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Foreword

The papers contained in this volume were presented at the 12th Annual Sym-
posium on Combinatorial Pattern Matching, held July 1-4, 2001 at the Dan
Panorama Hotel in Jerusalem, Israel. They were selected from 35 abstracts sub-
mitted in response to the call for papers. In addition, there were invited lectures
by Aviezri Fraenkel (Weizmann Institute of Science), Zvi Galil ( Columbia), Rao
Kosaraju (Johns Hopkins University), and Uzi Vishkin (Technion and U. Mary-
land). This year the call for papers invited short (poster) presentations. They
also appear in the proceedings.

Combinatorial Pattern Matching (CPM) addresses issues of searching and
matching strings and more complicated patterns such as trees, regular expres-
sions, graphs, point sets, and arrays, in various formats. The goal is to derive non-
trivial combinatorial properties of such structures and to exploit these properties
in order to achieve superior performance for the corresponding computational
problems. On the other hand, an important aim is to analyze and pinpoint the
properties and conditions under which searches can not be performed efficiently.

Over the past decade a steady flow of high quality research on this subject has
changed a sparse set of isolated results into a full-fledged area of algorithmics.
This area is continuing to grow even further due to the increasing demand for
speed and efficiency that stems from important applications such as the World
Wide Web, computational biology, computer vision, and multimedia systems.
These involve requirements for information retrieval in heterogeneous databases,
data compression, and pattern recognition. The objective of the annual CPM
gathering is to provide an international forum for the presentation of research
results in combinatorial pattern matching and related applications.

The first 11 meetings were held in Paris, London, Tucson, Padova, Asilomar,
Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, and Montreal, over the
years 1990-2000. After the first meeting, a selection of papers appeared as a
special issue of Theoretical Computer Science in volume 92. The proceedings of
the 3rd to 11th meetings appeared as volumes 644, 684, 807, 937, 1075, 1264,
1448, 1645, and 1848 of the Springer LNCS series. Selected papers of the 12th
meeting will appear in a special issue of Discrete Applied Mathematics.

The general organization and orientation of the CPM conferences is coor-
dinated by a steering committee composed of Alberto Apostolico (Padova and
Purdue), Maxime Crochemore (Marne-la-Vallée), Zvi Galil (Columbia) and Udi
Manber ( Yahoo!).

April 2001 Amihood Amir
Gad M. Landau
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Regular Expression Searching over Ziv—Lempel
Compressed Text

Gonzalo Navarro*

Dept. of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract. We present a solution to the problem of regular expression
searching on compressed text. The format we choose is the Ziv—-Lempel
family, specifically the LZ78 and LZW variants. Given a text of length u
compressed into length n, and a pattern of length m, we report all the R
occurrences of the pattern in the text in O(2™ + mn + Rmlog m) worst
case time. On average this drops to O(m? + (n + R)log m) or O(m? +
n+ Ru/n) for most regular expressions. This is the first nontrivial result
for this problem. The experimental results show that our compressed
search algorithm needs half the time necessary for decompression plus
searching, which is currently the only alternative.

1 Introduction

The need to search for regular expressions arises in many text-based applications,
such as text retrieval, text editing and computational biology, to name a few.
A regular ezpression is a generalized pattern composed of (i) basic strings, (i1)
union, concatenation and Kleene closure of other regular expressions [1]- The
problem of regular expression searching is quite old and has received continuous
attention since the sixties until our days (see Section 2.1).

A particularly interesting case of text searching arises when the text is com-
pressed. Text compression [6] exploits the redundancies of the text to repre-
sent it using less space. There are many different compression schemes, among
which the Ziv-Lempel family [32,33] is one of the best in practice because of
its good compression ratios combined with efficient compression and decompres-
sion times. The compressed matching problem consists of searching a pattern
on a compressed text without uncompressing it. Its main goal is to search the
compressed text faster than the trivial approach of decompressing it and then
searching. This problem is important in practice. Today’s textual databases are
an excellent example of applications where both problems are crucial: the texts
should be kept compressed to save space and 1/O time, and they should be effi-
ciently searched. Surprisingly, these two combined requirements are not easy to
achieve together, as the only solution before the 90’s was to process queries by
uncompressing the texts and then searching into them.

* Partially supported by Fondecyt grant 1-990627.

A. Amir and G.M. Landau (Eds.): CPM 2001, LNCS 2089, pp. 1-17, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 Gonzalo Navarro

Since then, a lot of research has been conducted on the problem. A wealth of
solutions have been proposed (see Section 2.2) to deal with simple, multiple and,
very recently, approximate compressed pattern matching. Regular expression
searching on compressed text seems to be the last goal which still defies the
existence of any nontrivial solution.

This is the problem we solve in this paper: we present the first solution
for compressed regular expression searching. The format we choose is the Ziv—
Lempel family, focusing in the LZ78 and LZW variants [33,29]. Given a text
of length u compressed into length n, we are able to find the R occurrences of
a regular expression of length m in O(2™ + mn + Rmlogm) worst case time,
needing O(2™ + mn) space. We also propose two modifications which achieve
O(m? 4 (n+ R) logm) or O(m? +n+ Ru/n) average case time and, respectively,
O(m+nlogm) or O(m+n) space, for “admissible” regular expressions, 1.e. those
whose automaton runs out of active states after reading O(1) text characters.
These results are achieved using bit-parallelism and are valid for short enough
patterns, otherwise the search times have to be multiplied by [m/w], where w
is the number of bits in the computer word.

We have implemented our algorithm on LZW and compared it against the
best existing algorithms on uncompressed text, showing that we can search the
compressed text twice as fast as the naive approach of uncompressing and then
searching.

2 Related Work

2.1 Regular Expression Searching

The traditional technique [26] to search a regular expression of length m (which
means m letters, not counting the special operators such as "*" "|" etc.) in
a text of length u is to convert the expression into a nondeterministic finite
automaton (NFA) with O(m) nodes. Then, it is possible to search the text using
the automaton at O(mu) worst case time. The cost comes from the fact that
more than one state of the NFA may be active at each step, and therefore all
may need to be updated.

On top of the basic algorithm for converting a regular expression into an
NFA, we have to add a self-loop at the initial state which guarantees that it
keeps always active, so it is able to detect a match starting anywhere in the
text. At each text position where a final state gets active we signal the end point
of an occurrence.

A more efficient choice [1] is to convert the NFA into a deterministic finite
automaton (DFA), which has only one active state at a time and therefore allows
searching the text at O(u) cost, which is worst-case optimal. The cost of this
approach is that the DFA may have O(2™) states, which implies a preprocessing
cost and extra space exponential in m.

An easy way to obtain a DFA from an NFA is via bit-parallelism, which is
a technique to code many elements in the bits of a single computer word and
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manage to update all them, in a single operation. In this case, the vector of
active and inactive states is stored as the bits of a computer word. Instead of
(ala Thompson [26]) examining the active states one by one, the whole computer
word is used to index a table which, given the current text character, provides
the new set of active states (another computer word). This can be considered
either as a bit-parallel simulation of an NFA, or as an implementation of a DFA
(where the identifier of each deterministic state is the bit mask as a whole). This
idea was first proposed by Wu and Manber [31, 30].

Later, Navarro and Raffinot [23] used a similar procedure, this time using
Glushkov’s [7] construction of the NFA. This construction has the advantage of
producing an automaton of exactly m + 1 states, while Thompson’s may reach
2m states. A drawback is that the structure is not so regular and therefore a
table D : 2™*! x (0+1) — 2™+! is required, where o is the size of the pattern
alphabet X'. Thompson’s construction, on the other hand, is more regular and
only needs a table D : 22™ — 22™ for the ¢-transitions. It has been shown [23]
that Glushkov’s construction normally yields faster search time. In any case, if
the table is too big it can be split horizontally in two or more tables [31]. For
example, a table of size 2™ can be split into 2 subtables of size 2™/2. We need
to access two tables for a transition but need only the square root of the space.

Some techniques have been proposed to obtain a tradeoff between NFAs and
DFAs. In 1992, Myers [19] presented a four-russians approach which obtains
O(mu/logu) worst-case time and extra space. The idea is to divide the syntax
tree of the regular expression into “modules” , which are subtrees of a reasonable
size. These subtrees are implemented as DFAs and are thereafter considered as
leaf nodes in the syntax tree. The process continues with this reduced tree until
a single final module is obtained.

The ideas presented up to now aim at a good implementation of the automa-
ton, but they must inspect all the text characters. Other proposals try to skip
some text characters, as it is usual for simple pattern matching. For example,
Watson [28, chapter 5] presented an algorithm that determines the minimum
length of a string matching the regular expression and forms a tree with all the
prefixes of that length of strings matching the regular expression. A multipat-
tern search algorithm like Commentz-Walter [8] is run over those prefixes as a
filter to detect text areas where a complete occurrence may start. Another tech-
nique of this kind is used in Gnu Grep 2.0, which extracts a set of strings which
must appear in any match. This string is searched for and the neighborhoods
of its occurrences are checked for complete matches using a lazy deterministic
automaton.

The most recent development, also in this line, is from Navarro and Raffinot
[23]. They invert the arrows of the DFA and make all states initial and the initial
state final. The result is an automaton that recognizes all the reverse prefixes of
strings matching the regular expression. The idea is in this sense similar to that
of Watson, but takes less space. The search method is also different: instead of
a Boyer-Moore like algorithm, it is based on BNDM [23].
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2.2 Compressed Pattern Matching

The compressed matching problem was first defined in the work of Amir and
Benson [2] as the task of performing string matching in a compressed text
without decompressing it. Given a text 7', a corresponding compressed string
Z = z,...2n, and a pattern P, the compressed matching problem consists in
finding all occurrences of P in T, using only P and Z. A naive algorithm, which
first decompresses the string Z and then performs standard string matching,
takes time O(m+u). An optimal algorithm takes worst-case time O(m+n+ R),
where R is the number of matches (note that it could be that R = u > n).

Two different approaches exist to search compressed text. The first one is
rather practical. Efficient solutions based on Huffman coding [10] on words have
been presented by Moura et al. [18], but they need that the text contains natural
language and is large (say, 10 Mb or more). Moreover, they allow only searching
for whole words and phrases. There are also other practical ad-hoc methods [15],
but the compression they obtain is poor. Moreover, in these compression formats
n = @(u), so the speedups can only be measured in practical terms.

The second line of research considers Ziv-Lempel compression, which is based
on finding repetitions in the text and replacing them with references to similar
strings previously appeared. LZ77 [32] is able to reference any substring of the
text already processed, while LZ78 [33] and LZW [29] reference only a single
previous reference plus a new letter that is added.

String matching in Ziv—Lempel compressed texts is much more complex, since
the pattern can appear in different forms across the compressed text. The first
algorithm for exact searching is from 1994, by Amir, Benson and Farach [3], who
search in LZ78 needing time and space O(m? + n).

The only search technique for LZ77 is by Farach and Thorup [9], a random-
ized algorithm to determine in time O(m + nlog®(u/n)) whether a pattern is
present or not in the text.

An extension of the first work [3] to multipattern searching was presented by
Kida et al. [13], together with the first experimental results in this area. They
achieve O(m? + n) time and space, although this time m is the total length of
all the patterns.

New practical results were presented by Navarro and Raffinot [24], who pro-
posed a general scheme to search on Ziv-Lempel compressed texts (simple and
extended patterns) and specialized it for the particular cases of LZ77, LZ78 and a
new variant proposed which was competitive and convenient for search purposes.
A similar result, restricted to the LZW format, was independently found and pre-
sented by Kida et al. [14]. The same group generalized the existing algorithms
and nicely unified the concepts in a general framework [12]. Recently, Navarro
and Tarhio [25] presented a new, faster, algorithm based on Boyer-Moore.

Approximate string matching on compressed text aims at finding the pattern
where a limited number of differences between the pattern and its occurrences
are permitted. The problem, advocated in 1992 [2], had been solved for Huffman
coding of words [18], but the solution is limited to search a whole word and
retrieve whole words that are similar. The first true solutions appeared very
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recently, by Karkkiinen et al. [11], Matsumoto et al. [16] and Navarro et al.
[22].

3 The Ziv-Lempel Compression Formats LZ78 and LZW

The general idea of Ziv-Lempel compression is to replace substrings in the text
by a pointer to a previous occurrence of them. If the pointer takes less space
than the string it is replacing, compression is obtained. Different variants over
this type of compression exist, see for example [6]. We are particularly interested
in the LZ78/LZW format, which we describe in depth.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [33])
is based on a dictionary of blocks, in which we add every new block computed.
At the beginning of the compression, the dictionary contains a single block b,
of length 0. The current step of the compression is as follows: if we assume
that a prefix T1. ; of T has been already compressed in a sequence of blocks
Z =by...by, all them in the dictionary, then we look for the longest prefix of
the rest of the text 7,1, which is a block of the dictionary. Once we found this
block, say b, of length £,, we construct a new block b, 41 = (s, Tjte,+1), we write
the pair at the end of the compressed file Z, i.e Z = by ...b,b,,1, and we add
the block to the dictionary. It is easy to see that this dictionary is prefix-closed
(i.e. any prefix of an element is also an element of the dictionary) and a natural
way to represent it is a tree.

We give as an example the compression of the word ananas in Figure 1. The
first block is (0,a), and next (0,n). When we read the next a, a is already the
block 1 in the dictionary, but an is not in the dictionary. So we create a third
block (1,n). We then read the next a, a is already the block 1 in the dictionary,
but as do not appear. So we create a new block (1, s).

Prefix encoded a an anan ananas
0 0
a / i / \,. a / \n a / \n
Dictionary 1 1 2 1 2 1 2
N 7\
3 4 3
Compressed file  (0,a) (0,2)(0,n) (0,a)(0,n)(1,n) (0,2)(0,n)(1,n)(1,s)

Fig. 1. Compression of the word ananas with the algorithm LZ78.

The compression algorithm is O(u) time in the worst case and efficient in
practice if the dictionary is stored as a tree, which allows rapid searching of
the new text prefix (for each character of 7 we move once in the tree). The
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decompression needs to build the same dictionary (the pair that defines the
block r is read at the r-th step of the algorithm), although this time it is not
convenient to have a tree, and an array implementation is preferable. Compared
to LZ77, the compression is rather fast but decompression is slow.

Many variations on LZ78 exist, which deal basically with the best way to
code the pairs in the compressed file, or with the best way to cope with limited
memory for compression. A particularly interesting variant is from Welch, called
LZW [29]. In this case, the extra letter (second element of the pair) is not coded,
but it is taken as the first letter of the next block (the dictionary is started with
one block per letter). LZW is used by Unix’s Compress program.

In this paper we do not consider LZW separately but just as a coding variant
of LZ78. This is because the final letter of LZ78 can be readily obtained by
keeping count of the first letter of each block (this is copied directly from the
referenced block) and then looking at the first letter of the next block.

4 A Search Algorithm

We present now our approach for regular expression searching over a text Z =
by ...b,, that is expressed as a sequence of n blocks. Each block b, represents a
substring B, of T', such that B; ... B, = T. Moreover, each block B, is formed by
a concatenation of a previously seen block and an explicit letter. This comprises
the LZ78 and LZW formats. Our goal is to find the positions in 7" where the
pattern occurrences end, using Z.

Our approach is to modify the DFA algorithm based on bit-parallelism, which
is designed to process T' character by character, so that it processes T' block by
block using the fact that blocks are built from previous blocks and explicit letters.
We assume that Glushkov’s construction [7] is used, so the NFA has m+1 states.
So we start by building the DFA in O(2™) time and space.

Our bit masks will denote sets of NFA states, so they will be of width m+ 1.
For clarity we will write the sets of states, keeping in mind that we can compute
AUB, ANB, A°, A = B, A + B, a € Ain constant time (or, for long patterns, in
O([m/w]) time, where w is the number of bits in the computer word). Another
operation we will need to perform in constant time is to select any element of
a set. This can be achieved with “bit magic”, which means precomputing the
table storing the position of, say, the highest bit for each possible bit mask of
length m + 1, which is not much given that we already store o such tables.

About our automaton, we assume that the states are numbered 0. ..m, being
0 the initial state. We call F' the bit mask of final states and the transition
function is D : bitmasks x X — bitmasks.

The general mechanism of the search is as follows: we read the blocks b,
one by one. For each new block b read, representing a string B, and where we
have already processed Tj.;, we update the state of the search so that after
working on the block we have processed Ty jy B = T1..jB. To process each
block, three steps are carried out: (1) its description is computed and stored, (2)



