Hot Topics

LNCS 3566

International Workshop UPP 2004
Le Mont Saint Michel, France, September 2004
Revised Selected and Invited Papers

Jean-Pierre Banatre Pascal Fradet

bea{ Jean-Louis Giavitto Olivier Michel (Eds.)

Unconventional
Programming Paradigms

International Workshop UPP 2004
Le Mont Saint Michel, France, September 15-17, 2004
Revised Selected and Invited Papers

L

E200501631

@ Springer

Volume Editors

Jean-Pierre Banatre

Université de Rennes I and INRIA/IRISA

Campus de Beaulieu, 35042 Rennes Cedex, France
E-mail: jpbanatre @inria.fr

Pascal Fradet

INRIA Rhéne-Alpes

655 av. de I’Europe, 38330 Montbonnot, France
E-mail: Pascal.Fradet@inria.fr

Jean-Louis Giavitto

LaMI/Université d’Evry Val d’Essonne

Tour Evry 2, GENOPOLE, 523 Place des terrasses de 1’agora, 91000 Evry, France
E-mail: giavitto@lami.univ-evry.fr

Olivier Michel

LaMI/Université d’Evry Val d’Essonne

Cours Monseigneur Romero, 91025 Evry Cedex, France
E-mail: michel @lami.univ-evry.fr

Library of Congress Control Number: 2005928846

CR Subject Classification (1998): F.1, D.1, D.3, E3, F4

ISSN 0302-9743
ISBN-10 3-540-27884-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27884-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11527800 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Boérd

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler ’

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3566

Preface

Nowadays, developers have to face the proliferation of hardware and software
environments, the increasing demands of the users, the growing number of pro-
grams and the sharing of information, competences and services thanks to the
generalization of data bases and communication networks. A program is no more
a monolithic entity conceived, produced and finalized before being used. A pro-
gram is now seen as an open and adaptive frame, which, for example, can dy-
namically incorporate services not foreseen by the initial designer. These new
needs call for new control structures and program interactions.

Unconventional approaches to programming have long been developed in var-
ious niches and constitute a reservoir of alternative ways to face the programming
languages crisis. New models of programming (e.g., bio-inspired computing, ar-
tificial chemistry, amorphous computing, ...) are also currently experiencing a
renewed period of growth as they face specific needs and new application do-
mains. These approaches provide new abstractions and notations or develop
new ways of interacting with programs. They are implemented by embedding
new sophisticated data structures in a classical programming model (API), by
extending an existing language with new constructs (to handle concurrency, ex-
ceptions, open environments, ...), by conceiving new software life cycles and
program executions (aspect weaving, run-time compilation) or by relying on an
entire new paradigm to specify a computation. They are inspired by theoretical
considerations (e.g., topological, algebraic or logical foundations), driven by the
domain at hand (domain-specific languages like PostScript, musical notation,
animation, signal processing, etc.) or by metaphors taken from various areas
(quantum computing, computing with molecules, information processing in bi-
ological tissues, problem solving from nature, ethological and social modeling).
The practical applications of these new programming paradigms and languages
prompt research into the expressivity, semantics and implementation of pro-
gramming languages and systems architectures, as well as into the algorithmic
complexity and optimization of programs.

The purpose of the workshop was to bring together researchers from the
various communities working on wild and crazy ideas in programming languages
to present their results, to foster fertilization between theory and practice, and
to favor the dissemination and growth of new programming paradigms.

The contributions were split up into five tracks:

— Chemical Computing

— Amorphous Computing
— Bio-inspired Computing
— Autonomic Computing
— Generative Programming

VI Preface

This workshop kept the same informal style of a previous successful meeting
held in 1991 in Le Mont Saint Michel under the title New Directions in High-
Level Parallel Programming Languages. Each track was handled by a well-known
researcher in the concerned area. Each track leader was in charge of inviting
other researchers on his topic and organizing his session. These track leaders
plus the four promoters of this initiative constituted the Program Committee of
the workshop (see below). This volume gathers extended and revised versions of
most of the papers presented at the workshop, including the invited presentation
given by Philippe Jorrand on quantum computing.

On the practical side, several persons contributed to the success of the work-
shop. We offer our sincere thanks to all of them. We are particularly grateful to
Edith Corre and Elisabeth Lebret of IRISA and to Rémi Ronchaud from ERCIM
who were very efficient and professional in the organization. Finally, we address
our sincere acknowledgments to all the participants who, beside the high quality
of their scientific contribution, made the workshop a friendly and unique event.

April 2005 Jean-Pierre Banatre
Pascal Fradet

Jean-Louis Giavitto

Olivier Michel

Organization

The workshop was jointly supported by the European Commission’s Information
Society Technologies Programme, Future and Emerging Technologies Activity,
and the US National Science Foundation, Directorate for Computer and Infor-
mation Science and Engineering. This workshop is part of a series of strategic
workshops that identify key research challenges and opportunities in informa-
tion technology. It was organized by ERCIM (European Research Consortium
for Informatics and Mathematics) and received additional support from INRIA,
Université d’Evry Val d’Essonne, Université de Rennes 1, and Microsoft Research.

Program Committee

Organizing Committee

Jean-Pierre Banatre Université de Rennes 1, and INRIA /IRISA, France
Pascal Fradet INRIA Rhéne-Alpes, France

Jean-Louis Giavitto LaMI/Université d’Evry Val d’Essonne, France
Olivier Michel LaMI/Université d’Evry Val d’Essonne, France

Track Leaders

Pierre Cointe Ecole des Mines de Nantes, France
Generative Programming

Daniel Coore University of West Indies, Jamaica
Amorphous Computing

Peter Dittrich Friedrich Schiller University Jena, Germany
Chemical Computing

Manish Parashar Rutgers, The State University of New Jersey, USA
Autonomic Computing

Gheorghe Paun Institute of Mathematics of the Romanian Academy,
Romania

Bio-inspired Computing

Lecture Notes in Computer Science

For information about Vols. 1-3492

please contact your bookseller or Springer

Vol. 3626: B. Ganter, G. Stumme, R. Wille (Eds.), Formal
Concept Analysis. X, 349 pages. 2005. (Subseries LNAI).

Vol. 3596: F. Dau, M.-L. Mugnier, G. Stumme (Eds.),
Conceptual Structures: Common Semantics for Sharing
Knowledge. XI, 467 pages. 2005. (Subseries LNAI).

Vol. 3587: P. Perner, A. Imiya (Eds.), Machine Learning
and Data Mining in Pattern Recognition. X VII, 695 pages.
2005. (Subseries LNAI).

Vol. 3582: J. Fitzgerald, I.J. Hayes, A. Tarlecki (Eds.), FM
2005: Formal Methods. XIV, 558 pages. 2005.

Vol. 3580: L. Caires, G.F. Italiano, L. Monteiro, C.
Palamidessi, M. Yung (Eds.), Automata, Languages and
Programming. XXV, 1477 pages. 2005.

Vol. 3578: M. Gallagher, J. Hogan, F. Maire (Eds.), Intelli-
gent Data Engineering and Automated Learning - IDEAL
2005. XVI, 599 pages. 2005.

Vol. 3576: K. Etessami, S.K. Rajamani (Eds.), Computer
Aided Verification. XV, 564 pages. 2005.

Vol. 3575: S. Wermter, G. Palm, M. Elshaw (Eds.),
Biomimetic Neural Learning for Intelligent Robots. IX,
383 pages. 2005. (Subseries LNAI).

Vol. 3574: C. Boyd, J.M. Gonzilez Nieto (Eds.), Informa-
tion Security and Privacy. XIII, 586 pages. 2005.

Vol. 3573: S. Etalle (Ed.), Logic Based Program Synthesis
and Transformation. VIII, 279 pages. 2005.

Vol. 3572: C. De Felice, A. Restivo (Eds.), Developments
in Language Theory. XI, 409 pages. 2005.

Vol. 3571: L. Godo (Ed.), Symbolic and Quantitative
Approaches to-Reasoning with Uncertainty. XVI, 1028
pages. 2005. (Subseries LNAI).

Vol. 3570: A. S. Patrick, M. Yung (Eds.), Financial Cryp-
tography and Data Security. XII, 376 pages. 2005.

Vol. 3569: E. Bacchus, T. Walsh (Eds.), Theory and Ap-
plications of Satisfiability Testing. XII, 492 pages. 2005.

Vol. 3568: W.K. Leow, M.S. Lew, T.-S. Chua, W.-Y.Ma, L.
Chaisorn, E.M. Bakker (Eds.), Image and Video Retrieval.
XVII, 672 pages. 2005.

Vol. 3567: M. Jackson, D. Nelson, S. Stirk (Eds.),
Database: Enterprise, Skills and Innovation. XII, 185
pages. 2005.

Vol. 3566: J.-P. Banatre, P. Fradet, J.-L. Giavitto, O.
Michel (Eds.), Unconventional Programming Paradigms.
XI, 367 pages. 2005.

Vol. 3565: G.E. Christensen, M. Sonka (Eds.), Information
Processing in Medical Imaging. XXI, 777 pages. 2005.

Vol. 3564: N. Eisinger, J. Matuszysiski (Eds.), Reasoning
Web. IX, 319 pages. 2005.

Vol. 3562: J. Mira, J.R. Alvarez (Eds.), Artificial Intelli-
gence and Knowledge Engineering Applications: A Bioin-
spired Approach, Part II. XXIV, 636 pages. 2005.

Vol. 3561: J. Mira, J.R. Alvarez (Eds.), Mechanisms, Sym-
bols, and Models Underlying Cognition, Part 1. XXIV, 532
pages. 2005.

Vol. 3560: V.K. Prasanna, S. Iyengar, P.G. Spirakis, M.
Welsh (Eds.), Distributed Computing in Sensor Systems.
XV, 423 pages. 2005.

Vol. 3559: P. Auer, R. Meir (Eds.), Learning Theory. XI,
692 pages. 2005. (Subseries LNAI).

Vol. 3558: V. Torra, Y. Narukawa, S. Miyamoto (Eds.),
Modeling Decisions for Artificial Intelligence. XII, 470
pages. 2005. (Subseries LNAI).

Vol. 3557: H. Gilbert, H. Handschuh (Eds.), Fast Software
Encryption. XI, 443 pages. 2005.

Vol. 3556: H. Baumeister, M. Marchesi, M. Holcombe
(Eds.), Extreme Programming and Agile Processes in
Software Engineering. XIV, 332 pages. 2005.

Vol. 3555: T. Vardanega, A. Wellings (Eds.), Reliable Soft-
ware Technology — Ada-Europe 2005. XV, 273 pages.
2005.

Vol. 3554: A. Dey, B. Kokinov, D. Leake, R. Turner (Eds.),
Modeling and Using Context. XIV, 572 pages. 2005. (Sub-
series LNAI).

Vol. 3553: T.D. Hamildinen, A.D. Pimentel, J. Takala, S.
Vassiliadis (Eds.), Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation. XV, 476 pages. 2005.

Vol. 3552: H. de Meer, N. Bhatti (Eds.), Quality of Service
—IWQoS 2005. XVIII, 400 pages. 2005.

Vol. 3551: T. Hérder, W. Lehner (Eds.), Data Management
in a Connected World. XIX, 371 pages. 2005.

Vol. 3548: K. Julisch, C. Kruegel (Eds.), Intrusion and
Malware Detection and Vulnerability Assessment. X, 241
pages. 2005.

Vol. 3547: F. Bomarius, S. Komi-Sirvié (Eds.), Product
Focused Software Process Improvement. XIII, 588 pages.
2005.

Vol. 3546: T. Kanade, A. Jain, N.K. Ratha (Eds.), Audio-
and Video-Based Biometric Person Authentication. XX,
1134 pages. 2005.

Vol. 3543: L. Kutvonen, N. Alonistioti (Eds.), Distributed
Applications and Interoperable Systems. XI, 235 pages.
2005.

Vol. 3542: H.H. Hoos, D.G. Mitchell (Eds.), Theory and
Applications of Satisfiability Testing. XIII, 393 pages.
2005.

Vol. 3541: N.C. Oza, R. Polikar, J. Kittler, E. Roli (Eds.),
Multiple Classifier Systems. XII, 430 pages. 2005.

Vol. 3540: H. Kalviainen, J. Parkkinen, A. Kaarna (Eds.),
Image Analysis. XXII, 1270 pages. 2005.

Vol. 3537: A. Apostolico, M. Crochemore, K. Park (Eds.),
Combinatorial Pattern Matching. XI, 444 pages. 2005.

Vol. 3536: G. Ciardo, P. Darondeau (Eds.), Applications
and Theory of Petri Nets 2005. XI, 470 pages. 2005.

Vol. 3535: M. Steffen, G. Zavattaro (Eds.), Formal Meth-
ods for Open Object-Based Distributed Systems. X, 323
pages. 2005. J

Vol. 3533: M. Alj, E Esposito (Eds.), Innovations in Ap-
plied Artificial Intelligence. XX, 858 pages. 2005. (Sub-
series LNAI).

Vol. 3532: A. Gémez-Pérez, J. Euzenat (Eds.), The Se-
mantic Web: Research and Applications. XV, 728 pages.
2005.

Vol. 3531: J. Ioannidis, A. Keromytis, M. Yung (Eds.), Ap-
plied Cryptography and Network Security. XI, 530 pages.
2005.

Vol. 3530: A. Prinz, R. Reed, J. Reed (Eds.), SDL 2005:
Model Driven. XI, 361 pages. 2005.

Vol. 3528: P.S. Szczepaniak, J. Kacprzyk, A. Niewiadom-
ski (Eds.), Advances in Web Intelligence. X VII, 513 pages.
2005. (Subseries LNAI).

Vol. 3527: R. Morrison, F. Oquendo (Eds.), Software Ar-
chitecture. XII, 263 pages. 2005.

Vol. 3526: S.B. Cooper, B. Lowe, L. Torenvliet (Eds.),
New Computational Paradigms. XVII, 574 pages. 2005.

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3524: R. Bartdk, M. Milano (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 320 pages. 2005.

Vol. 3523: J.S. Marques, N. Pérez de la Blanca, P. Pina
(Eds.), Pattern Recognition and Image Analysis, Part II.
XXVI, 733 pages. 2005.

Vol. 3522: J.S. Marques, N. Pérez de la Blanca, P. Pina
(Eds.), Pattern Recognition and Image Analysis, Part I.
XXVI, 703 pages. 2005.

Vol. 3521: N. Megiddo, Y. Xu, B. Zhu (Eds.), Algorithmic
Applications in Management. XIII, 484 pages. 2005.

Vol. 3520: O. Pastor, J. Falc@o e Cunha (Eds.), Advanced
Information Systems Engineering. XVI, 584 pages. 2005.

Vol. 3519: H. Li, P. J. Olver, G. Sommer (Eds.), Computer
Algebra and Geometric Algebra with Applications. IX,
449 pages. 2005.

Vol. 3518: T.B. Ho, D. Cheung, H. Liu (Eds.), Advances in
Knowledge Discovery and Data Mining. XXI, 864 pages.
2005. (Subseries LNAI).

Vol. 3517: H.S. Baird, D.P. Lopresti (Eds.), Human Inter-
active Proofs. IX, 143 pages. 2005.

Vol. 3516: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science — ICCS 2005,
Part III. LXIII, 1143 pages. 2005.

Vol. 3515: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science —ICCS 2005,
Part II. LXIII, 1101 pages. 2005.

Vol. 3514: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science - ICCS 2005,
Part I. LXIII, 1089 pages. 2005.

Vol. 3513: A. Montoyo, R. Mufioz, E. Métais (Eds.), Nat-
ural Language Processing and Information Systems. XII,
408 pages. 2005.

Vol. 3512: J. Cabestany, A. Prieto, E Sandoval (Eds.),
Computational Intelligence and Bioinspired Systems.
XXV, 1260 pages. 2005.

Vol. 3511: U.K. Wiil (Ed.), Metainformatics. VIII, 221
pages. 2005.

Vol. 3510: T. Braun, G. Carle, Y. Koucheryavy, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
X1V, 366 pages. 2005.

Vol. 3509: M. Jiinger, V. Kaibel (Eds.), Integer Program-
ming and Combinatorial Optimization. XI, 484 pages.
2005.

Vol. 3508: P. Bresciani, P. Giorgini, B. Henderson-Sellers,
G. Low, M. Winikoff (Eds.), Agent-Oriented Information
Systems II. X, 227 pages. 2005. (Subseries LNAI).

Vol. 3507: F. Crestani, I. Ruthven (Eds.), Information Con-
text: Nature, Impact, and Role. XIII, 253 pages. 2005.

Vol. 3506: C. Park, S. Chee (Eds.), Information Security
and Cryptology — ICISC 2004. XIV, 490 pages. 2005.

Vol. 3505: V. Gorodetsky, J. Liu, V. A. Skormin (Eds.), Au-
tonomous Intelligent Systems: Agents and Data Mining.
XIII, 303 pages. 2005. (Subseries LNAI).

Vol. 3504: AF. Frangi, P1. Radeva, A. Santos, M. Her-
nandez (Eds.), Functional Imaging and Modeling of the
Heart. XV, 489 pages. 2005.

Vol. 3503: S.E. Nikoletseas (Ed.), Experimental and Effi-
cient Algorithms. XV, 624 pages. 2005.

Vol. 3502: F. Khendek, R. Dssouli (Eds.), Testing of Com-
municating Systems. X, 381 pages. 2005.

Vol. 3501: B. Kégl, G. Lapalme (Eds.), Advances in Artifi-
cial Intelligence. XV, 458 pages. 2005. (Subseries LNAI).

Vol. 3500: S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P.
Pevzner, M. Waterman (Eds.), Research in Computational
Molecular Biology. XVII, 632 pages. 2005. (Subseries
LNBI).

Vol. 3499: A. Pelc, M. Raynal (Eds.), Structural Informa-
tion and Communication Complexity. X, 323 pages. 2005.

Vol. 3498: J. Wang, X. Liao, Z. Yi (Eds.), Advances in Neu-
ral Networks — ISNN 2005, Part III. XLIX, 1077 pages.
2005.

Vol. 3497: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. XLIX, 947 pages.
2005.

Vol. 3496: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 1055 pages.
200s.

Vol. 3495: P. Kantor, G. Muresan, F. Roberts, D.D. Zeng,
F.-Y. Wang, H. Chen, R.C. Merkle (Eds.), Intelligence and
Security Informatics. XVIII, 674 pages. 2005.

Vol. 3494: R. Cramer (Ed.), Advances in Cryptology —
EUROCRYPT 2005. X1V, 576 pages. 2005.

Vol. 3493: N. Fuhr, M. Lalmas, S. Malik, Z. Szldvik (Eds.),
Advances in XML Information Retrieval. XI, 438 pages.
2005.

Fa4s3. 127

Table of Contents

Invited Talk

From Quantum Physics to Programming Languages: A Process
Algebraic Approach
Philippe Jorrand, Marie Lalire

Chemical Computing

Chemical Computing
Peter DIthiely :ws cosprinswssmsms susme smims sk ias se s 2mihte

Programming Reaction-Diffusion Processors
Andrew Adamatzky

From Prescriptive Programming of Solid-State Devices to Orchestrated
Self-organization of Informed Matter
Klaus-Peter Zaumert

Relational Growth Grammars — A Graph Rewriting Approach to
Dynamical Systems with a Dynamical Structure
Winfried Kurth, Ole Kniemeyer, Gerhard Buck-Sorlin

A New Programming Paradigm Inspired by
Artificial Chemistries
Wolfgang Banzhaf, Christian Lasarczyk

Higher-Order Chemical Programming Style
Jean-Pierre Bandtre, Pascal Fradet, Yann Radenac

Amorphous Computing

Introduction to Amorphous Computing
Daniel Coore

Abstractions for Directing Self-organising Patterns
Daniel Cooteo

Programming an Amorphous Computational Medium
JGEOD BOAL s ms s sms 20505 G0 8S 055555005 @5 £insain oo s s e s e

X Table of Contents

Computations in Space and Space in Computations
Jean-Louis Giavitto, Olivier Michel, Julien Cohen,
Antoine Spicher ...ttt e 137

Bio-inspired Computing

Bio-inspired Computing Paradigms (Natural Computing)
Gheorghe PGUNot e 155

Inverse Design of Cellular Automata by Genetic Algorithms:
An Unconventional Programming Paradigm
Thomas Bdck, Ron Breukelaar, Lars Willmes 161

Design, Simulation, and Experimental Demonstration of Self-assembled
DNA Nanostructures and Motors
John H. Reif, Thomas H. LaBean, Sudheer Sahu, Hao Yan,
Peng Yin ... oo 173

Membrane Systems: A Quick Introduction
Gheorghe PAum e 188

Cellular Meta-programming over Membranes
Gabriel Ciobanu, Dorel Lucanuc.cuouiuinnennnn... 196

Modelling Dynamically Organised Colonies of Bio-entities
Marian Gheorghe, Ioanna Stamatopoulou, Mike Holcombe,
Petros Kefalas 207

P Systems: Some Recent Results and Research Problems
Oscar H. IDQTTGo oottt i 225

Outlining an Unconventional, Adaptive, and Particle-Based
Reconfigurable Computer Architecture
Christof TeuScher 238

Autonomic Computing

Autonomic Computing: An Overview
Manish Parashar, Salim Harirtc.co i, 257

Enabling Autonomic Grid Applications: Dynamic Composition,
Coordination and Interaction
Zhen Li, Manish Parashar 00 iiiiiiininnin.. 270

Table of Contents

Grassroots Approach to Self-management in Large-Scale Distributed
Systems
Ozalp Babaoglu, Mdrk Jelasity, Alberto Montresor.................

Autonomic Runtime System for Large Scale Parallel and Distributed
Applications
Jingmei Yang, Huoping Chen, Byoung uk Kim, Salim Hariri,
Manish Parashar s :wisssmsus smsmssmimpsspng smsapigaaoges vumsma

Generative Programming

Towards Generative Programming
Pierre COMnte vttt e e

Overview of Generative Software Development
Krzysztof Czarnecki suuviussnimsmuimess imsse dmsmpens swams swsime s

A Comparison of Program Generation with Aspect-Oriented
Programming
Mira Mezini, Klaus OStermanncooeiunninineninn.

Generative Programming from a Post Object-Oriented Programming

Viewpoint
Shiger CREbaooo ot

Author Indext i ettt et e

XI

From Quantum Physics to Programming Languages:
A Process Algebraic Approach

Philippe Jorrand and Marie Lalire

Leibniz Laboratory, 46 avenue Felix Viallet,
38000 Grenoble, France
{Philippe.Jorrand, Marie.Lalire}@imag.fr

Abstract. Research in quantum computation is looking for the consequences of
having information encoding, processing and communication exploit the laws
of quantum physics, i.e. the laws of the ultimate knowledge that we have, today,
of the foreign world of elementary particles, as described by quantum mechan-
ics. After an introduction to the principles of quantum information processing
and a brief survey of the major breakthroughs brought by the first ten years of
research in this domain, this paper concentrates on a typically “computer sci-
ence” way to reach a deeper understanding of what it means to compute with
quantum resources, namely on the design of programming languages for quan-
tum algorithms and protocols, and on the questions raised by the semantics of
such languages. Special attention is devoted to the process algebraic approach
to such languages, through a presentation of QPAlg, the Quantum Process Al-
gebra which is being designed by the authors.

1 From Quantum Physics to Computation

Information is physical: the laws which govern its encoding, processing and commu-
nication are bound by those of its unavoidably physical incarnation. In today’s infor-
matics, information obeys the laws of Newton’s and Maxwell’s classical physics: this
statement holds all the way from commercial computers down to (up to?) Turing
machines and lambda-calculus. Today’s computation is classical.

Quantum information processing and communication was born some ten years ago,
as a child of two major scientific achievements of the 20" century, namely quantum
physics and information sciences. The driving force of research in quantum computa-
tion 1s that of looking for the consequences of having information encoding, process-
ing and communication based upon the laws of quantum physics, i.e. the ultimate
knowledge that we have, today, of the foreign world of elementary particles, as de-
scribed by quantum mechanics. The principles of quantum information processing are
very briefly introduced in this section. For a more detailed, but still concise and gentle
introduction, see [24]. A pedagogical and rather thorough textbook on quantum com-
puting is [21]. For a dense and theoretically profound presentation, the reader is re-
ferred to [16].

J.-P. Banitre et al. (Eds.): UPP 2004, LNCS 3566, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 P. Jorrand and M. Lalire

1.1 Four Postulates for Computing

Quantum mechanics, which is the mathematical formulation of the laws of quantum
physics, relies on four postulates: (i) the state of a quantum system (i.e. a particle, or a
collection of particles) is a unit element of a Hilbert space, that is a vector of norm 1
in a d-dimensional complex vector space; (ii) the evolution of the state of a closed
quantum system (i.e. not interacting with its -classical- environment) is deterministic,
linear, reversible and characterized by a unitary operator, that is by a dxd unitary
matrix applied to the state vector; (iii) the measurement of a quantum system (i.e. the
observation of a quantum system by its -classical- environment) irreversibly modifies
the state of the system by performing a projection of the state vector onto a probabilis-
tically chosen subspace of the Hilbert space, with renormalization of the resulting
vector, and returns a value (e.g. an integer) to the classical world, which just tells
which subspace was chosen; and (iv) the state space of a quantum system composed
of several quantum subsystems is the tensor product of the state spaces of its compo-
nents (given two vector spaces P and Q of dimensions p and g respectively, their
tensor product is a vector space of dimension pxg).

The question is then: how to take advantage of these postulates to the benefits of
computation? The most widely developed approach to quantum computation exploits
all four postulates in a rather straightforward manner. The elementary physical carrier
of information is a qubit (quantum bit), i.e. a quantum system (electron, photon,
ion, ...) with a 2-dimensional state space (postulate i); the state of a n-qubit register
lives in a 2"-dimensional Hilbert space, the tensor product of n 2-dimensional Hilbert
spaces (postulate iv). Then, by imitating in the quantum world the most traditional
organization of classical computation, quantum computations are considered as com-
prising three steps in sequence: first, preparation of the initial state of a quantum reg-
ister (postulate iii can be used for that, possibly with postulate ii); second, computa-
tion, by means of deterministic unitary transformations of the register state (postulate
ii); and third, output of a result by probabilistic measurement of all or part of the reg-
ister (postulate iii).

1.2 Quantum Ingredients for Information Processing

These postulates and their consequences can be interpreted from a more informational
and computational point of view, thus providing the elementary quantum ingredients
which are at the basis of quantum algorithm design:

Superposition. At any given moment, the state of quantum register of n qubits is a
vector in a 2"-dimensional complex vector space, i.e. a vector with at most 2" non zero
complex components, one for each of the 2" different values on 7 bits: the basis of this
vector space comprises the 2" vectors Ii>, for i in {0,1 }* (li> is Dirac’s notation for
vectors denoting quantum states). This fact is exploited computationally by consider-
ing that this register can actually contain a superposition of all the 2" different values
on n bits, whereas a classical register of n bits may contain only one of these values at
any given moment.

From Quantum Physics to Programming Languages 3

Quantum Parallelism and Deterministic Computation. Let f be a function from
{0,1}" to {0,1}™ and x be a quantum register of n qubits initialized in a superposition
of all values in {0,1}" (this initialization can be done by one very simple step). Then,
computing f{x) is achieved by a deterministic, linear and unitary operation on the state
of x: because of linearity, a single application of this operation produces all 2" values
of f in a single computation step. Performing this operation for any, possibly non
linear f while obeying the linearity and unitarity laws of the quantum world, requires a
register of n+m qubits formed of the register x, augmented with a register y of m
qubits. Initialy, y is in any arbitray state ls> on m qubits: before the computation of f,
the larger register of n+m qubits contains a superposition of all pairs li,s> for i in
{0,1}". After the computation of f, it contains a superposition of all pairs li, s®f({)> for
i in {0,1}", where @ is bitwise addition modulo 2. It is easy to verify that, for any f,
this operation on a register of n+m qubits is unitary (it is its own inverse). In many
cases, it will be applied with s=0, which results in a superposition of all simpler pairs
li, f@)> for i in {0,1}".

Probabilistic Measurement and Output of a Result. After f has been computed, all
its values f{(i), for i in {0,1}", are superposed in the y part (m qubits) of the register of
n+m qubits, each of these values facing (in the pair lif(i)>) their corresponding i
which is still stored in the unchanged superposition contained in the x part (n qubits)
of that register. Observing the contents of y will return only one value, j, among the
possible values of f. This value is chosen with a probability which depends on f since,
e.g. if f{i)=j for more than one values of i, the probability of obtaining j as a result will
be higher than that of obtaining k if f{i)=k for only one value of I (and the probability
of obtaining [/ if there is no i such that f(i)=/ will of course be 0). This measurement
also causes the superposition in y to be projected onto the 1-dimensional subspace
corresponding to the basis state |/>, i.e. the state of the y part collapses to |j>, which
implies that all other values of f which were previously superposed in y are irreversi-
bly lost.

Interference. Using appropriate unitary operations, the results of the 2" parallel com-
putations of f over its domain of definition can be made to interfere with each other.
Substractive interference will lower the probability of observing some of these value
in y, whereas additive interference will increase the probability of observing other
values and bring it closer to 1. Because of probabilistic measurement, a major aim of
the organization and principles of quantum algorithms will be to assemble the unitary
operations for a given computation in such a way that, when a final measurement is
applied, a relevant result has a high probability to be obtained.

Entangled States. Measuring y after the computation of fis in fact measuring only m
qubits (the y part) among the n+m qubits of a register. The state of this larger register
is a superposition of all pairs i f(i)> for i in {0,1}" (e.g., in this superposition, there is
no pair like 12,/(3)>): this superposition is not a free cross-product of the domain
{0,1}" of f by its image in {0,1}", i.e. there is a strong correlation between the con-
tents of the x and y parts of the register. As a consequence, if measuring the y part
returns a value j, with the state of that part collapsing to the basis state >, the state of
the larger register will itself collapse to a superposition of all remaining pairs li,j>

4 P. Jorrand and M. Lalire

such that f(i)=j. This means that, in addition to producing a value j, the measurement
of the y part also causes the state of the x part to collapse to a superposition of all
elements of the £7'(j) subset of the domain of f. This correlation between the x and y
parts of the register is called entanglement: in quantum physics, the state of a system
composed of n sub-systems is not, in general, simply reducible to an n-tuple of the
states of the components of that system. Entanglement has no equivalent in classical
physics and it constitutes the most powerful resource for quantum information proc-
essing and communication.

No-Cloning. A direct consequence of the linearity of all operations that can be ap-
plied to quantum states (a two line trivial proof shows it) is that the state of a qubit a
(this state is in general an arbitrary superposition, i.e. a vector made of a linear com-
bination of the two basis state vectors 10> and |1>), cannot be duplicated and made the
state of another qubit b, unless the state of a is simply either 10> or 11> (i.e. not an
arbitrary superposition). This is true of the state of all quantum systems, including of
course registers of n qubits used during a quantum computation. In programming
terms, this means that the *“value” (the state) of a quantum variable cannot be copied
into another quantum variable.

These basic quantum ingredients and their peculiarities will of course have far
reaching consequences, as soon as algorithm, programming languages and semantic
frameworks incorporate and make use of quantum resources.

2 Quantum Algorithms

Richard Feynman launched in 1982 [10] the idea that computation based upon quan-
tum physics would be exponentially more efficient than based upon classical physics.
Then, after the pioneering insight of David Deutsch in the mid eighties [8], who
showed, by means of a quantum Turing machine, that quantum computing could
indeed not, in general, be simulated in polynomial time by classical computing, it was
ten years before the potential power of quantum computing was demonstrated on
actual computational problems.

2.1 Major Breakthroughs: Quantum Speedups and Teleportation

The first major breakthrough was by Peter Shor [27]: in 1994, he published a quantum
algorithm operating in polynomial time (O(log’N)) for factoring an integer N, whereas
the best classical algorithm is exponential. Two years later, Lov Grover [13] pub-
lished a quantum algorithm for searching an unordered database of size N, which
achieves a quadratic acceleration (it operates in O(N'")) when compared with classi-
cal algorithms for the same problem (in O(N)). Shor’s algorithm relies on a known
reduction of the problem of factoring to that of finding the order of a group, or the
period of a function: then, since order finding can be achieved by a Fourier Trans-
form, the key of Shor’s algorithm is a Quantum Fourier Transform, which is indeed
exponentially more efficient than FFT, thanks to quantum parallelism, entanglement
and tensor product. Grover’s algorithm relies upon a very subtle use of interference,

From Quantum Physics to Programming Languages 5

now known as amplitude amplification, which performs a stepwise increase of the
probability of measuring a relevant item in the database, and which brings this prob-
ability very close to one after N steps.

Another major result, by Charles Bennet and others in 1993 [3], was the design of
theoretical principles leading to a quantum teleportation protocol, which takes advan-
tage of entanglement and of probabilistic measurement: the state of a quantum system
a (e.g. a qubit) localized at A’s place can be assigned, after having been measured,
thus destroyed, to another quantum system b (e.g. another qubit), localized at B’s
place, without the state of a being known neither by A nor by B, and without neither
a, b nor any other quantum system being moved along a trajectory between A and B.
It is important to notice that this is not in contradiction with no-cloning: there is still
only one instance of the teleported state, whereas cloning would mean that there coex-
ist one original and one copy.

Since then, these results have been generalized and extended to related classes of
problems. Shor’s algorithm solves an instance of the hidden subgroup problem [19]
for abelian groups and a few extensions to non-abelian cases have been designed. In
addition to Fourier Transform, order finding and amplitude amplification, other can-
didates to the status of higher level building blocks for quantum algorithmics have
emerged, such as quantum random walks on graphs [15]. Principles for distributed
quantum computing have also been studied and successfully applied to a few classes
of problems. Very recently, on the basis of amplitude amplification, quadratic and
other quantum speedups have been found for several problems on graphs, such as
connectivity, minimum spanning tree and single source shortest paths [9].

Teleportation also has been generalized. The measurement used in its original for-
mulation was such that the state eventually obtained for b was the same as the state
initially held by a (up to a correcting operation which still had to be applied, depend-
ing on the probabilistic outcome of that measurement). By changing the way the
measurement is done (in fact, by appropriately rotating the basis upon which the
measurement of a will project the state of a), it has been found that the state tele-
ported to b could be not the state initially held by a, but that state to which a rotation,
i.e. a unitary operation has been applied. In other words, entanglement and measure-
ment, i.e. the resources needed by teleportation, can be used to simulate computations
by unitary tranformations. This has given rise to a whole new direction of research in
quantum computation, namely measurement-based quantum computation [14,18,23].

2.2 No Quantum Computation Without Classical Control

There is an implicit, but obvious and ever present invariant in all these different ways
of organizing quantum computations and quantum algorithms. Quantum computations
operate in the quantum world, which is a foreign and unknowable world. No one in
the classical world will ever know what the superposition state of an arbitrary qubit is,
the only information one can get is 0 or 1, through measurement, i.e. the classical
outcome of a probabilistic projection of the qubit state vector onto 10> or 11>: if one
gets 10>, the only actual information which is provided about the state before meas-
urement is that it was not /1>, because 10> and 11> are orthogonal vectors. Then, for

