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Preface

Von Laue’s discovery of the diffraction of x-rays by crystals, in
1912, was the key to the solid state revolution of our times, a
revolution which has led to the development of powerful techniques
for the determination of structure on the molecular and atomic
scale. In the ensuing 78 years, crystallography has branched into a
large number of subspecialties, and its tools have become central to
a large number of fields. Not only mineralogy and crystallography,
but also physics, chemistry, biology, materials science, medicine
and other branches of science have been fundamentally changed
by the availability and power of crystallographic techniques.

Most of the conceptual tools for the classification of crystal
structure—the theory of lattices and space groups—had been de-
veloped in the nineteenth century, but in the absence of any obvious
use for them they were put on the shelf to await their time should
it ever come. By 1915 the need for those tools was evident, and so
was the need to present them in a form useful to practioners of the
new art. Thus was born the series of volumes which became the
International Tables for X-Ray Crystallography. Over the years,
the International Union of Crystallography has revised the Tables
to keep pace with the needs of workers in a growing number of
fields whose scientific backgrounds are less and less coherent. This
has meant that not only must more data be supplied, but also more
detailed discussions of interpretation of these data are necessary.
The most recent edition of these tables is a multi-volume set, of
which only volume A, on crystal symmetry, has appeared so far.
This volume alone is over 700 pages long.

Unfortunately, despite the extensive discussions of interpreta-
tion that they contain, there is an inverse relation between the size
of the Tables and the ease of deciphering them. Several companion
volumes have been written which explain how to use the tables, but
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there is no volume devoted solely to the simple and elegant math-
ematical ideas which underly them. As the computer increasingly
comes to dominate the practice of crystallography, these simple
ideas are in danger of being forgotten, or never even being learned,
by the crystallographic community.

For many years I have lamented this gap, especially when asked
by mathematicians and scientists to recommend an introductory
account of mathematical crystallography. An invitation in 1988
from Dan Shechtman of the Department of Materials Engineering
of the Technion, in Haifa, Israel to give a series of six lectures on
this subject (including a lesson on how to decipher the Tables)
gave me an opportunity to try to remedy this situation. At the
same time, it was an opportunity to explain some of the ways in
which new developments in crystallography, such as the discovery
of quasicrystals by Shechtman, are stimulating a reexamination of
the mathematical foundations on which the Tables rest.

In trying to transform these lectures to the printed word, I have
resisted the temptation (never very strong) to write a textbook
with proofs and exercises. Detailed, rigorous and sometimes excel-
lent accounts of most of the topics I discuss can be found in the
literature; what is missing is an overview. My intent has been to
write an account of this overview for the armchair reader, not the
reader at a desk with pencil and paper and maybe a copy of the
Tables too. I doubt that I have succeeded in making it as simple
as that, but at least I have avoided giving proofs unless they are
especially instructive, and have avoided assigning exercises unless
they really look like fun (answers can be found in Appendix 2).
Armchair mathematics is like armchair travelling. It is not the
real thing, but it can be enjoyable, and it can help you decide if
you want to go there to see for yourself. Just as the articles in the
New York Times Sunday Travel Section contain a coda entitled
‘Getting There’ with lists of air service, hotels, and so forth, this
book concludes with an annotated bibliography for further study.

The basic ideas of the classical theory are quite simple. The
situation is much like trigonometry: despite the plethora of tables,
formulas, and graphs, all of trigonometry is really an elaboration
of the Pythagorean theorem, and once you appreciate this fact, the
main ideas of the subject are very easy to grasp. Nevertheless, as [
learned long ago when I tried unsuccessfuly to teach trigonometry
to my younger brother in one hour (to save him from failing a
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calculus course), some mathematical sophistication is necessary in
order to comprehend and make use of this simplicity. Thus I will
assumne that the reader has taken an introductory course in linear
algebra. I do not assume prior acquaintance with the idea of a
group.

My choice of topics has been guided primarily by the goal of
making the Tables intelligible in the span of a few lectures. I have
also presented some material that is especially beautiful as well as
useful but which is not easy to find elsewhere, including Klein’s
enumeration of the finite rotation groups of the sphere, Delone’s
derivation of the Voronoi cells of the three-dimensional lattices,
and de Bruijn’s construction of the Penrose tiles.

Mathematical crystallography has a rich and interesting history
that deserves a book of its own. Historical remarks are clustered
in several places throughout this book; all the people who appear
in them are identified in Appendix 1.

It is a pleasure to thank the faculty and staff of the Department
of Materials Engineering of the Technion for their hospitality. I
am also indebted to the members of the Mathematics Department
of the University of the Philippines at Diliman, Quezon City, for
their hospitality and interest in mathematical crystallography; it
was there, in 1987, that the need for a monograph like the present
one first became clear to me. I am grateful to Richard Roth, Pe-
ter Engel, Louis Michel, Ray Streater, Doris Schattschneider and
Richard Ghez for their very helpful comments on the manuscript.
Thanks also are due to Richard Ghez and Jim Revill for their en-
thusiasm and encouragement, and to Jen Halford for her skilful
editing and her patience.

Marjorie Senechal
August 1990



Contents

Preface

1 Mathematical crystals
1.1 What is mathematical crystallography?
1.2 Un peu d’histoire
1.3 Models of crystal structure

2 Symmetry and point groups
2.1 Introduction
2.2 Symmetries and isometries
2.3 Symmetry groups
2.4 Point groups in 3-space

3 Lattices
3.1 Lattices and symmetry
3.2 Umit cells
3.3 The Voronoi cell
3.4 The dual lattice

4 The space groups
4.1 Chronology
4.2 The orbits of a space group
4.3 Cosets and normal subgroups
4.4 Constructing the space groups

4.5 Symmorphic and nonsymmorphic space groups

4.6 Subgroups of space groups

5 Color symmetry
5.1 Why colors?
5.2 Coloring finite figures

1X

QO B = =

20
23
27
31

39
39
42
43
50

59
59
61
62
68
70
71

74
74
77



Viil Contents

5.3 Coloring infinite patterns 83
5.4 Color groups, color symmetry, and colorings 85
6 Classification, and the International Tables 88
6.1 The classification problem 88
6.2 Why symmetry? 90
6.3 Crystallographic classifications 91
6.4 Translating a page of the International Tables 97
7 N-dimensional crystallography 103
7.1 The view from N-dimensional space 103
7.2 Projections 105
7.3 The Penrose tiles 108
7.4 De Bruijn’s interpretation 111
7.5 Generalized crystallography 115
Appendices 121
Further reading 129

Index 135



Chapter1

Mathematical Crystals

1.1 What is mathematical crystallography?

Many branches of the science of crystals make extensive use of
mathematics. For example, mathematical analysis is central to
the study of crystal optics and to the interpretation of diffraction
patterns. However, for rather obscure historical reasons, mathe-
matical crystallography usually means the study of spatial patterns
that have properties that make them appropriate models for crys-
tal structure; it has sought to classify both atomic patterns and
external forms, to show how they are related to one another, and
to predict some of the properties that crystals with these patterns
and forms must have.

By 1980, this program seemed to have been achieved. During
the nineteenth century, a theory of crystal structure as a modular,
repeating pattern had slowly emerged; by 1890 the correspond-
ing catalogue of basic crystalline atomic patterns was complete.
Within 25 years, this catalogue, in the form of tables, was widely
used in the new field of x-ray crystallography; by the early 1980’s,
the underlying mathematical ideas had been reformulated and rein-
terpreted in many different ways and the results stored in large
computers. The relation of these patterns to the shapes and prop-
erties of ideal crystals was, by that time, also fairly clear. Although
many intriguing problems remained unsolved on the theoretical
level, it was not anticipated that their solutions would bring with
them any major surprises.

But in science there are always surprises. The discovery, in
1984, of crystals which break the symmetry ‘rules’ of crystallogra-
phy has prompted a reexamination of the role of crystallography’s
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most treasured theoretical support, the symmetry group. This
will proceed whatever structure quasicrystals are eventually deter-
mined to have (as of this writing, August 1990, their structure has
not yet been completely deciphered). One direction this reexami-
nation is taking is intensive research in the theory of nonperiodic
patterns. If this theory continues to develop along useful lines, the
mathematical crystallography of tomorrow may be very different
from today’s.

Before we try to see where the subject is going, however, it is
helpful to see what it is now and where it has been. Our approach
to history is inspired by the Guides Michelin.

1.2 Un peu d’histoire

In his thoughtful and influential monograph ‘Order and Life’, J
Needham pointed out that ‘form is simply a short time-slice of a
single spatio-temporal entity’. Needham was speaking of biological
form, but the remark is equally applicable to the conceptual forms,
or paradigms, which guide our scientific thinking. For example, if
you open any contemporary textbook on crystallography, you will
find a sentence something like this (see Figure 1.1):

The regular shape of crystals suggests that within a crystal
atomic building units, congruent to each other, are regularly
arranged.

Figure 1.1. What sort of structure do these regular shapes suggest?
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However, even a casual study of the history of crystallography
shows that the shapes of crystals did not necessarily suggest any-
thing of the sort to our early predecessors. True, Plato had postu-
lated geometric units as the basic forms of the four elements, earth,
air, fire and water: to these elements he assigned the cube, the reg-
ular octahedron, the regular tetrahedron, and the regular icosahe-
dron (Figure 1.2). These assignments were not entirely arbitrary.
In the first place, the octahedron, tetrahedron, and icosahedron
are made of identical, equilateral triangles; Plato envisioned that
these triangles could be disassociated and regrouped. This would
explain, for example, the transition from liquid to steam that water
undergoes when it receives a sufficiently large dose of fire. And the
assignment of shapes also made some sense: the cube was appro-
priate for earth particles, since earth sits solidly; the tetrahedron,
which has the sharpest corners of the four, was appropriate for
fire particles. The octahedron, nice and light, was a good choice
for air, while the icosahedron, which is almost spherical, was just
the particle for fluids. (Even today it is argued that icosahedral
groupings of molecules are fundamental for the structure of liquids
and their solid state counterparts, the glasses.)

Figure 1.2. Plato assumed that the basic particles of earth, air, fire
and water had the forms of regular polyhedra. From Beck, Bleicher, and
Crowe, Ezcursions into Mathematics, 1969. Reproduced by permission
of Worth Publishers, New York.

Nevertheless, Plato’s intriguing hypothesis was persuasively re-
futed by Aristotle on the grounds that not all of these units could
fill space. According to Aristotle, a particulate theory of matter
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could only be valid if the units of which matter was composed
filled all of space without gaps, because vacua do not exist. This
argument, together with the apparent inability of any space-filling
model to explain motion, contributed to the demise of this early,
more or less atomic, theory of matter.

For centuries thereafter, atomic theory lay dormant, for religious
as well as scientific reasons. Instead of focusing on shape, sub-
sequent classification schemes for crystals (until the seventeenth
century) included ‘virtues’ such as talismanic and healing powers,
and the imagined ‘imitative’ characteristics of surface markings.
The annals of seventeenth century science are replete with debates
about the origin of crystals and fossils (which were not always dis-
tinguished). Were they ‘sports of nature’? Were they permanently
frozen ice? Some argued that crystals were of organic origin. The
fact that crystals grow, and in some cases have visible ‘veins’, was
seen by many as evidence that crystal structure is analogous to the
structure of plants. As late as the eighteenth century, the great
botanist C Linnaeus attempted to extend his successful classifi-
cation scheme for plants to the mineral kingdom. His distinction
between mother and father stones strikes our ears as somewhat
curious.

The idea that crystals are modular structures—that is, that
they can be represented by aggregations of spheres or polyhedral
building blocks (the word polyhedron means ‘many sides’), was
proposed early in the seventeenth century by J Kepler, and again
some years later by R Hooke (Figure 1.3) and by N Steno.

Their ideas finally came to fruition early in the nineteenth cen-
tury in the work of R-J Haliy; perhaps not coincidentally, this was
also the time of the rebirth of atomic theory. A highly debatable
legend has it that this French abbé accidentally dropped a calcite
specimen belonging to a friend; to his dismay, the crystal shattered
into tiny pieces. But genius turned disaster into triumph: Haiiy
noted that the tiny pieces all had the same shape, perfect, identical
rhombohedra or groupings of these rhombohedra. This suggested
to him that crystals are arrays of subvisible blocks whose shapes
were specific to the type of crystal (Figure 1.4).

Haitly showed how the same blocks could be used to construct
different shapes; in this way he was able to account for the puzzling
fact that crystals of the same substance sometimes have different
external forms (Figure 1.5).
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I could make probable,

arise onely from three or four several

‘Had I time and opportunity,
positions of Globular particles.’—Hooke, Micrographia, 1665.

that all these regular Figures ...

Figure 1.3.
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Figure 1.4. Haiiy’s idea of crystal structure. From Traité de Crystal-
lographie, 1822.

A good theory restricts: it must explain why, among all possible
phenomena, only a certain few occur. Not every polyhedron occurs
as a crystal form; it is necessary to explain why the others do not.
Haliy realized that his building-block theory had implications for
crystal symmetry as the overall shape of a crystal cannot have
symmetry which is impossible for its pattern of constituent parts.
Like Plato, though for different reasons, Haliy too believed that
it is possible to group the basic particles of a crystal into shapes
that fill space. This is a severe restriction. For example, among
the regular polygons only triangles, squares, and hexagons fill the
plane (Figure 1.6); pentagons and polygons with more than six
sides do not. In particular, it follows that a repeating pattern of
congruent blocks (e.g., a crystal) cannot have five-fold symmetry.
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Figure 1.5. Five drawings of pyrite crystals. From V Goldschmidt,
Atllas der Kristallformen, Carl Winters Universititsbuchhandlung, Hei-
delberg, 1913.
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(A more rigourous argument will be given later in this chapter.) In
three dimensions, the regular icosahedron and dodecahedron have
five-fold symmetry; thus Haiy’s theory predicts that no crystal
can have these shapes. Notice that the dodecahedron in Figure 1.5
is not regular. The 32 classes of symmetry that crystals can have
were first enumerated in 1826 by M Frankenheim.
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Figure 1.6. Among the regular polygons only triangles, squares, and
hexagons fill the plane.

Only after Haily did it become ‘evident’ that the regularity of
crystal form ‘suggests’ the regularity of crystal structure. This sug-
gestion generated a great deal of research on ‘regular systems of



