Amihood Amir
Gad M.Landau (Eds.)

Combinatorial
Pattern Matching

12th Annual Symposium, CPM 2001
Jerusalem, Israel, July 2001
Proceedings

LNCS 2089

<33

@); Springer




-7 Amihood Amir Gad M. Landau (Eds.)

* Combinatorial
Pattern Matching

12th Annual Symposium, CPM 2001
Jerusalem, Israel, July 1-4, 2001
Proceedings

LI

E200401851

€ Springer



Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Amihood Amir

Bar-Tlan University, Department of Computer Science
52900 Ramat-Gan, Israel; E-mail: amir@cs.biu.ac.il
and

Georgia Tech, Atlanta, Georgia 30332-0280, USA
Gad M. Landau

University of Haifa, Department of Computer Science
31905 Haifa, Israel; E-mail: landau@cs.haifa.ac.il

and
Polytechnic University, Brooklyn, NY 11201, USA

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Combinatorial pattern matching : 12th annual symposium ; proceedings / CPM
2001, Jerusalem, Israel, July 1 - 4, 2001. Amihood Amir ; Gad. M. Landau
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2089)

ISBN 3-540-42271-4

CR Subject Classification (1998): F2.2,1.5.4,1.5.0,1.7.3, H3.3, E4, G.2.1

ISSN 0302-9743
ISBN 3-540-42271-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Christian Grosche, Hamburg
Printed on acid-free paper SPIN: 10839362 06/3142 543210



Lecture Notes in Computer Science 2089
Edited by G. Goos, J. Hartmanis and J. van Leeuwen



Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo



Lecture Notes in Computer Science

For information about Vols. 1-1998

please contact your bookseller or Springer-Verlag

Vol. 1999: W. Emmerich, S. Tai (Eds.), Engineering Dis-
tributed Objects. Proceedings, 2000. VIII, 271 pages.
2001.

Vol. 2000: R. Wilhelm (Ed.), Informatics: 10 Years Back,
10 Years Ahead. IX, 369 pages. 2001.

Vol. 2001: G.A. Agha, F. De Cindio, G. Rozenberg (Eds.),
Concurrent Object-Oriented Programming and Petri Nets.
VIII, 539 pages. 2001.

Vol. 2002: H. Comon, C. Marché, R. Treinen (Eds.), Con-
straints in Computational Logics. Proceedings, 1999. XII,
309 pages. 2001.

Vol. 2003: F. Dignum, U. Cortés (Eds.), Agent Mediated
Electronic Commerce III. XII, 193 pages. 2001. (Subseries
LNAI).

Vol. 2004: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. Proceedings, 2001. XII,
528 pages. 2001.

Vol. 2006: R. Dunke, A. Abran (Eds.), New Approaches
in Software Measurement. Proceedings, 2000. VIII, 245
pages. 2001.

Vol. 2007: J.F. Roddick, K. Hornsby (Eds.), Temporal,
Spatial, and Spatio-Temporal Data Mining. Proceedings,
2000. VII, 165 pages. 2001. (Subseries LNAI).

Vol. 2009: H. Federrath (Ed.), Designing Privacy Enhanc-
ing Technologies. Proceedings, 2000. X, 231 pages. 2001.
Vol. 2010: A. Ferreira, H. Reichel (Eds.), STACS 2001.
Proceedings, 2001. XV, 576 pages. 2001.

Vol. 2011: M. Mohnen, P. Koopman (Eds.), Implementa-
tion of Functional Languages. Proceedings, 2000. VIII,
267 pages. 2001.

Vol. 2012: D.R. Stinson, S. Tavares (Eds.), Selected Ar-
eas in Cryptography. Proceedings, 2000. IX, 339 pages.
2001.

Vol. 2013: S. Singh, N. Murshed, W. Kropatsch (Eds.),
Advances in Pattern Recognition - ICAPR 2001. Proceed-
ings, 2001. XIV, 476 pages. 2001.

Vol. 2014: M. Moortgat (Ed.), Logical Aspects of Com-
putational Linguistics. Proceedings, 1998. X, 287 pages.
2001. (Subseries LNAI).

Vol. 2015: D. Won (Ed.), Information Security and
Cryptology - ICISC 2000. Proceedings, 2000. X, 261
pages. 2001.

Vol. 2016: S. Murugesan, Y. Deshpande (Eds.), Web
Engineering. IX, 357 pages. 2001.

Vol. 2018: M. Pollefeys, L. Van Gool, A. Zisserman, A.
Fitzgibbon (Eds.), 3D Structure from Images - SMILE
2000. Proceedings, 2000. X, 243 pages. 2001.

Vol. 2019: P. Stone, T. Balch, G. Kraetzschmar (Eds.),
RoboCup 2000: Robot Soccer World Cup IV. XVII, 658
pages. 2001. (Subseries LNAI).

Vol. 2020: D. Naccache (Ed.), Topics in Cryptology —
CT-RSA 2001. Proceedings, 2001. XII, 473 pages. 2001

Vol. 2021: J. N. Oliveira, P. Zave (Eds.), FME 2001: For-
mal Methods for Increasing Software Productivity. Pro-
ceedings, 2001. XIII, 629 pages. 2001.

Vol. 2022: A. Romanovsky, C. Dony, J. Lindskov
Knudsen, A. Tripathi (Eds.), Advances in Exception Hand-
ling Techniques. XII, 289 pages. 2001

Vol. 2024: H. Kuchen, K. Ueda (Eds.), Functional and
Logic Programming. Proceedings, 2001. X, 391 pages.
2001.

Vol. 2025: M. Kaufmann, D. Wagner (Eds.), Drawing
Graphs. XIV, 312 pages. 2001.

Vol. 2026: F. Miiller (Ed.), High-Level Parallel Program-
ming Models and Supportive Environments. Proceedings,
2001. IX, 137 pages. 2001.

Vol. 2027: R. Wilhelm (Ed.), Compiler Construction.
Proceedings, 2001. XI, 371 pages. 2001.

Vol. 2028: D. Sands (Ed.), Programming Languages and
Systems. Proceedings, 2001. XIII, 433 pages. 2001.

Vol. 2029: H. Hussmann (Ed.), Fundamental Approaches
to Software Engineering. Proceedings, 2001. XIII, 349
pages. 2001.

Vol. 2030: F. Honsell, M. Miculan (Eds.), Foundations
of Software Science and Computation Structures. Proceed-
ings, 2001. XII, 413 pages. 2001.

Vol. 2031: T. Margaria, W. Yi (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. Pro-
ceedings, 2001. XIV, 588 pages. 2001.

Vol. 2032: R. Klette, T. Huang, G. Gimel'farb (Eds.),
Multi-Image Analysis. Proceedings, 2000. VIII, 289
pages. 2001.

Vol. 2033: J. Liu, Y. Ye (Eds.), E-Commerce Agents. VI,
347 pages. 2001. (Subseries LNAI).

Vol. 2034: M.D. Di Benedetto, A. Sangiovanni-
Vincentelli (Eds.), Hybrid Systems: Computation and
Control. Proceedings, 2001. XIV, 516 pages. 2001.

Vol. 2035: D. Cheung, G.J. Williams, Q. Li (Eds.), Ad-
vances in Knowledge Discovery and Data Mining -
PAKDD 2001. Proceedings, 2001. XVIII, 596 pages. 2001.
(Subseries LNAI).

Vol. 2037: E.J.W. Boers et al. (Eds.), Applications of
Evolutionary Computing. Proceedings, 2001. XIII, 516
pages. 2001.

Vol. 2038: J. Miller, M. Tomassini, P.L. Lanzi, C. Ryan,
A.G.B. Tettamanzi, W.B. Langdon (Eds.), Genetic Pro-
gramming. Proceedings, 2001. XI, 384 pages. 2001.

Vol. 2039: M. Schumacher, Objective Coordination in
Multi-Agent System Engineering. XIV, 149 pages. 2001.
(Subseries LNAI).



Vol. 2040: W. Kou, Y. Yesha, C.J. Tan (Eds.), Electronic
Commerce Technologies. Proceedings, 2001. X, 187
pages. 2001.

Vol. 2041: 1. Attali, T. Jensen (Eds.), Java on Smart Cards:
Programming and Security. Proceedings, 2000. X, 163
pages. 2001.

Vol. 2042: K.-K. Lau (Ed.), Logic Based Program Syn-
thesis and Transformation. Proceedings, 2000. VIII, 183
pages. 2001.

Vol. 2043: D. Craeynest, A. Strohmeier (Eds.), Reliable
Software Technologies — Ada-Europe 2001. Proceedings,
2001. XV, 405 pages. 2001.

Vol. 2044: S. Abramsky (Ed.), Typed Lambda Calculi and
Applications. Proceedings, 2001. XI, 431 pages. 2001.
Vol. 2045: B. Pfitzmann (Ed.), Advances in Cryptology ~
EUROCRYPT 2001. Proceedings, 2001. XII, 545 pages.
2001.

Vol. 2047: R. Dumke, C. Rautenstrauch, A. Schmieten-
dorf, A. Scholz (Eds.), Performance Engineering. XIV,
349 pages. 2001.

Vol. 2048: J. Pauli, Learning Based Robot Vision. IX,
288 pages. 2001.

Vol. 2051: A. Middeldorp (Ed.), Rewriting Techniques
and Applications. Proceedings, 2001. XII, 363 pages.
2001.

Vol. 2052: V.1. Gorodetski, V.A. Skormin, L.J. Popyack
(Eds.), Information Assurance in Computer Networks.
Proceedings, 2001. XIII, 313 pages. 2001.

Vol. 2053: O. Danvy, A. Filinski (Eds.), Programs as Data
Objects. Proceedings, 2001. VIII, 279 pages. 2001.
Vol. 2054: A. Condon, G. Rozenberg (Eds.), DNA Com-
puting. Proceedings, 2000. X, 271 pages. 2001.

Vol. 2055: M. Margenstern, Y. Rogozhin (Eds.), Ma-
chines, Computations, and Universality. Proceedings,
2001. VIII, 321 pages. 2001.

Vol. 2056: E. Stroulia, S. Matwin (Eds.), Advances in
Artificial Intelligence. Proceedings, 2001. XII, 366 pages.
2001. (Subseries LNAI).

Vol. 2057: M. Dwyer (Ed.), Model Checking Software.
Proceedings, 2001. X, 313 pages. 2001.

Vol. 2059: C. Arcelli, L.P. Cordella, G. Sanniti di Baja
(Eds.), Visual Form 2001. Proceedings, 2001. XIV, 799
pages. 2001.

Vol. 2060: T. Bshme, H. Unger (Eds.), Innovative Internet
Computing Systems. Proceedings, 2001. VIII, 183 pages.
2001.

Vol. 2062: A. Nareyek, Constraint-Based Agents. XIV,
178 pages. 2001. (Subseries LNAI).

Vol. 2064: J. Blanck, V. Brattka, P. Hertling (Eds.), Com-
putability and Complexity in Analysis. Proceedings, 2000.
VIII, 395 pages. 2001.

Vol. 2065: H. Balster, B. de Brock, S. Conrad (Eds.),
Database Schema Evolution and Meta-Modeling. Proceed-
ings, 2000. X, 245 pages. 2001.

Vol. 2066: O. Gascuel, M.-F. Sagot (Eds.), Computational
Biology. Proceedings, 2000. X, 165 pages. 2001.

Vol. 2068: K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.),
Advanced Information Systems Engineering. Proceedings,
2001. XII, 484 pages. 2001.

Vol. 2070: L. Monostori, J. Vancza, M. Ali (Eds.), Engi-
neering of Intelligent Systems. Proceedings, 2001. XVIII,
951 pages. 2001. (Subseries LNAI).

Vol. 2071: R. Harper (Ed.), Types in Compilation. Pro-
ceedings, 2000. IX, 207 pages. 2001.

Vol. 2072: J. Lindskov Knudsen (Ed.), ECOOP 2001 -
Object-Oriented Programming. Proceedings, 2001. XIII,
429 pages. 2001.

Vol. 2073: V.N. Alexandrov, J.J. Dongarra, B.A. Juliano,
R.S. Renner, C.J.K. Tan (Eds.), Computational Science -
ICCS 2001. Part 1. Proceedings, 2001. XXVIII, 1306
pages. 2001.

Vol. 2074: V.N. Alexandrov, J.J. Dongarra, B.A. Juliano,
R.S. Renner, C.J K. Tan (Eds.), Computational Science —
ICCS 2001. Part II. Proceedings, 2001. XXVIII, 1076
pages. 2001.

Vol. 2075: J.-M. Colom, M. Koutny (Eds.), Applications
and Theory of Petri Nets 2001. Proceedings, 2001. XII,
403 pages. 2001.

Vol. 2077: V. Ambriola (Ed.), Software Process Tech-
nology. Proceedings, 2001. VIII, 247 pages. 2001.

Vol. 2078: R. Reed, J. Reed (Eds.), SDL 2001; Meeting
UML. Proceedings, 2001. XI, 439 pages. 2001.

Vol. 2081: K. Aardal, B. Gerards (Eds.), Integer Program-
ming and Combinatorial Optimization. Proceedings,
2001. XI, 423 pages. 2001.

Vol. 2082: M.F. Insana, R.M. Leahy (Eds.), Information
Processing in Medical Imaging. Proceedings, 2001. XVI,
537 pages. 2001.

Vol. 2083: R. Goré, A. Leitsch, T. Nipkow (Eds.), Auto-
mated Reasoning. Proceedings, 2001. XV, 708 pages.
2001. (Subseries LNAI).

Vol. 2084: J. Mira, A. Prieto (Eds.), Connectionist Mod-
els of Neurons, Learning Processes, and Artificial Intelli-
gence. Proceedings, 2001. Part I. XXVII, 836 pages.
2001.

Vol. 2085: J. Mira, A. Prieto (Eds.), Bio-Inspired Appli-
cations of Connectionism. Proceedings, 2001. Part II.
XXVII, 848 pages. 2001.

Vol. 2089: A. Amir, G.M. Landau (Eds.), Combinatorial
Pattern Matching. Proceedings, 2001. VIII, 273 pages.
2001.

Vol. 2091: J. Bigun, F. Smeraldi (Eds.), Audio- and Video-
Based Biometric Person Authentication. Proceedings,
2001. XIII, 374 pages. 2001.

Vol. 2092: L. Wolf, D. Hutchison, R. Steinmetz (Eds.),
Quality of Service — IWQoS 2001. Proceedings, 2001.
XII, 435 pages. 2001.

Vol. 2096: J. Kittler, F. Roli (Eds.), Multiple Classifier
Systems. Proceedings, 2001. XII, 456 pages. 2001.

Vol. 2097: B. Read (Ed.), Advances in Databases. Pro-
ceedings, 2001. X, 219 pages. 2001.

Vol. 2099: P. de Groote, G. Morrill, C. Retoré (Eds.),
Logical Aspects of Computational Linguistics. Proceed-
ings, 2001. VIII, 311 pages. 2001. (Subseries LNAI).
Vol. 2110: B. Hertzberger, A. Hoekstra, R. Williams
(Eds.), High-Performance Computing and Networking.
Proceedings, 2001. XVII, 733 pages. 2001.



Foreword

The papers contained in this volume were presented at the 12th Annual Sym-
posium on Combinatorial Pattern Matching, held July 1-4, 2001 at the Dan
Panorama Hotel in Jerusalem, Israel. They were selected from 35 abstracts sub-
mitted in response to the call for papers. In addition, there were invited lectures
by Aviezri Fraenkel (Weizmann Institute of Science), Zvi Galil ( Columbia), Rao
Kosaraju (Johns Hopkins University), and Uzi Vishkin (Technion and U. Mary-
land). This year the call for papers invited short (poster) presentations. They
also appear in the proceedings.

Combinatorial Pattern Matching (CPM) addresses issues of searching and
matching strings and more complicated patterns such as trees, regular expres-
sions, graphs, point sets, and arrays, in various formats. The goal is to derive non-
trivial combinatorial properties of such structures and to exploit these properties
in order to achieve superior performance for the corresponding computational
problems. On the other hand, an important aim is to analyze and pinpoint the
properties and conditions under which searches can not be performed efficiently.

Over the past decade a steady flow of high quality research on this subject has
changed a sparse set of isolated results into a full-fledged area of algorithmics.
This area is continuing to grow even further due to the increasing demand for
speed and efficiency that stems from important applications such as the World
Wide Web, computational biology, computer vision, and multimedia systems.
These involve requirements for information retrieval in heterogeneous databases,
data compression, and pattern recognition. The objective of the annual CPM
gathering is to provide an international forum for the presentation of research
results in combinatorial pattern matching and related applications.

The first 11 meetings were held in Paris, London, Tucson, Padova, Asilomar,
Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, and Montreal, over the
years 1990-2000. After the first meeting, a selection of papers appeared as a
special issue of Theoretical Computer Science in volume 92. The proceedings of
the 3rd to 11th meetings appeared as volumes 644, 684, 807, 937, 1075, 1264,
1448, 1645, and 1848 of the Springer LNCS series. Selected papers of the 12th
meeting will appear in a special issue of Discrete Applied Mathematics.

The general organization and orientation of the CPM conferences is coor-
dinated by a steering committee composed of Alberto Apostolico (Padova and
Purdue), Maxime Crochemore (Marne-la-Vallée), Zvi Galil (Columbia) and Udi
Manber ( Yahoo!).

April 2001 Amihood Amir
Gad M. Landau



VI Foreword

Program Committee

Amihood Amir, co-chair, Thierry Lecroq, Rouen

Bar-Ilan & Georgia Tech Moshe Lewenstein, IBM Yorktown
Setsuo Arikawa, Kyushu Yoelle Maarek, IBM Haifa
Gary Benson, Mt. Sinai Kunsoo Park, Seoul National
Andrei Broder, Altavista Hershel Safer, Compugen
Maxime Crochemore, Marne-la- Vallée David Sankoff, Montréal
Leszek Gasieniec, Liverpool Jeanette Schmidt, Incyte
Raffaele Giancarlo, Palermo Dafna Sheinwald, IBM Haifa
Costas S. Iliopoulos, Divesh Srivastava, AT&T

King’s College, London Naftali Tishbi, Hebrew University
Tomi Klein, Bar-Ilan Ian Witten, Waikato

Gad Landau, co-chair,
Haifa & Polytechnic, New York

Local Organization

Local arrangements were made by the program committee co-chairs. The con-
ference Web site was created and maintained by Revital Erez. Organizational
help was provided by Gal Goldschmidt, Noa Gur, Libi Raz, and Daphna Stern.

Sponsoring Institutions

— The Caesarea Edmond Benjamin de Rothschild Foundation, Institute for
Interdisciplinary Applications of Computer Science, Haifa University.

— Bar Ilan University.

— Haifa University.

List of Additional Reviewers

Jacques Desarmenien Gonzalo Navarro Noam Slonim
Paolo Ferragina Igor Potapov W.F. Smyth
Franya Franek Tomasz Radzik Dina Sokol

Dora Giammarresi Mathieu Raffinot Shigeru Takano
Jan Holub Rajeev Raman Masayuki Takeda
Jesper Jansson Marie-France Sagot Mutsunori Yagiura
Dong Kyue Kim Marinella Sciortino Michal Ziv-Ukelson
Ralf Klasing Patrice Seebold

Andrzej Lingas Ayumi Shinohara



Table of Contents

Regular Expression Searching over Ziv-Lempel Compressed Text ......... 1
Gonzalo Navarro

Parallel Lempel Ziv Coding (Extended Abstract)....................... 18
Shmuel Tomi Klein, Yair Wiseman

Approximate Matching of Run-Length Compressed Strings .............. 31
Veli Makinen, Gonzalo Navarro, Esko Ukkonen

What to Do with All this Hardware? (Invited Lecture) ................. 50
Uzt Vishkin

Efficient Experimental String Matching by Weak Factor Recognition . .. .. 51
Cyril Allauzen, Mazime Crochemore, Mathieu Raffinot

Better Filtering with Gapped ¢-Grams................................ 73
Stefan Burkhardt, Juha Kdrkkdinen

Fuzzy Hamming Distance: A New Dissimilarity Measure
(Extended Abstract) ................ ... .. ... 86
Abraham Bookstein, Shmuel Tomi Klein, Timo Raita

An Extension of the Periodicity Lemma to Longer Periods (Invited Lecture) 98
Aviezri S. Fraenkel, Jamie Simpson

A Very Elementary Presentation of the Hannenhalli-Pevzner Theory ..... 106
Anne Bergeron

Tandem Cyclic Alignment . ................ ... ... ................. 118
Gary Benson

An Output-Sensitive Flexible Pattern Discovery Algorithm .............. 131
Larmi Parida, Isidore Rigoutsos, Dan Platt

Episode Matching .. ....... ... ... .. . . . 143
Zdenék Tronicek

String Resemblance Systems: A Unifying Framework for String Similarity
with Applications to Literature and Music ....................... ... .. 147
Masayuki Takeda

Efficient Discovery of Proximity Patterns with Suffix Arrays
(Extended Abstract) .................... ... . . 152
Hiroki Arimura, Hiroki Asaka, Hiroshi Sakamoto, Setsuo Arikawa



VIII Table of Contents

Computing the Equation Automaton of a Regular Expression in O(s?)
Space and TIMe . ......ooiitiie e 157
Jean-Marc Champarnaud, Djelloul Ziad:

On-Line Construction of Compact Directed Acyclic Word Graphs ........ 169
Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara,
Masayuki Takeda, Setsuo Arikawa, Giancarlo Mauri, Giulio Pavesi

Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and
Tts Applications. . ..icssmsossmsmmsnsmmons sasme suswmene amswmsoswmm. . 181
Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, Kunsoo Park

Multiple Pattern Matching Algorithms on Collage System ............... 193
Takuya Kida, Tetsuya Matsumoto, Masayuki Takeda,
Ayumi Shinohara, Setsuo Arikawa

Finding All Common Intervals of £ Permutations ...................... 207
Steffen Heber, Jens Stoye

Generalized Pattern Matching and the Complexity of Unavoidability
TDESHINIE v i e i3 55508 SR B E s A% BE3 B S E RS SESE AR B R o s 219
Christine E. Heitsch

Balanced Suffix Trees (Invited Lecture) ............................... 231
S. Rao Kosaraju

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees. . 232
Jesper Jansson, Andrzej Lingas

Minimum Quartet Inconsistency Is Fixed Parameter Tractable........... 241
Jens Gramm, Rolf Niedermeier

Optimally Compact Finite Sphere Packings - Hydrophobic Cores in the
FCOC o 257
Rolf Backofen, Sebastian Will

Author Index .. ... ... e 273



Regular Expression Searching over Ziv—Lempel
Compressed Text

Gonzalo Navarro*

Dept. of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract. We present a solution to the problem of regular expression
searching on compressed text. The format we choose is the Ziv—-Lempel
family, specifically the LZ78 and LZW variants. Given a text of length u
compressed into length n, and a pattern of length m, we report all the R
occurrences of the pattern in the text in O(2™ + mn + Rmlog m) worst
case time. On average this drops to O(m? + (n + R)log m) or O(m? +
n+ Ru/n) for most regular expressions. This is the first nontrivial result
for this problem. The experimental results show that our compressed
search algorithm needs half the time necessary for decompression plus
searching, which is currently the only alternative.

1 Introduction

The need to search for regular expressions arises in many text-based applications,
such as text retrieval, text editing and computational biology, to name a few.
A regular ezpression is a generalized pattern composed of (i) basic strings, (i1)
union, concatenation and Kleene closure of other regular expressions [1]- The
problem of regular expression searching is quite old and has received continuous
attention since the sixties until our days (see Section 2.1).

A particularly interesting case of text searching arises when the text is com-
pressed. Text compression [6] exploits the redundancies of the text to repre-
sent it using less space. There are many different compression schemes, among
which the Ziv-Lempel family [32,33] is one of the best in practice because of
its good compression ratios combined with efficient compression and decompres-
sion times. The compressed matching problem consists of searching a pattern
on a compressed text without uncompressing it. Its main goal is to search the
compressed text faster than the trivial approach of decompressing it and then
searching. This problem is important in practice. Today’s textual databases are
an excellent example of applications where both problems are crucial: the texts
should be kept compressed to save space and 1/O time, and they should be effi-
ciently searched. Surprisingly, these two combined requirements are not easy to
achieve together, as the only solution before the 90’s was to process queries by
uncompressing the texts and then searching into them.

* Partially supported by Fondecyt grant 1-990627.

A. Amir and G.M. Landau (Eds.): CPM 2001, LNCS 2089, pp. 1-17, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 Gonzalo Navarro

Since then, a lot of research has been conducted on the problem. A wealth of
solutions have been proposed (see Section 2.2) to deal with simple, multiple and,
very recently, approximate compressed pattern matching. Regular expression
searching on compressed text seems to be the last goal which still defies the
existence of any nontrivial solution.

This is the problem we solve in this paper: we present the first solution
for compressed regular expression searching. The format we choose is the Ziv—
Lempel family, focusing in the LZ78 and LZW variants [33,29]. Given a text
of length u compressed into length n, we are able to find the R occurrences of
a regular expression of length m in O(2™ + mn + Rmlogm) worst case time,
needing O(2™ + mn) space. We also propose two modifications which achieve
O(m? 4 (n+ R) logm) or O(m? +n+ Ru/n) average case time and, respectively,
O(m+nlogm) or O(m+n) space, for “admissible” regular expressions, 1.e. those
whose automaton runs out of active states after reading O(1) text characters.
These results are achieved using bit-parallelism and are valid for short enough
patterns, otherwise the search times have to be multiplied by [m/w], where w
is the number of bits in the computer word.

We have implemented our algorithm on LZW and compared it against the
best existing algorithms on uncompressed text, showing that we can search the
compressed text twice as fast as the naive approach of uncompressing and then
searching.

2 Related Work

2.1 Regular Expression Searching

The traditional technique [26] to search a regular expression of length m (which
means m letters, not counting the special operators such as "*" "|" etc.) in
a text of length u is to convert the expression into a nondeterministic finite
automaton (NFA) with O(m) nodes. Then, it is possible to search the text using
the automaton at O(mu) worst case time. The cost comes from the fact that
more than one state of the NFA may be active at each step, and therefore all
may need to be updated.

On top of the basic algorithm for converting a regular expression into an
NFA, we have to add a self-loop at the initial state which guarantees that it
keeps always active, so it is able to detect a match starting anywhere in the
text. At each text position where a final state gets active we signal the end point
of an occurrence.

A more efficient choice [1] is to convert the NFA into a deterministic finite
automaton (DFA), which has only one active state at a time and therefore allows
searching the text at O(u) cost, which is worst-case optimal. The cost of this
approach is that the DFA may have O(2™) states, which implies a preprocessing
cost and extra space exponential in m.

An easy way to obtain a DFA from an NFA is via bit-parallelism, which is
a technique to code many elements in the bits of a single computer word and



Regular Expression Searching over Ziv-Lempel Compressed Text 3

manage to update all them, in a single operation. In this case, the vector of
active and inactive states is stored as the bits of a computer word. Instead of
(ala Thompson [26]) examining the active states one by one, the whole computer
word is used to index a table which, given the current text character, provides
the new set of active states (another computer word). This can be considered
either as a bit-parallel simulation of an NFA, or as an implementation of a DFA
(where the identifier of each deterministic state is the bit mask as a whole). This
idea was first proposed by Wu and Manber [31, 30].

Later, Navarro and Raffinot [23] used a similar procedure, this time using
Glushkov’s [7] construction of the NFA. This construction has the advantage of
producing an automaton of exactly m + 1 states, while Thompson’s may reach
2m states. A drawback is that the structure is not so regular and therefore a
table D : 2™*! x (0+1) — 2™+! is required, where o is the size of the pattern
alphabet X'. Thompson’s construction, on the other hand, is more regular and
only needs a table D : 22™ — 22™ for the ¢-transitions. It has been shown [23]
that Glushkov’s construction normally yields faster search time. In any case, if
the table is too big it can be split horizontally in two or more tables [31]. For
example, a table of size 2™ can be split into 2 subtables of size 2™/2. We need
to access two tables for a transition but need only the square root of the space.

Some techniques have been proposed to obtain a tradeoff between NFAs and
DFAs. In 1992, Myers [19] presented a four-russians approach which obtains
O(mu/logu) worst-case time and extra space. The idea is to divide the syntax
tree of the regular expression into “modules” , which are subtrees of a reasonable
size. These subtrees are implemented as DFAs and are thereafter considered as
leaf nodes in the syntax tree. The process continues with this reduced tree until
a single final module is obtained.

The ideas presented up to now aim at a good implementation of the automa-
ton, but they must inspect all the text characters. Other proposals try to skip
some text characters, as it is usual for simple pattern matching. For example,
Watson [28, chapter 5] presented an algorithm that determines the minimum
length of a string matching the regular expression and forms a tree with all the
prefixes of that length of strings matching the regular expression. A multipat-
tern search algorithm like Commentz-Walter [8] is run over those prefixes as a
filter to detect text areas where a complete occurrence may start. Another tech-
nique of this kind is used in Gnu Grep 2.0, which extracts a set of strings which
must appear in any match. This string is searched for and the neighborhoods
of its occurrences are checked for complete matches using a lazy deterministic
automaton.

The most recent development, also in this line, is from Navarro and Raffinot
[23]. They invert the arrows of the DFA and make all states initial and the initial
state final. The result is an automaton that recognizes all the reverse prefixes of
strings matching the regular expression. The idea is in this sense similar to that
of Watson, but takes less space. The search method is also different: instead of
a Boyer-Moore like algorithm, it is based on BNDM [23].



4 Gonzalo Navarro

2.2 Compressed Pattern Matching

The compressed matching problem was first defined in the work of Amir and
Benson [2] as the task of performing string matching in a compressed text
without decompressing it. Given a text 7', a corresponding compressed string
Z = z,...2n, and a pattern P, the compressed matching problem consists in
finding all occurrences of P in T, using only P and Z. A naive algorithm, which
first decompresses the string Z and then performs standard string matching,
takes time O(m+u). An optimal algorithm takes worst-case time O(m+n+ R),
where R is the number of matches (note that it could be that R = u > n).

Two different approaches exist to search compressed text. The first one is
rather practical. Efficient solutions based on Huffman coding [10] on words have
been presented by Moura et al. [18], but they need that the text contains natural
language and is large (say, 10 Mb or more). Moreover, they allow only searching
for whole words and phrases. There are also other practical ad-hoc methods [15],
but the compression they obtain is poor. Moreover, in these compression formats
n = @(u), so the speedups can only be measured in practical terms.

The second line of research considers Ziv-Lempel compression, which is based
on finding repetitions in the text and replacing them with references to similar
strings previously appeared. LZ77 [32] is able to reference any substring of the
text already processed, while LZ78 [33] and LZW [29] reference only a single
previous reference plus a new letter that is added.

String matching in Ziv—Lempel compressed texts is much more complex, since
the pattern can appear in different forms across the compressed text. The first
algorithm for exact searching is from 1994, by Amir, Benson and Farach [3], who
search in LZ78 needing time and space O(m? + n).

The only search technique for LZ77 is by Farach and Thorup [9], a random-
ized algorithm to determine in time O(m + nlog®(u/n)) whether a pattern is
present or not in the text.

An extension of the first work [3] to multipattern searching was presented by
Kida et al. [13], together with the first experimental results in this area. They
achieve O(m? + n) time and space, although this time m is the total length of
all the patterns.

New practical results were presented by Navarro and Raffinot [24], who pro-
posed a general scheme to search on Ziv-Lempel compressed texts (simple and
extended patterns) and specialized it for the particular cases of LZ77, LZ78 and a
new variant proposed which was competitive and convenient for search purposes.
A similar result, restricted to the LZW format, was independently found and pre-
sented by Kida et al. [14]. The same group generalized the existing algorithms
and nicely unified the concepts in a general framework [12]. Recently, Navarro
and Tarhio [25] presented a new, faster, algorithm based on Boyer-Moore.

Approximate string matching on compressed text aims at finding the pattern
where a limited number of differences between the pattern and its occurrences
are permitted. The problem, advocated in 1992 [2], had been solved for Huffman
coding of words [18], but the solution is limited to search a whole word and
retrieve whole words that are similar. The first true solutions appeared very



Regular Expression Searching over Ziv-Lempel Compressed Text 5

recently, by Karkkiinen et al. [11], Matsumoto et al. [16] and Navarro et al.
[22].

3 The Ziv-Lempel Compression Formats LZ78 and LZW

The general idea of Ziv-Lempel compression is to replace substrings in the text
by a pointer to a previous occurrence of them. If the pointer takes less space
than the string it is replacing, compression is obtained. Different variants over
this type of compression exist, see for example [6]. We are particularly interested
in the LZ78/LZW format, which we describe in depth.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [33])
is based on a dictionary of blocks, in which we add every new block computed.
At the beginning of the compression, the dictionary contains a single block b,
of length 0. The current step of the compression is as follows: if we assume
that a prefix T1. ; of T has been already compressed in a sequence of blocks
Z =by...by, all them in the dictionary, then we look for the longest prefix of
the rest of the text 7,1, which is a block of the dictionary. Once we found this
block, say b, of length £,, we construct a new block b, 41 = (s, Tjte,+1), we write
the pair at the end of the compressed file Z, i.e Z = by ...b,b,,1, and we add
the block to the dictionary. It is easy to see that this dictionary is prefix-closed
(i.e. any prefix of an element is also an element of the dictionary) and a natural
way to represent it is a tree.

We give as an example the compression of the word ananas in Figure 1. The
first block is (0,a), and next (0,n). When we read the next a, a is already the
block 1 in the dictionary, but an is not in the dictionary. So we create a third
block (1,n). We then read the next a, a is already the block 1 in the dictionary,
but as do not appear. So we create a new block (1, s).

Prefix encoded a an anan ananas
0 0
a / i / \,. a / \n a / \n
Dictionary 1 1 2 1 2 1 2
N 7\
3 4 3
Compressed file  (0,a) (0,2)(0,n) (0,a)(0,n)(1,n) (0,2)(0,n)(1,n)(1,s)

Fig. 1. Compression of the word ananas with the algorithm LZ78.

The compression algorithm is O(u) time in the worst case and efficient in
practice if the dictionary is stored as a tree, which allows rapid searching of
the new text prefix (for each character of 7 we move once in the tree). The



6 Gonzalo Navarro

decompression needs to build the same dictionary (the pair that defines the
block r is read at the r-th step of the algorithm), although this time it is not
convenient to have a tree, and an array implementation is preferable. Compared
to LZ77, the compression is rather fast but decompression is slow.

Many variations on LZ78 exist, which deal basically with the best way to
code the pairs in the compressed file, or with the best way to cope with limited
memory for compression. A particularly interesting variant is from Welch, called
LZW [29]. In this case, the extra letter (second element of the pair) is not coded,
but it is taken as the first letter of the next block (the dictionary is started with
one block per letter). LZW is used by Unix’s Compress program.

In this paper we do not consider LZW separately but just as a coding variant
of LZ78. This is because the final letter of LZ78 can be readily obtained by
keeping count of the first letter of each block (this is copied directly from the
referenced block) and then looking at the first letter of the next block.

4 A Search Algorithm

We present now our approach for regular expression searching over a text Z =
by ...b,, that is expressed as a sequence of n blocks. Each block b, represents a
substring B, of T', such that B; ... B, = T. Moreover, each block B, is formed by
a concatenation of a previously seen block and an explicit letter. This comprises
the LZ78 and LZW formats. Our goal is to find the positions in 7" where the
pattern occurrences end, using Z.

Our approach is to modify the DFA algorithm based on bit-parallelism, which
is designed to process T' character by character, so that it processes T' block by
block using the fact that blocks are built from previous blocks and explicit letters.
We assume that Glushkov’s construction [7] is used, so the NFA has m+1 states.
So we start by building the DFA in O(2™) time and space.

Our bit masks will denote sets of NFA states, so they will be of width m+ 1.
For clarity we will write the sets of states, keeping in mind that we can compute
AUB, ANB, A°, A = B, A + B, a € Ain constant time (or, for long patterns, in
O([m/w]) time, where w is the number of bits in the computer word). Another
operation we will need to perform in constant time is to select any element of
a set. This can be achieved with “bit magic”, which means precomputing the
table storing the position of, say, the highest bit for each possible bit mask of
length m + 1, which is not much given that we already store o such tables.

About our automaton, we assume that the states are numbered 0. ..m, being
0 the initial state. We call F' the bit mask of final states and the transition
function is D : bitmasks x X — bitmasks.

The general mechanism of the search is as follows: we read the blocks b,
one by one. For each new block b read, representing a string B, and where we
have already processed Tj.;, we update the state of the search so that after
working on the block we have processed Ty jy B = T1..jB. To process each
block, three steps are carried out: (1) its description is computed and stored, (2)



