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Preface

The cover picture shows a smooth quartic surface in space, the simplest ex-
ample of a projective model of a K3 surface. In the following pages we will
encounter many more examples of models of such surfaces.

The purpose of this volume is to study and classify projective models
of complex K3 surfaces polarized by a line bundle L such that all smooth
curves in |L| have non-general Clifford index. Such models are in a natural
way contained in rational normal scrolls.

These models are special in moduli in the sense that they do not repre-
sent the general member in the countable union of 19-dimensional families
of polarized K3 surfaces. However, they are of interest because they fill up
the set of models in PY for g < 10 not described as complete intersections in
projective space or in a homogeneous space as described by Mukai, with a few
classificable exceptions.

Thus our study enables us to classify and describe all projective models of
L3 surfaces of genus g < 10, which is the main aim of the volume.
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certain projective models of K3 surfaces in scrolls that had shown up in
connection with his work on varieties of sums of powers (see [[-R1], [I-R2]
and [R-S|). This idea was the starting point of our work.

We are also grateful to M. Coppens, G. Floystad, S. Ishii, S. Lekaus,
R. Piene, J. Stevens, S. A. Strgmme, B. Toen and J. E. Vatne for useful
conversations, and to G. M. Hana for pointing out several mistakes in an
earlier version of the manuscript.
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Introduction

1.1 Background

A K3 surface is a smooth compact complex connected surface with trivial
canonical bundle and vanishing first Betti number. The mysterious name
K3 is explained by A. Weil in the comment on his Final report on contract

AF18(603)-57 (see [We| p 546):

Dans la seconde partie de mon rapport, il s'agit des variétés kihler-
iennes dites K3, ainsi nommées en ['honneur de Kummer, Kodaira,
Kahler et de la belle montagne K2 au Cachemire.

It is well known that all K3 surfaces are diffeomorphic, and that there is a
20-dimensional family of analytical isomorphism classes of K3 surfaces. How-
ever, the general element in this family is not algebraic, in fact the algebraic
ones form a countable union of 19-dimensional families. More precisely, for any
n > 0 there is a 19-dimensional irreducible family of K3 surfaces equipped
with a base point free line bundle of self-intersection n. Moreover. the family
of K3 surfaces having > k linearly independent divisors (i.e. the surfaces with
Picard number > k, where the Picard number is by definition the rank of
the Picard group) forms a dense countable union of subvarieties of dimension
20 — k in the family of all K3 surfaces. In particular, on the general algebraic
K3 surface all divisors are linearly equivalent to some rational multiple of the
hyperplane class (see |G-H. pp. 590-594]).

A pair (S. L) of a K3 surface S and a base point free line bundle L with
L? = 2g — 2 will be called a polarized K3 surface of genus g. Note that
g = h(L) — 1 and that g is the arithmetic genus of any member of |L|. The
sections of L give a map ¢y, of S to PY, and the image is called a projective
model of S. When ¢y, is birational, the image is a surface of degree 2g — 2 in
PY. It is also easy to see that a projective model of genus 2 is a 2 : 1 map
S — P? branched along a sextic curve.

A very central point in the theory of projective models of K3 surfaces is
that by the adjunction formula every smooth hyvperplane section of a projec-
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tive model of S (these are the images by ¢ of the smooth members of |L|)
are canonical curves, i.e. curves for which we ~ O¢(1).

The first examples of projective models of K3 surfaces are the ones which
are complete intersections in projective space. Using the fact that for a com-
plete intersection surface S of n—2 hypersurfaces in P" of degrees dy,...,d,_2
we have wg ~ Og(>.d; —n — 1) and h'(Og) = 0 (see e.g. [Hrts, Exercises
I1.8.4 and I11,5,5]), we find that there are exactly three types of K3 com-
plete intersections, namely a hyperquartic in P?, a complete intersection of
a hyperquadric and a hypercubic in P* and a complete intersection of three
hyperquadrics in P°.

In fact one can show that any birational projective model of genus 3 is
a quartic surface and of genus 4 a complete intersection of a quadric and a
cubic hypersurface. But already for genus 5 the situation is not as simple: The
general model is a complete intersection of three hyperquadrics, but there are
models which are not. In fact, take a 3-dimensional smooth rational normal
scroll X of degree 3 in P?, which can be seen as the union of P?s parametrized
by P!, i.e. a P2-bundle over P'. Intersect this scroll by a (sufficiently general)
cubic hypersurface C containing one of the P2-fibers, call it F, then the inter-
section is CNX = F U S, where S is a smooth surface of degree 8 in P?, i.e.
a K3 surface. The ideal of this surface cannot be generated only by quadrics,
whence S is not a complete intersection of three hyperquadrics. Note that the
intersection of C with a general P?-fiber is a smooth curve of degree 3 in P2,
which is elliptic by the genus formula, so S contains a pencil of elliptic curves
of degree 3. In particular, since such a curve cannot be linearly equivalent
to a multiple of the hyperplane section, S contains two linearly independent
divisors, whence these surfaces can at most fill up an 18-dimensional family
(in fact we will show that they do fill up an 18-dimensional family). Another
interesting point is that the elliptic pencil on the surface cuts out a g3 (i.e. a
linear system of dimension 1 and degree 3) on each hyperplane section of S.
Conversely, by a classical theorem of Enriques-Petri, the homogeneous ideal
of a canonical curve with a g} is generated by both quadrics and cubics, so
any projective model in P® of a K3 surface whose hyperplane sections have a
g4 cannot be the complete intersection of three hyperquadrics.

For 6 < g <10 and g = 12 it is shown by Mukai in [Mul| and [Mu2] that
the general projective models are complete intersections in certain homoge-
neous varieties contained in projective spaces of larger dimension than g. The
ambient varieties are constructed using special divisors on the hyperplane sec-
tions, and the general models have the property that their hyperplane sections
do not carry certain particular g)s induced from divisors on the surface.

That the projective model of a K3 surface somehow has to do with special
divisors carried by the curves in |L| dates back to the classical paper [SD]
of Saint-Donat, which has become the main reference for all later work on
projective models of or curves on K3 surfaces.

As remarked in [SD] it is clear from Zariski’s Main Theorem (see e.g. |Hrts,
V. Thm. 5.2|) that
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wrL =urofy,

where wy is a finite morphism and 6; maps S birationally onto a normal
surface by contracting finitely many curves to rational double points and is
an isomorphism outside these curves (the contracted curves are the curves
sent to a point, and these are precisely the curves A such that L.A = 0).

One of the main results in [SD] describes exactly when the map uy, is an
identity, in other words when ¢y, is birational.

Theorem 1.1 (Saint-Donat [SD]). Let L be a base point free line bundle
with L? > 0 on a K3 surface S. The following conditions are equivalent:

(a) oy, is not birational.

(b) There is a smooth hyperelliptic curve in |L|.

(¢) All the smooth curves in |L| are hyperelliptic.

(d) L? = 2: or there is a smooth elliptic curve E on S satisfying E.L = 2; or
L ~ 2B for a smooth curve B with B> =2 and L ~ 2B.

A linear system |L| satisfying these properties is said to be hyperelliptic.
Furthermore, if L is not hyperelliptic, then the natural maps S, H°(L) —

H(nL) are surjective for all n

(Recall that a smooth curve is said to be hyperelliptic if it carries a gJ.)
This “lifts” the classical fact that the canonical morphism of a smooth curve is
an embedding if and only if the curve is not hyperelliptic and also Noether’s
theorem. to the surface:

Theorem 1.2 (Noether [No|). If C is not hyperelliptic, then the ring
PHY(C,nwe) is the homogeneous coordinate ring of C' in its canonical em-
bedding in PY.

Moreover. Saint-Donat’s result tells that a g3 on a smooth curve on a A'3
surface “propagates” to the other smooth members of the linear system. In
fact, except for the trivial case where all the curves have genus 2 (the case
L? = 2) and are therefore trivially hyperelliptic, such a propagating g3 is given
by the pencils O¢(FE) or éO(-(B) for any smooth curve C' € |L|, corresponding
to the curves F and B in (d).

Another main result in [SD] describes the homogeneous ideal of the image
L (S):

Theorem 1.3 (Saint-Donat [SD]). Let L be a base point free non-hyperelliptic
line bundle with L* > 8 on a K3 surface S. Denote by I the graded ideal de-
fined as the kernel of the map S,H(L) — ®H(nL). Then I is generated by
quadrics and cubics. Moreover the following conditions are equivalent:

(a) I is generated not only by quadrics.
(b) |L| contains a smooth curve carrying a g} or a g2.
(¢) All the smooth curves in |L| carry a g3 or all carry a g2.
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(d) There is a smooth elliptic curve E on S satisfying E.L = 3; or L ~2B+1"
for a smooth curve B with B* = 2 and I a smooth rational curve with
B.I' =1 (and I'* = =2, in particular L? = 10).

Again, this lifts the classical result of Petri from the curve to the surface:

Theorem 1.4 (Petri [Pe]). The homogeneous ideal of a non-hyperelliptic
canonical curve C' is generated by quadrics, unless C' has a g} or a g2.

In the cases L? = 4 or 6 all the smooth curves in |L| have genus 3 or 4, so
they necessarily carry a g} (i.e. they are trigonal). For higher genus the last
result again tells that gis and ¢2s “propagate” among the smooth curves in
|L|. Indeed the linear systems |E| and |B| on S given in (d) cut out a g} and
a g2 respectively on all the members of |L|.

Moreover. Saint-Donat gives a thorough description of the projective mod-
cls in the special cases where | L] is hyperelliptic or I is generated not only by
quadrics. The models happen to lie in rational normal scrolls.

To broaden our perspective, let us recall the definition of the Clifford index
of a smooth curve C' of genus g. introduced by H. H. Martens in [HMa|. This is
denoted by Cliff C' and is the minimal integer deg A — 2(h"(A) — 1) for all line
bundles A on (' satisfying h’(A) > 2 and h'(A) > 2. (The latter requirements
presuppose that g > 4; however one can give ad hoc definitions in the cases of
genus 2 or 3, by setting Cliff C' = 0 for C' of genus 2 or hyperelliptic of genus 3,
and Cliff C' = 1 for C' non-hyperelliptic of genus 3.) Clifford’s theorem states
that Cliff ' > 0 with equality if and only if C' is hyperelliptic and Cliff C' = 1
if and only if C' is trigonal or a smooth plane quintic. Moreover, we also have
Cliff C < L%lj with equality for the general curve (cf. [A-C-G-H, V]).

We can rephrase the two results above of Saint-Donat by saying that o,
is birational if and only if Cliff C'" > 0 for every smooth curve C' € |L| and
that in addition [ is generated only by quadrics if and only if Cliff C' > 1 for
every smooth curve C' € |L|.

Moreover, Saint-Donat’s results yield that either all or none of the smooth
curves in a complete linear system on a K3 surface have Clifford index 0
(resp. 1). It is then a natural question to ask whether this also holds for
higher indices.

Around ten years after the appearance of Saint-Donat’s paper, interesting
new techniques were introduced in the study of projective varieties.

One tool was the introduction of Koszul cohomology in |Gr| in connection
with the study of syzygies and the resulting famous conjecture of Green.

Consider a smooth variety X with a base point free line bundle L with
r:= h"(L) — 1 on it and the graded ring R := #,,>0H"(X,mL). This is
in a natural way a finitely generated module over T := Sym H"(X.L). the
coordinate ring of the projective space P(HY(L)). and so has a minimal graded

[free resolution

0O— M,y — ... — My — My — R— 0,
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where each M; is a direct sum of twists of T
M; = ®;T(=j) ® M; ; ~ @;T(—j).

The finite dimensional vector space M, ; is called the syzygy of order i and
weigth j and the 3; ; := dim M, ; are called the graded Betti-numbers. Now L
is said to satisfy property N, if

My=T and M;=T(=i—1)"1 forall 1<i<p.

To be more concrete, Ny means that ¢, (X) is projectively normal, N| that in
addition its homogeneous ideal is generated by quadrics, and more generally
N, for p > 2 means that in addition the matrices in the minimal graded free
resolution have linear entries from the second to the pth step.

Now if X = (' is a smooth curve Green conjectured the following:

Conjecture 1.5 (Green [Gr]). The Clifford index of C' is the least integer
p for which property N, fails for the canonical bundle.

For Cliff " = 0 this is Noether’s theorem and for Cliff C' = 1 this is Petri’s
theorem.

A “Lefschetz theorem” as in [Gr, (3.b.7)] implies that the syzygies of a
hyperplane section of a K3 surface are the same as the ones of the A3 surface,
so that all linearly equivalent smooth curves on a K3 surface have the same
syzygies. Therefore an immediate consequence of Green's conjecture would
be that all the smooth curves in a linear system on a K3 surface have the
same Clifford index (since all such are canonically embedded by ¢y, by the
adjunction formula).

A second important tool was the vector bundle techniques introduced by
Lazarsfeld |La2] and Tyurin |Ty] (and also by Reider [Rdr| in a slightly dif-
ferent context). Using these techniques Green and Lazarsfeld [G-L4| proved
that all the smooth curves in a linear system on a K3 surface have the same
Clifford index. Moreover, they proved that if non-general, i.e. if < [%J the
Clifford index is induced by a line bundle on the surface, similarly to the cases
studied by Saint-Donat.

Theorem 1.6 (Green-Lazarsfeld [G-L4]). Let L be a base point free line
bundle on a K3 surface S with L? > 0. Then Cliff C' is constant for all smooth
irreducible C' € |L|, and if Clff C < [%IJ then there exists a line bundle
M on S such that M¢ := M © O¢ computes the Clifford index of C for all

smooth irreducible C' € |L|.

As an immediate consequence we see that in the general case, i.e. when
Pic S ~ ZL, then there can exist no line bundle A as above, so on the general
K3 surface all curves have the general Clifford index.

By the result of Green and Lazarsfeld it makes sense to define the Clifford
index CIliff L of a base point free line bundle, or the Clifford index CIliff 1 (5)
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of a polarized K3 surface (S, L), as the Clifford index of the smooth curves in
|L].

The fact that the Clifford index somehow influences the projective model
of S was also remarked in [Kn4], where the second author studies higher order
embeddings of K3 surfaces. Roughly speaking the Clifford index determines
the amount of (k + 1)-secant (k — 1)-planes of the projective model.

In this book we study the projective models of those polarized K3 sur-
faces of genus g of non-general Clifford index, i.e. with Cliff ,(S) < L%J
These surfaces are special in moduli, since they can only fill up at most 18-
dimensional families (except in the particular cases where S has Picard num-
ber one and L is non-primitive, i.e. L is an integral multiple > 2 of the
generator of Pic S).

As in the cases of Clifford index 0 and 1 studied by Saint-Donat, these
models lie in rational normal scrolls in a natural way.

The central point is that by the result of Green and Lazarsfeld there exists
in these cases a linear system |D| on S computing the Clifford index of L. We
can moreover choose such a linear system which is base point free and such
that the general member is a smooth curve. We call such a divisor (class) D
a free Clifford divisor for L.

The images of the members of |D| by ¢, span sublinear spaces inside
PY. Each subpencil {D,} within the complete linear system |D| then gives
rise to a pencil of sublinear spaces. For each fixed pencil the union of these
spaces will be a rational normal scroll 7. These scrolls are the natural ambient
spaces for non-Clifford general K3 surfaces. Our description is inspired by
and uses methods developed by Schreyer in [Sc|, where the authour studies
scrolls containing canonical curves and uses this to prove Green’s conjecture
for ¢ < 8. In the same spirit as Saint-Donat, we so to speak lift Schreyer’s
results from the curve to the surface.

In the cases of Clifford index 1 and 2 with D? = 0, the description of the
projective models is particularly nice, since they are then complete intersec-
tions in their corresponding scrolls.

Another important tool, which was still not available at the time [SD| was
written, are the results on lattices by Nikulin [Ni|, which allows to construct
families of A3 surfaces with prescribed lattices, and thus show the existence of
several interesting families. Using this, the second author proved the following
Eristence Theorem in [Kn2|: For any pair of integers (g.c¢) such that g > 2
and 0 < ¢ < ['J;—IJ, there exists an 18-dimensional family of polarized K3
surfaces of genus ¢ and of Clifford index c¢. Similar techniques allow us to
prove the existence of all the families we study in this book and also compute
their number of moduli.

We also give a description of those projective models for ¢ < 10 that
are Clifford general. but still not general in the sense of Mukai (i.e. they are
not complete intersections in homogeneous spaces). These models are also
contained in scrolls, and can be analysed in a similar manner. Together with
Mukai’s results this then gives a complete picture of the birational projective
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models for ¢ < 10. For ¢ = 11 and g > 13 our description of non-Clifford
general projective models is not supplemented by any description of general
projective models at all. We hope, however, that our description of the non-
general models may have some interest in themselves.

1.2 Related literature

K3 surfaces in scrolls have also been studied in |Br| and [Ste].

Saint-Donat’s results on the propagation of gis and g}s among the smooth
curves in a linear system on a K3 surface were extended to other g}s by Reid
|[Re3]. The general question of propagation of gs came out of work of Harris
and Mumford [H-M]. In fact they conjectured (unpublished) that the gonality
(i.e. the minimal degree of a pencil on a curve) should be constant among the
smooth curves in a linear system. Subsequently, Donagi and Morrison [D-M]|
pointed out the following counterexample:

Example 1.7. [D-M, (2.2)] Let # : S — P? be a K3 surface of genus
2. i.e. a double cover of P? branched along a smooth sextic, and let L :=
7*Op2(3). The arithmetic genus of the curves in |L| is 10. We have H"(L) =
7 H'Op2(3) & W, where W is the one-dimensional subspace of sections van-
ishing on the ramification locus. The smooth curves C' in the first summand
are double covers of cubics, whence tetragonal (they all carry a 1-parameter
family of gis which is the pullback of the 1-parameter family of gis on 7(C')).
On the other hand, the general curve in |L| is isomorphic to a smooth plane
sextic and is therefore of gonality 5. (Note that, in full accordance with the
theorem of Green and Lazarsfeld, all the curves have Clifford index 1.)

The question is still open whether there exist other counterexamples. Cilih-
erto and Pareschi |C-P] proved that this is indeed the only counterexample
when L is ample.

Exceptional curves, i.e. curves for which the Clifford index is not computed
by a pencil, so that Cliff C' < gon (' — 2, were studied in [E-L-M-S|, where a
whole class of examples were constructed as curves on K3 surfaces.

As for other surfaces, the constancy of the Clifford index and gonality
of the smooth curves in a linear system on a Del Pezzo surface was studied
by Pareschi [Pa] and the second author [Knl, Kn3], who also classifies the
exceptional curves on Del Pezzo surfaces.

As for recent work on Green's conjecture we refer to the recent brilliant
work of Voisin [Vol, Vo2|, who - most interestingly - uses curves on K3 sur-
faces.

1.3 How the book is organised

Chapter 2. We recall the definition and some basic facts about rational normal
scrolls, and how to obtain such scrolls from surfaces with pencils on them.
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Most of this stems from [Sc|. At the end we give some special results when
the surface is K3.

Chapter 3. The Clifford index of a curve is defined and the result of Green
and Lazarsfeld for curves on K3 surfaces is given. We define the Clifford index
of a base point free line bundle L with L? = 2g — 2 (or the polarized surface
(5.L)) to be the Clifford index of all the smooth curves in |L|. The divisor
class D on S computing the Clifford index ¢ of L, when this is less than
[”—E—lj is studied, and we show that we can always find one such satisfying
0 < D? < ¢+ 2 and such that |D| is base point free and the general member
of |D] is a smooth curve. Such a divisor (class) will be called a free Clifford
divisor for L (Definition 3.6). (The definition only depends on the class of D.)

The images of the members of |D| by yy, span sublinear spaces inside P9.
Each subpencil {D,} within the complete linear system |D| then gives rise to
a pencil of sublinear spaces. For each fixed pencil the union of these spaces
will be a rational normal scroll 7.

Chapter 4. The main result from [Kn2|, the above mentioned Eristence
Theorem, and its proof are recalled.

Chapter 5. We study in detail the singular locus of the projective model
¢ (5) and the scroll 7 in which we choose to view this model as contained.
We show (Theorem 5.7) that we can always find a free Clifford divisor D such
that the singular locus of 7 is “spanned” by the images of the base points
of the pencil {Dy} and the contractions of smooth rational curves across the
members of the pencil. A free Clifford divisor with this extra property will be
called a perfect Clifford divisor (Definition 5.9). The proofs use results about
higher order embeddings of K3 surfaces as developed by the second author in
[Kn4|, which we briefly recall in Section 1.4 below. We also include a study of
the projective model if ¢ = 0 (the hyperelliptic case), which is Saint-Donat’s
classical result [SD]. Some proofs are postponed until the next chapter.

Chapter 6. Here some of the longer proofs of the results in the previous
chapter are given.

Chapter 7. We study and find (up to certain invariants) a resolution of
@r,(9) inside its scroll 7 when 7 is smooth. In this case a general hyperplane
section of 7 is a scroll formed in a similar way from a pencil computing the
gonality on a canonical curve C' of genus g (the gonality is ¢+ 2). Such scrolls
were studied in [Sc], and our results (Lemma 7.1 and Proposition 7.2) for K3
surfaces in smooth scrolls are quite parallel to those of [Sc].

Chapter 8. We treat the case when the scroll 7 is singular. The approach
is to study the blow up f : S — S at the D? base points of the pencil
{Dx} and the projective model S” := ¢ 5(S) of S by the base point free line
bundle H := f*L + f*D — E., where E is the exceptional divisor. The pencil
|f*D — E| defines a smooth rational normal scroll 7, that contains S” and is
a desingularization of 7.

We use Koszul cohomology and techniques inspired by Green and Lazars-
feld to compute some Betti-numbers of the ¢, (D) and we obtain that they
all have the same Betti-numbers for low values of D? and this is a necessary
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and sufficient condition for “lifting” the resolutions of the fibers to one of the
surface S in 7. We prove that S” is normal, and use this to give more details
about the resolution. We give conditions under which we can push down the
resolution to one of ¢ (S) in 7. Here we use results from [Sc|. We end the
section by investigating some examples for low genera.

Chapter 9. We consider in more detail the projective models in smooth
scrolls for ¢ = 1, 2 and 3 (< Ll;—l |). The description is particularly nice for
¢ = 1 and 2, since the projective models are complete intersections in their
corresponding scrolls.

We study the sets of projective models in (¢ + 2)-dimensional scrolls of
given types. Since the scroll type is dependent on which rational curves that
exist on S, and therefore on the Picard lattice, it is natural that the dimension
of the set of models in question in a scroll as described is dependent on the
scroll type. We study this interplay, and obtain a fairly clear picture for ¢ = 1
and 2. Most of the information presented can also be obtained from combining
material in [Re2|, [Ste], and [Br|. For ¢ = 3 we study a Pfaffian map of the
resolution of ¢ (S) in the scroll. In Remark 9.19 we predict the dimension of
the set of projective K'3 models inside a fixed smooth scroll of a given type.
for arbitrary ¢ < Lg—glj We state the special case ¢ = 3 as Conjecture 9.15.

Chapter 10. We give the definition of BN general polarized K3 surfaces
introduced by Mukai in [Mu2|: A polarized K 3 surface (S, L) is said to be Brill-
Noether (BN) general if for all non-trivial decompositions L ~ A + N one
has hO(M)hY(N) < hY(L). (One easily sees that this is for instance satisfied if
any smooth curve C' € |L| is Brill-Noether general, i.e. carries no line bundle
A for which p(4) := g — h'(A)h'(A) < 0.) In [Mul] it is shown that all
such projective models of BN general surfaces of genus ¢ < 10 and g = 12
are complete intersections in certain homogeneous spaces, and that being BN
general is also a necessary condition to have such a model (see Theorem 10.3
below).

We study the projective models for g < 10 that are Clifford general but not
BN general. By the concrete description in [Mu2] of such surfaces it follows
that their projective models are also contained in scrolls. We analyse them in
a similar manner.

Chapter 11. We conclude by giving a complete list and descripton of all
birational projective models of K3 surfaces for g < 10 (including both the
general ones in the sense of Mukai and the remaining ones. that we give a
detailed classification of here).

Chapter 12. Some related issues and applications of the ideas developed in
this book are discussed, like rational curves in families of Calabi-Yau threefolds
and scrolls containing Enriques surfaces.

1.4 Notation and conventions

We use standard notation from algebraic geometry, as in [Hrts].
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The ground field is the field of complex numbers. All surfaces are reduced
and irreducible algebraic surfaces.

By a K3 surface is meant a smooth surface S with trivial canonical bundle
and such that H'(Og) = 0. In particular h?(Og) = 1 and x(Og) = 2.

By a curve is always meant a reduced and irreducible curve (possi-
bly singular). The adjunction formula for a curve C' on a surface S reads
Oc(C + Kg) ~ we, where we is the dualising sheaf of C', which is just the
canonical bundle when C' is smooth. In particular, the arithmetic genus p, of
(' is given by C.(C + Kg) = 2p, — 2.

On a smooth surface we use line bundles and divisors, as well as the mul-
tiplicative and additive notation, with little or no distinction. We denote by
Pic S the Picard group of S, i.e. the group of linear equivalence classes of
line bundles on S. The Hodge index theorem yields that if H € Pic S with
H? > 0, then D?H? < (D.H)? for any D € Pic S, with equality if and only
if (D.H)H = H?D.

Linear equivalence of divisors is denoted by ~, and numerical equivalence
by =. Note that on a K3 surface S linear and numerical equivalence is the
same, so that Pic S is torsion free. The usual intersection product of line
bundles (or divisors) on surfaces therefore makes the Picard group of a K3
surface into a lattice, the Picard lattice of S, which we also denote by Pic S.

For two divisors or line bundles M and N on a surface, we use the notation
M > N tomean h'(M—N) > 0and M > N, if in addition M — N is nontrivial.

If L is any line bundle on a smooth surface, L is said to be numerically
effective, or simply nef, if L.C' > 0 for all curves C' on S. In this case L is said
to be big if L? > 0.

If F is any coherent sheaf on a variety V, we shall denote by h'(F)
the complex dimension of H*(V,F), and by x(F) the Euler characteristic
S (—=1)'h*(F). In particular, if D is any divisor on a normal surface S, the
Riemann-Roch formula for D is x(Og(D)) = %D.(D~Kg)+x(0g). Moreover,
if D is effective and nonzero and L is any line bundle on D, the Riemann-Roch
formula for £ on D is x(£) =deg L+ 1 — p,(D) = deg L — %D.(D + Kg).

We will make use of the following results of Saint-Donat on line bundles on
K 3 surfaces. The first result will be used repeatedly, without further mention.

Proposition 1.8. [SD, Cor. 3.2] A complete linear system on a K3 surface
has no base points outside of its fized components.

Proposition 1.9. [SD, Prop. 2.6] Let L be a line bundle on a K3 surface S
such that |L| # 0 and such that |L| has no fized components. Then either

(i) L?> > 0 and the general member of |L| is a smooth curve of genus L*/2+1.
In this case h'(L) =0, or

(ii)L? = 0, then L ~ Og(kE), where k is an integer > 1 and E is a smooth
curve of arithmetic genus 1. In this case h* (L) = k — 1 and every member
of |L| can be written as a sum E\+- -+ Ey, where I; € |E| fori=1,... k.



