonality : The spaces £¥(M), C¥(M) and H*(M) are mutual orthogonal.

e Algebraic decomposition : Each w € L2Q* (M) splits into w=da,, + 68, + Ko,
with Hodge components da, € £¥(M), 68, € C*¥(M), and &, in the L2-

orthogonal complement (£¥(M) & C*(M)) -,
o L2-closedness : The spaces £5(M) and C*¥(M) are closed.

e Harmonic fields : The complement (£¥(M) & CF(M ))'L coincides with the
space H*(M) of harmonic fields.

We furthermore establish regularity results for the decomposition, which follows
as a direct consequence of the ellipticity of the boundary value problem (0.8) for
the Dirichlet potential and the corresponding problem for Neumann potential.

In Section 2.6 we consider — in brevity — the connection between the Hodge-
Morrey-Friedrichs decomposition theorem and cohomology theory. The space
H% (M) is shown to be isomorphic to the k*® relative cohomology H¥(M) of M.
We then can state a generalised version of Bochner’s theorem on ”curvature and
Betti numbers” for d-manifolds.

The reader may have missed — until now — our comments to Sections 1.4 and
2.5. There we study the Hodge-Morrey-Friedrichs theorem in the non-compact
case. In view of applications it is of interest to have access to such results
in particular for exterior domains. The proof of the decomposition theorem,
however, relies on Rellich’s compact embedding theorem for the Sobolev spaces
W12Qk (M) — L2QF(M), which fails, if the volume of M is infinite.

In Section 1.4 the concept of weighted Sobolev spaces is introduced. We restrict
ourselves to G C IR", in order to avoid technical conditions on the geometry
of M. For weighted Sobolev spaces, denoted by W2PQ*(G), a generalisation
of Rellich’s lemma was shown by Lockhart [81]. A weighted generalisation of
Poincaré’s inequality, then allows us to reformulate the estimate (0.9).

The precise formulation of the weighted decomposition result is given in Sec-
tion 2.5. For the proof, one has, roughly spoken, to replace the spaces L2Q*(M)
and W12QF(M) by appropriately weighted Sobolev spaces and repeat the rea-
soning of Sections 2.2 to 2.4. The Hodge-Morrey-Friedrichs decomposition theo-
rem then can be shown for the completion in the L?-norm. Regularity theorems
are given for differential forms of Sobolev class W;"”.

In an appendix to section 2, which was contributed by J. Wenzelburger, the
behaviour of the decomposition is studied with respect to the deformation of the
Riemannian structure on M. It is shown that the decomposition results depend
smoothly — in the Frechét sense — on the metric g chosen on the manifold M.
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Finally, Chapter 3 is devoted to the study of boundary value problems for
differential forms, in the spirit indicated in the discussion of our motivating
example (0.1). In Section 3.1 we are concerned with the Dirichlet problem for
the exterior derivative, given by

dw =x onM and tw =ty ondM . (0.11)

We give necessary and sufficient integrability conditions and prove Sobolev es-
timates. In Section 3.2 we generalise that result by considering a corresponding
problem with dw, 6w and tw prescribed. As another variant, we study in Section
3.3 the exterior derivative under general inhomogeneous boundary condition, i.e.
the problem

dw = x onM and wloM = Y|lom on M . (0.12)

This problem — which is the general version of the example (0.1) — is solvable
under the same integrability conditions as imposed on the Dirichlet problem
(0.11). One should note that this boundary value problem is not elliptic (!), so
standard techniques do not apply.

Section 3.4 is devoted to studying the space of harmonic fields from the point of
view of boundary value problems. We show that H*(M) is infinite dimensional,
and differs — if M # @ — from the space of harmonic forms 8 € Q*(M), which
are characterised by A8 = 0. Furthermore we consider the Poisson equation
Aw = pon N¥(M) under various boundary conditions. Finally, in Section 3.5,
we establish the equivalence between problems for differential forms (of degree
1) and corresponding problems for vector fields.
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Chapter 1

Analysis of Differential Forms

1.1 Manifolds with boundary

The de Rham-Hodge theory of differential forms and the theory of elliptic boundary value
problems rest upon on the interaction between the global topological structure of the spaces
under consideration and local analytic properties of the prescribed data. The natural framework
to describe such an interaction is the concept of manifolds with boundary. These look locally
like a finite dimensional half space Ri and at the same time include all global topological

information about the domain in view.

In order to give a proper definition, let u # 0 be a fixed vector in IR™ and define
the corresponding real half space by Rj, = {x € R"| <x,u> > 0}. A map
h: R}, — IR"™ is defined to be differentiable, if it has a differentiable extension
h : R* — IR™. The derivative Dh of h (in boundary points) is correspondingly
defined by the restriction of Dh to the half space IR;. Obviously this definition
is independent of the choice of the extension. Referring, with respect to the
analytic properties of the half space and the fundamental topological concepts,
to the literature (e.g. Abraham, Marsden and Ratiu [88], Warner [83], Hirsch
[76] or Lang [72]), we can establish the concept of manifolds with boundary.

Definition 1.1.1

Let M be a paracompact topological Hausdorff space and (U,),c4 an open
(locally finite) covering of M. A homeomorphism

$a : Uyg — Ry, a€ A

onto an open subset in IR} is called a chart. The corresponding atlas on M,
AM = (Ua, ¥a)qca, is called of class C*, if for all a,b € A the transformations

prow;! : wa(UaNUy) = R"

are C*-mapping from R}, to R™. Then M (or more explicitly the pair (M, Ay))
defines an n-dimensional C*-manifold with boundary. The boundary of M is

OM := {p e M| 3 chart ¢, with < @a(p),us >=0} . (1.1)



