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Preface

Nowadays, developers have to face the proliferation of hardware and software
environments, the increasing demands of the users, the growing number of pro-
grams and the sharing of information, competences and services thanks to the
generalization of data bases and communication networks. A program is no more
a monolithic entity conceived, produced and finalized before being used. A pro-
gram is now seen as an open and adaptive frame, which, for example, can dy-
namically incorporate services not foreseen by the initial designer. These new
needs call for new control structures and program interactions.

Unconventional approaches to programming have long been developed in var-
ious niches and constitute a reservoir of alternative ways to face the programming
languages crisis. New models of programming (e.g., bio-inspired computing, ar-
tificial chemistry, amorphous computing, ...) are also currently experiencing a
renewed period of growth as they face specific needs and new application do-
mains. These approaches provide new abstractions and notations or develop
new ways of interacting with programs. They are implemented by embedding
new sophisticated data structures in a classical programming model (API), by
extending an existing language with new constructs (to handle concurrency, ex-
ceptions, open environments, ...), by conceiving new software life cycles and
program executions (aspect weaving, run-time compilation) or by relying on an
entire new paradigm to specify a computation. They are inspired by theoretical
considerations (e.g., topological, algebraic or logical foundations), driven by the
domain at hand (domain-specific languages like PostScript, musical notation,
animation, signal processing, etc.) or by metaphors taken from various areas
(quantum computing, computing with molecules, information processing in bi-
ological tissues, problem solving from nature, ethological and social modeling).
The practical applications of these new programming paradigms and languages
prompt research into the expressivity, semantics and implementation of pro-
gramming languages and systems architectures, as well as into the algorithmic
complexity and optimization of programs.

The purpose of the workshop was to bring together researchers from the
various communities working on wild and crazy ideas in programming languages
to present their results, to foster fertilization between theory and practice, and
to favor the dissemination and growth of new programming paradigms.

The contributions were split up into five tracks:

— Chemical Computing

— Amorphous Computing
— Bio-inspired Computing
— Autonomic Computing
— Generative Programming



VI Preface

This workshop kept the same informal style of a previous successful meeting
held in 1991 in Le Mont Saint Michel under the title New Directions in High-
Level Parallel Programming Languages. Each track was handled by a well-known
researcher in the concerned area. Each track leader was in charge of inviting
other researchers on his topic and organizing his session. These track leaders
plus the four promoters of this initiative constituted the Program Committee of
the workshop (see below). This volume gathers extended and revised versions of
most of the papers presented at the workshop, including the invited presentation
given by Philippe Jorrand on quantum computing.

On the practical side, several persons contributed to the success of the work-
shop. We offer our sincere thanks to all of them. We are particularly grateful to
Edith Corre and Elisabeth Lebret of IRISA and to Rémi Ronchaud from ERCIM
who were very efficient and professional in the organization. Finally, we address
our sincere acknowledgments to all the participants who, beside the high quality
of their scientific contribution, made the workshop a friendly and unique event.

April 2005 Jean-Pierre Banatre
Pascal Fradet

Jean-Louis Giavitto

Olivier Michel
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From Quantum Physics to Programming Languages:
A Process Algebraic Approach

Philippe Jorrand and Marie Lalire

Leibniz Laboratory, 46 avenue Felix Viallet,
38000 Grenoble, France
{Philippe.Jorrand, Marie.Lalire}@imag.fr

Abstract. Research in quantum computation is looking for the consequences of
having information encoding, processing and communication exploit the laws
of quantum physics, i.e. the laws of the ultimate knowledge that we have, today,
of the foreign world of elementary particles, as described by quantum mechan-
ics. After an introduction to the principles of quantum information processing
and a brief survey of the major breakthroughs brought by the first ten years of
research in this domain, this paper concentrates on a typically “computer sci-
ence” way to reach a deeper understanding of what it means to compute with
quantum resources, namely on the design of programming languages for quan-
tum algorithms and protocols, and on the questions raised by the semantics of
such languages. Special attention is devoted to the process algebraic approach
to such languages, through a presentation of QPAlg, the Quantum Process Al-
gebra which is being designed by the authors.

1 From Quantum Physics to Computation

Information is physical: the laws which govern its encoding, processing and commu-
nication are bound by those of its unavoidably physical incarnation. In today’s infor-
matics, information obeys the laws of Newton’s and Maxwell’s classical physics: this
statement holds all the way from commercial computers down to (up to?) Turing
machines and lambda-calculus. Today’s computation is classical.

Quantum information processing and communication was born some ten years ago,
as a child of two major scientific achievements of the 20" century, namely quantum
physics and information sciences. The driving force of research in quantum computa-
tion 1s that of looking for the consequences of having information encoding, process-
ing and communication based upon the laws of quantum physics, i.e. the ultimate
knowledge that we have, today, of the foreign world of elementary particles, as de-
scribed by quantum mechanics. The principles of quantum information processing are
very briefly introduced in this section. For a more detailed, but still concise and gentle
introduction, see [24]. A pedagogical and rather thorough textbook on quantum com-
puting is [21]. For a dense and theoretically profound presentation, the reader is re-
ferred to [16].

J.-P. Banitre et al. (Eds.): UPP 2004, LNCS 3566, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 P. Jorrand and M. Lalire

1.1 Four Postulates for Computing

Quantum mechanics, which is the mathematical formulation of the laws of quantum
physics, relies on four postulates: (i) the state of a quantum system (i.e. a particle, or a
collection of particles) is a unit element of a Hilbert space, that is a vector of norm 1
in a d-dimensional complex vector space; (ii) the evolution of the state of a closed
quantum system (i.e. not interacting with its -classical- environment) is deterministic,
linear, reversible and characterized by a unitary operator, that is by a dxd unitary
matrix applied to the state vector; (iii) the measurement of a quantum system (i.e. the
observation of a quantum system by its -classical- environment) irreversibly modifies
the state of the system by performing a projection of the state vector onto a probabilis-
tically chosen subspace of the Hilbert space, with renormalization of the resulting
vector, and returns a value (e.g. an integer) to the classical world, which just tells
which subspace was chosen; and (iv) the state space of a quantum system composed
of several quantum subsystems is the tensor product of the state spaces of its compo-
nents (given two vector spaces P and Q of dimensions p and g respectively, their
tensor product is a vector space of dimension pxg).

The question is then: how to take advantage of these postulates to the benefits of
computation? The most widely developed approach to quantum computation exploits
all four postulates in a rather straightforward manner. The elementary physical carrier
of information is a qubit (quantum bit), i.e. a quantum system (electron, photon,
ion, ...) with a 2-dimensional state space (postulate i); the state of a n-qubit register
lives in a 2"-dimensional Hilbert space, the tensor product of n 2-dimensional Hilbert
spaces (postulate iv). Then, by imitating in the quantum world the most traditional
organization of classical computation, quantum computations are considered as com-
prising three steps in sequence: first, preparation of the initial state of a quantum reg-
ister (postulate iii can be used for that, possibly with postulate ii); second, computa-
tion, by means of deterministic unitary transformations of the register state (postulate
ii); and third, output of a result by probabilistic measurement of all or part of the reg-
ister (postulate iii).

1.2 Quantum Ingredients for Information Processing

These postulates and their consequences can be interpreted from a more informational
and computational point of view, thus providing the elementary quantum ingredients
which are at the basis of quantum algorithm design:

Superposition. At any given moment, the state of quantum register of n qubits is a
vector in a 2"-dimensional complex vector space, i.e. a vector with at most 2" non zero
complex components, one for each of the 2" different values on 7 bits: the basis of this
vector space comprises the 2" vectors Ii>, for i in {0,1 }* (li> is Dirac’s notation for
vectors denoting quantum states). This fact is exploited computationally by consider-
ing that this register can actually contain a superposition of all the 2" different values
on n bits, whereas a classical register of n bits may contain only one of these values at
any given moment.
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Quantum Parallelism and Deterministic Computation. Let f be a function from
{0,1}" to {0,1}™ and x be a quantum register of n qubits initialized in a superposition
of all values in {0,1}" (this initialization can be done by one very simple step). Then,
computing f{x) is achieved by a deterministic, linear and unitary operation on the state
of x: because of linearity, a single application of this operation produces all 2" values
of f in a single computation step. Performing this operation for any, possibly non
linear f while obeying the linearity and unitarity laws of the quantum world, requires a
register of n+m qubits formed of the register x, augmented with a register y of m
qubits. Initialy, y is in any arbitray state ls> on m qubits: before the computation of f,
the larger register of n+m qubits contains a superposition of all pairs li,s> for i in
{0,1}". After the computation of f, it contains a superposition of all pairs li, s®f({)> for
i in {0,1}", where @ is bitwise addition modulo 2. It is easy to verify that, for any f,
this operation on a register of n+m qubits is unitary (it is its own inverse). In many
cases, it will be applied with s=0, which results in a superposition of all simpler pairs
li, f@)> for i in {0,1}".

Probabilistic Measurement and Output of a Result. After f has been computed, all
its values f{(i), for i in {0,1}", are superposed in the y part (m qubits) of the register of
n+m qubits, each of these values facing (in the pair lif(i)>) their corresponding i
which is still stored in the unchanged superposition contained in the x part (n qubits)
of that register. Observing the contents of y will return only one value, j, among the
possible values of f. This value is chosen with a probability which depends on f since,
e.g. if f{i)=j for more than one values of i, the probability of obtaining j as a result will
be higher than that of obtaining k if f{i)=k for only one value of I (and the probability
of obtaining [/ if there is no i such that f(i)=/ will of course be 0). This measurement
also causes the superposition in y to be projected onto the 1-dimensional subspace
corresponding to the basis state |/>, i.e. the state of the y part collapses to |j>, which
implies that all other values of f which were previously superposed in y are irreversi-
bly lost.

Interference. Using appropriate unitary operations, the results of the 2" parallel com-
putations of f over its domain of definition can be made to interfere with each other.
Substractive interference will lower the probability of observing some of these value
in y, whereas additive interference will increase the probability of observing other
values and bring it closer to 1. Because of probabilistic measurement, a major aim of
the organization and principles of quantum algorithms will be to assemble the unitary
operations for a given computation in such a way that, when a final measurement is
applied, a relevant result has a high probability to be obtained.

Entangled States. Measuring y after the computation of fis in fact measuring only m
qubits (the y part) among the n+m qubits of a register. The state of this larger register
is a superposition of all pairs i f(i)> for i in {0,1}" (e.g., in this superposition, there is
no pair like 12,/(3)>): this superposition is not a free cross-product of the domain
{0,1}" of f by its image in {0,1}", i.e. there is a strong correlation between the con-
tents of the x and y parts of the register. As a consequence, if measuring the y part
returns a value j, with the state of that part collapsing to the basis state >, the state of
the larger register will itself collapse to a superposition of all remaining pairs li,j>
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such that f(i)=j. This means that, in addition to producing a value j, the measurement
of the y part also causes the state of the x part to collapse to a superposition of all
elements of the £7'(j) subset of the domain of f. This correlation between the x and y
parts of the register is called entanglement: in quantum physics, the state of a system
composed of n sub-systems is not, in general, simply reducible to an n-tuple of the
states of the components of that system. Entanglement has no equivalent in classical
physics and it constitutes the most powerful resource for quantum information proc-
essing and communication.

No-Cloning. A direct consequence of the linearity of all operations that can be ap-
plied to quantum states (a two line trivial proof shows it) is that the state of a qubit a
(this state is in general an arbitrary superposition, i.e. a vector made of a linear com-
bination of the two basis state vectors 10> and |1>), cannot be duplicated and made the
state of another qubit b, unless the state of a is simply either 10> or 11> (i.e. not an
arbitrary superposition). This is true of the state of all quantum systems, including of
course registers of n qubits used during a quantum computation. In programming
terms, this means that the *“value” (the state) of a quantum variable cannot be copied
into another quantum variable.

These basic quantum ingredients and their peculiarities will of course have far
reaching consequences, as soon as algorithm, programming languages and semantic
frameworks incorporate and make use of quantum resources.

2 Quantum Algorithms

Richard Feynman launched in 1982 [10] the idea that computation based upon quan-
tum physics would be exponentially more efficient than based upon classical physics.
Then, after the pioneering insight of David Deutsch in the mid eighties [8], who
showed, by means of a quantum Turing machine, that quantum computing could
indeed not, in general, be simulated in polynomial time by classical computing, it was
ten years before the potential power of quantum computing was demonstrated on
actual computational problems.

2.1 Major Breakthroughs: Quantum Speedups and Teleportation

The first major breakthrough was by Peter Shor [27]: in 1994, he published a quantum
algorithm operating in polynomial time (O(log’N)) for factoring an integer N, whereas
the best classical algorithm is exponential. Two years later, Lov Grover [13] pub-
lished a quantum algorithm for searching an unordered database of size N, which
achieves a quadratic acceleration (it operates in O(N'")) when compared with classi-
cal algorithms for the same problem (in O(N)). Shor’s algorithm relies on a known
reduction of the problem of factoring to that of finding the order of a group, or the
period of a function: then, since order finding can be achieved by a Fourier Trans-
form, the key of Shor’s algorithm is a Quantum Fourier Transform, which is indeed
exponentially more efficient than FFT, thanks to quantum parallelism, entanglement
and tensor product. Grover’s algorithm relies upon a very subtle use of interference,
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now known as amplitude amplification, which performs a stepwise increase of the
probability of measuring a relevant item in the database, and which brings this prob-
ability very close to one after N steps.

Another major result, by Charles Bennet and others in 1993 [3], was the design of
theoretical principles leading to a quantum teleportation protocol, which takes advan-
tage of entanglement and of probabilistic measurement: the state of a quantum system
a (e.g. a qubit) localized at A’s place can be assigned, after having been measured,
thus destroyed, to another quantum system b (e.g. another qubit), localized at B’s
place, without the state of a being known neither by A nor by B, and without neither
a, b nor any other quantum system being moved along a trajectory between A and B.
It is important to notice that this is not in contradiction with no-cloning: there is still
only one instance of the teleported state, whereas cloning would mean that there coex-
ist one original and one copy.

Since then, these results have been generalized and extended to related classes of
problems. Shor’s algorithm solves an instance of the hidden subgroup problem [19]
for abelian groups and a few extensions to non-abelian cases have been designed. In
addition to Fourier Transform, order finding and amplitude amplification, other can-
didates to the status of higher level building blocks for quantum algorithmics have
emerged, such as quantum random walks on graphs [15]. Principles for distributed
quantum computing have also been studied and successfully applied to a few classes
of problems. Very recently, on the basis of amplitude amplification, quadratic and
other quantum speedups have been found for several problems on graphs, such as
connectivity, minimum spanning tree and single source shortest paths [9].

Teleportation also has been generalized. The measurement used in its original for-
mulation was such that the state eventually obtained for b was the same as the state
initially held by a (up to a correcting operation which still had to be applied, depend-
ing on the probabilistic outcome of that measurement). By changing the way the
measurement is done (in fact, by appropriately rotating the basis upon which the
measurement of a will project the state of a), it has been found that the state tele-
ported to b could be not the state initially held by a, but that state to which a rotation,
i.e. a unitary operation has been applied. In other words, entanglement and measure-
ment, i.e. the resources needed by teleportation, can be used to simulate computations
by unitary tranformations. This has given rise to a whole new direction of research in
quantum computation, namely measurement-based quantum computation [14,18,23].

2.2 No Quantum Computation Without Classical Control

There is an implicit, but obvious and ever present invariant in all these different ways
of organizing quantum computations and quantum algorithms. Quantum computations
operate in the quantum world, which is a foreign and unknowable world. No one in
the classical world will ever know what the superposition state of an arbitrary qubit is,
the only information one can get is 0 or 1, through measurement, i.e. the classical
outcome of a probabilistic projection of the qubit state vector onto 10> or 11>: if one
gets 10>, the only actual information which is provided about the state before meas-
urement is that it was not /1>, because 10> and 11> are orthogonal vectors. Then, for



