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PREFACE

-

This series of conferences on the use of mathematical methods in physics has
evolved over the seventeen years of its existence according to those physical theories
most in vogue, and has consequently emphasized those mathematical methods of
most value in their elucidation. Originally concentrating on differential geometric
methods, aigebraic results have also played a prominent role. Of particular interest
in the present XVII Conference is the attention devoted to the so-called Yang-
Baxter Algebra and Quantum Groups; no fewer than 7 of the 32 papers presented
here deal with some aspect of that relatively new topic. Quantum Field Theory,
Gauge Theory and Strings, continue to engage mathematical physicists; other
physical phenomena are represented here, including statistical mechanics and
soliton theory. The presentation of novel mathematical techniques, supermanifolds
and other geometrical methods, auger well for the continued ingenious application
of mathematics to the range of physical phenomena as described in this series of
meetings.

In any conference as homogeneous as this one, there must of necessity be a
large overlap of subject matter. I have more or less arbitrarily grouped the papers
into the following sections —

— Yang-Baxter Algebra and Quantum Groups

— Quantum Field Theories ‘

— Gauge Theories and Strings

— Supermanifolds

— Mathematical Techniques

— Specific Physical Problems.
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YANG-BAXTER ALGEBRAS , INTEGRABLE QFT AND CONFORMAL MODELS

H.J. DE VEGA ;
LPTHE, Université Paris VI, Tour 16, 1er. etage, 4, Place Jussieu, 75230,
PARIS Cedex 05, FRANCE.

ABSTRACT:

Integrable massive QFT and conformal invariant models follow from lattice
integrable models in suitable scaling limits . There are Yang-Baxter
algebras (YBA) associated to all these two-dimensional models. These YBA
allow to construct the exact solution (spectrum, S-matrix, form-factors,...)
for this class of theories.Braid groups and quantum groups are derived as
limiting cases of YBA when 6 (spectral parameter) goes to oo.

Let us start by defining a Yang-Baxter algebra (YBA). We consider a set of
lines of different types . A vector space V| (le J ) is associated to each

type of line. These lines may intersect and a YB operator is associated to
each intersection

oL L

eib'< = Ml V)0 )k, (M

- ¢

Here the lines and ~~~~~mmn are associated to the vector spaces &
and v respectively. T( 6 ) is an operator acting on this couple of spaces ,
that is on & ® V" The indices a,b(1<ab <dm& ) and o,f ( 1< a,p< dimV’)
label the basis vectors (states) in & and V" respectively. The complex

variable 6 is called spectral parameter and describes geometrically the
angle between the lines.
The operators T( 6 ) fulfil a YBA when the following relation holds

TKND(e-0) TKI)(p) ThI(e) = T(d)(e) TKI) (o) T(KN(0-0)
()

v

for any choice of vector spaces ‘V’L Yygand Yk (I, Jand Ke 3) and any
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value of 8, 8 ¢ C. Graphically eq.(2) reads

Here, we use the convention that one must sum over all states in internal
lines. That is lines linking two intersections. The graphical meaning of the
YBA is clear : one can push any line through the intersection of two others
keeping the value of the expression invariant. This invariance holds
provided all angles 6 are kept fixed under the displacement of the lines.
Eq.(4) or (5) are called usually Yang-Baxter equation (YBE). It has different
physical meanings in different contexts (see below).

The "diagonal®™ generators T(L) (6) are R-matrices. The R-matrix
associated with the lowest dimensional V!is the fundamental one. Usually,
the whole set of T('-J)(e) can be constructed once the fundamental
R-matrix is found. Therefore this fundamental R-matrix, solution of eq.(2)
for the lowest dimensional space | = J = K, defines the YB algebra.

The YBA (4) takes a particularly simple form when two vector spaces are
identical. Thatis V' =V =& and Vj = V in eq.(4). One finds

R(e-0)[T(8)e T(6')] = [T(6')e T(8)]R(6-6") (4)

where R = T(#.8) and T = T(&£.9") and we used the tensor product notation
(A®B),p,0d = Az Bog - In ©q.(4) there is an operational product of the T's in
the space V" More expiicitly , eq.(4) reads

Rapkl(0-6") Tec(0) Tog(®') = Tam(8') Tpn(®) Reg™M(0-0") (5).

The R-matrix (with components ° Rgp cd ( & - 6 ) for the lowest
dimensional vector space V°;, defines the YB algebra. These c-numbers play
the rcle of "structure constants” and the Ty,(0) that of generators of the YB
algebra.lt must be noticed that the YB algebras are not in general Lie
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algebras but Hopf algebras (see below and ref.[1]). In summary & YB algebra
is a set of operators T(IJ) (6 ) acting on a couple of vector spaces (V! ,
vd ). vl ( v ) stands for the auxiliary space (quantum space = 4°) for this
case. This set of operators is such that the relation (2) holds for any

choice (I,J,K) of vector spaces:
The necessary and sufficient conditions for a YB algebra to be invariant

under a group §j isl2]
[R(B).99® gl = 0 , Vgel. (8)

Here g4 is the representation of g e G acting on &. We find from eqs.(5)-(6)
that both T(¢) and gy T(8) obey the same YBA. Therefore the YBA is
invariant under .

This implies for the generators S of the Lie algebra g and the YB
generators

[1g ©Sq + Sge@1qr , T(6)] =0 (7)

where Sy and Sqp are the representétions of S acting on the spaces &

and YV respectively.in eq.(7) T(6) acts both on the spaces & and V" as an

operator.
The YBA enjoy an invariance under shifts of the spectral parameter.
Namely , if T(8) fulfils the YBE (4), so does T(6 — a) for fixed a

’

R(6-6) [T(8-a) ® T(6'-0a)] = [ T(0'-a) ® T( 6 - o) ] R(8-0) (8)

The fundamental property of the YBA is the reproduction property.Namely,
if t(.s&,‘V')(e) is a YB operator, one can build more general YB operatcrs by
the following rule

dimm
Tab('ﬂ"w()(a) " Za‘,...l,aﬂ_, ‘a,a,(&g"v)(e) ® tapaz(&g"v)(e) ® ...
oty oV - (9)
SR I .

4 z 3 Nt N

After this short introduction to YB algebras (for details see ref.[1]), let
us explain how massive relativistic QFT follow from YB algebras in
appropiate scaling limits.
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In two dimensions, the light-cone approach is the more general and precise
way to construct integrable QFT and conformal invariant theories. One
starts from integrable lattice models like vertex models on a diagonal
lattice. This diagonal lattice is a discretization of Minkowski space-time
in light-cone coordinates X, = X + T . The matrix elements
[Tap(€) 1P (1< a,p<dimd) (10)

are now interpreted as quantum mechanical transition amplitudes for bare
particles propagating to the right or to the left by the bonds at the speed of
light. In the simplest case & = 9°, q = 2 and we interpret these particles
as bare fermions without internal degrees of freedom. The allowed
microscopical amplitudes, assuming a U(1) charge conservation, correspond
to the six-vertex model weights in the statistical mechanical language. We
can organize the microscopic amplitudes at a site into a unitary bare

scatteri matrix:
e c Fa 1 o © ©

0 ¢ b o (11)

Rabw(e) =
0 » ¢ o
a L 0 0o 0 w

We can build now the operators describing the evolution by one Iamce step
in the d'agonal dlrecnons

5 M- 2N
XXX X
v A 2 3 4 s 2-2 3y

2 3 y s 2 .
y >< >< ....... (13)
? \5 ¥ s € 2 YIRS

where the numbers 1, 2, 3,...,2N label the sites.

In this way the massive Thimn? model is constructed both at the bare
and at the renormalizerd levels [3]. The appropiate scaling limits are
defined as a— 0,i0 — oo,

Bare :siny exp(-6]/ a =fixea.
Renormalized : siny exp(- K 8]/ a = fixed (14)

Here a is the lattice spacing , K = 1 / v and 7o is the anisotropy
parameter. The light-cone transfer matrices rigorously define the
Hamiltonian and momentum as



HtP = (2i/a)logUR (0) (15)

Using U and U , the Heisenberg equations of motion are derived in the

lattice and their scaling limit obtained(3]. They lead to the MTM bare
equations providing a precise identification of the fields, the coupling
constant and the mass[3] .The exact spectrum of Ug and U follows from the

usual row-to-row transfer matrices and provides the particle spectrum of
the theory in the renormalized scaling limit (eq. (14)).
Let us say two words about the light cone transfer matrices Ug and U.

The row-to-row inhomogeneous YB generators can be written as (1]
q
Tan(0.@) =D o, t“‘(e—ml ) @ta,az( 8-a,)e .. t"n—tb( 0-a )

q = dim A (18)

where [tah (6 )]1cg =R cabd (6 ) fullfils eq. (2).Eq.(16) also verifies the
YB equation (2). For N = 2 this defines a coproduct of YB generators
providing a Hopf algebra structure. This is a non commutative and non
cocommutative Hopf algebra having in addition an antipode (1.

The row-to-row transfer matrix ©(6) = > , T44( 0] fulfills

[<(6,a ), <(6, g] ] = 0O
thanks to eq.(4).In particular, if we set ;= (-1)i+1 o [3].
u0,0) = U (8) . «(-60)=Ug(o)' (17)

Therefore, the eigenvalue problem for Ug and U reduces to the one for

T(6 ,a) This problem is exactly solved by the Bethe Ansatz. That is,
calling B(6) = Ty2( © ), the eigenvectors read 1]

¥, (61,92,...,6,.) = B(61) B(62) ....B(6,) Q (18)
where Q is the bare (ferroelectric) ground state;

Q=(De (1) e ... e ()

and the complex numbers ©; fulfil the set of equations (Bethe Ansatz egs.)
N r
sh(dp+iv/2)| o -] sh(d =Ry + ) (19)
sh( kj -iy/2 ) k=1sh( Aj- Ak - iy )
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Here A | = -i( 6~ 7 / 2). These y are eigenvectors of S and t( 8 ) with
eigenvalues N/2 - rand A[8)=A,(6) + A_6]respectively, where

r r
A, =a@NT] atei-0) . A =b@N[Jale-6)
j=1 b(6;-6) =1b(6-9) (20)

This is the solution for the six vertex model.Egs.(19) are easily solvable in
the N = < limit by Fourier transform. A method to solve them for finite size
has been given in refs.[6].

The lattice light-cone approach also works for Chiral fermionic models
with Lagrangian

2 o= VI - gy ) ¥ HBY)Kg (21)

where ¥ transforms under‘an irreducible representation of the symmetry
group §, t, are the generators of §j and KaB the Killing form.The equations

of motion for the vector current (conservation and flainess) were derived
for these models as well as their exact particle spectrum in ref. [3]. The
renormalized scaling limit is here 6 — oo, a — 0 with

p=exp(-K6) / a , fixed (22)

where K is 2n/y times the square length of the shortest simple root of [
in the normalization where B( E, ,E _o ) = - 1 . This construction extends to

higher dimensional representations of § yielding the principal chiral model
in the limit of infinite dimension when § = SU(N)[4].

Relativistic QFT arise from all known gapless integrable models. That is
from YB algebras realizations involving trigonometric functions of 6.
Hyperbolic and elliptic YB algebras realizations do not lead to relativistic
QFTIS],

A second scaling limit letting the lattice spacing a — O with fixed 6
yields conformal invariant models provided one starts from a gapless
lattice model.That is, a rational or a trigonometric YB algebra. The finite
size resolution methods for the Bethe Ansatz (BA) equations of the lattice
models [6] give the values of the central charge ¢ and the conformal
weights ( A, A) of operators for a large class of models [6'7].Branching
coefficients can be related to one point functions(8].

Let us briefly siummarize the results. In ali cases , the dominant finite
size corrections to the nth eigenvalue of the vertex mode! transfer matrix
T( 6 ), computed from the BA have the form



