Proceedings of the 1985 Symposium on

Security & Privacy

Proceedings of the 1985 Symposium on

Security and Privacy

April 22-24, 1985 Oakland, California

Sponsored by the
Technical Committee on Security and Privacy
IEEE Computer Society

ISBN 0-8188-0629-0

IEEE Catalog Number 85CH2150-1 ” 0 \EEE COMPUTER SOCIETY
Compter Socuty Ordor Number 629 TES8 @ 1 WIBY e mtuute o sscrai avo @,

ECTRIC
ELECTRONICS ENGINEERS INC

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors’ opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street
Suite 300
Silver Spring, MD 20910

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing Serv-
ices, |[EEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1985 by The Institute
of Electrical and Electronics Engineers, Inc.

ISBN 0-8186-0629-0 (paper)
ISBN 0-8186-4629-2 (microfiche)
ISBN 0-8186-8629-4 (casebound)

IEEE Catalog Number 85CH2150-1
Library of Congress Number 85-60166
Computer Society Order Number 629

Order from: IEEE Computer Society IEEE Service Center
Post Office Box 80452 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

0 THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
IeeE

1985 IEEE Symposium on Computer Security and Privacy

General Chairman
Robert Morris
AT&T Bell Laboratories

Program Co-Chairmen

Jonathan K. Millen
MITRE Corp.

Virgil D. Gligor
University of Maryland

Program Committee

Stephen Kent
BBN, Cambridge, MA

Richard Platek
Odyssey Research Associates, Ithaca, NY

David Bailey
Los Alamos National Laboratory, Los Alamos, NM

Carl Landwehr
Naval Research Laboratory, Washington, DC

Steven Lipner
Digital Equipment Corp., Maynard, MA

Thomas Berson
SYTEK, Inc., Mountain View, CA

Deborah Downs
Aerospace Corp., Los Angeles, CA

John Woodward
MITRE Corp., Bedford, MA

il

Preface

This year’s Symposium on Security and Privacy is sixth in a series of annual symposia which helped establish
computer security as a distinct discipline of computer science and engineering. As a discipline of computer
science and engineering, computer security demands a blend of both theoretical and practical thinking. It
offers rich opportunities for contributions from either direction and for the creative application of theoretical
results in real systems. Undoubtedly, this Symposium continues the established tradition of fostering this
interplay of needs and ideas.

The computer security topics addressed by this year’s Symposium cover a wide range, including verification
methods and tools, network security, cryptographic algorithms and techniques, security policy, and OS and
DBMS security mechanisms. The growing interest in this Symposium is reflected by the large number of
submissions. We received 63 submissions of papers and 2 panel proposals—a substantial increase over
previous years. Each paper was reviewed by at least three members of the Program Committee. The results of
the review process led to the selection of the 25 papers for inclusion in the three-day, nine-session program.
For the first time, the best papers from this Symposium will be published in an issue of IEEE Software during
1985.

We would like to thank all the authors who submitted papers to the Symposium and the Program Committee
members who, despite their geographic distribution and a demanding review schedule, responded promptly
to all our demands. Last but not least our thanks are due to Ms. Lee Blue of the IEEE Computer Society for
her efforts and patience.in producing the Symposium Proceedings.

Jonathan K. Millen Virgil D. Gligor
Program Co-Chairman Program Co-Chairman

Table of Contents

Program Committee ittt .. dii

Prefaceo e A, iv

Verification Methods

. Structuring Systems for Formal Verification. ittt 2

R.B. Neely and J.W. Freeman

Trusted Software Verification: A Case Study i i, 14
T.C.V. Benzel and D.A. Tavilla

Analysis of the Hardware Verification of the Honeywell SCOMP 32
V.D. Gligor

Verification Tools

An Information Flow Tool for Gypsy.cituniuiii ittt iiee cie e meaeennn 46
J. McHugh and D.I. Good

The Restricted Access Processor: An Example of Formal Verification. 49
N. Proctor

Network Policies

Non-Discretionary Controls for Inter-Organization Networks, 56
D. Estrin ’

Network Security OVEIVIEW.ottt ettt et e ettt aa ~62

, S.T. Walker

A Unification of Computer and Network Security Conceptscovuuiineuuuneeeennnn 77
J.P. Anderson ;

DoD Trusted Computer Systems Evaluation Criteria
Panel Session: Putting the Criteria to Work .n Complex System Developments

Applications of Cryptography

Cryptographic Protocol for Trustable Match Making.o i, 92
R.W. Baldwin and W.C. Gramlich

Polonius: An Identity Authentication System i 101
R.M. Wong, T.A. Berson, and R.J. Feiertag

How to (Selectively) Broadcast a Secret.c.iiitiiiiiiiineinnneennnn. R, 108

G.J. Simmons
Cryptographic Algorithms
A Database Encryption Scheme Which Allows the Computation of Statistics Using

Encrypted Data: o :cosmsonsmsmnsasmospmssismsmsmsses smsmmigssasmis SN IROFEHISE FHIAGE 116
G.R. Blakley and C. Meadows . ' '
A Fast Signature Scheme Based on Quadratic Inequalities 123

T. Okamoto and A. Shiraishi

Database Security

Commutative Filters for Reducing Inference Threats in Multilevel Database Systems 134
D.E. Denning

Design Overview for Retrofitting Integrity-Lock Architecture onto a Commercial

DBMS . e e e 147
R.D. Graubart and K.J. Duffy

Rounding and Inference Control in Conceptual Models for Statistical Databases 160

G. Ozsoyoglu and T.-A. Su
Operating Systems Mechanisms

Secure Ada Target: Issues, System Design, and Verification 176
W.E. Boebert, W.D. Young, R.Y. Kain, and S.A. Hansohn

Ada’s Suitability for Trusted Computer SYSEMSoututitttetttiiiiinnenrenenn. 184
E.R. Anderson

Negotiated Access Control.ottt e ettt et e 190
K. Swaminathan

Analysis of Acyclic Attenuating Systems for the SSR Protection Model 197
R.S. Sandhu

Security Policies I

Issues in Discretionary Access Control. i e 208 .
D.D. Downs, J.R. Rub, K.C. Kung, and C.S. Jordan

Computer Privacy in America: Conflicting Practices and Policy Choices........................ 219
B.G. Matley ‘

Security Considerations for Autonomous Robots i, 224
D.W. Gage

Security Policies II

The Implementation of Secure Entity-Relationship Databases. 230
B.H. Patkau and D.L. Tennenhouse

Labeling SCreen OUIPUL . . . i« ccvmiveeminsssemsisimssnestones imassesssnssnessnsessssssss 237
M.E. Rudell

Author Index. iiiiiinan.. 24l

Verification Methods
Chairman: J.K. Millen, MITRE Corp.

Monday, April 22, 1985
9:00 am - 10:30 am

Structuring Systems for Formal Verification
R.B. Neely and J.W. Freeman

Trusted Software Verification: A Case Study
T.C.V. Benzel and D.A. Tavilla

Analysis of the Hardware Verification of the Honeywell SCOMP
V.D. Gligor

STRUCTURING SYSTEMS FOR FORMAL VERIF ICATION

Richard B. Neely
(303) 594-1460

James W. Freeman
(303) 594-1536

Ford Aerospace and Communications Corporation
10440 State Highway 83
Colorado Springs, Colorado 80908

High levels of assurance for a secure system are
obtained, in part, by the description of its
trusted computing base in terms of a formal top-
lével specification. Nevertheless, the use of a
single-level specification can result in an
inability to 1link the behavior of the trusted
computing base with the security policy of the
system as a whole. This paper discusses some of
the resulting problems and presents an approach
to structuring systems that will support their
verification. Such structuring is shown to be
effective in bridging the gap between the trusted
~computing base itself and the system seen as a
whole.

INTRODUCTION

It is generally accepted that formal methods can
be used to increase the level of assurance that a
system is secure.: In spite of current improved
understanding of such methods, concepts used in
describing the trustworthiness of components
retain the same 1limitations they had ten years
ago. Only the most simple and monolithic of
systems or components can be characterized by a
single '"top level specification" -- yet the
attempt 1is still made to describe even entire
operating systems by such means. Additionally, at
the completion of the formal verification of a
component, the relationship between the results
of that verification and any increased
understanding of the component and the overall
system is usually not clear. Finally, the
trustworthiness of an individual component is
typically ensured only by assigning some sensi-
tivity label to it and doing an analysis based on
this assignment, rather than establishing its
trustworthiness in relation to its 1individual
constraints and requirements.

Some work has been accomplished in deriving secu-
rity requirements from the environment of the
component itself, and what the component actually
does. Examples of such work include the develop-
ment of the "separation kernel'" as described by
Rushby [10] and related work, the modeling

This research was sponsored in part by the USAF
Rome Air Development Center under the Multinet
Gateway Program, contract number F30602-81-C-
0233.

CH2T50- 1/85/0000/00025G1 00 © 1985 {EET

approach described by Bartels and Dinolt [1], and
various approaches being investigated within the
University of Texas environment [4].

Further investigation and development of such
concepts is needed. We introduce the notion of a
"trust domain" to answer that need. A trust
domain encapsulates a component in terms of '"rule
abstraction." This allows a characterization of
the component in terms of expectations, both
internal and external, of the component. The
characterization is expressed at the component
interface. Application of the trust domain con=-
cept promises reduction of proof complexity,
better understanding of the formal specification
and verification results, and explicit identifi-
cation of underlying assumptions. If these goals
are realized, then an increased level of
assurance will follow.

The remainder of this paper is focused on provid-
ing the motivation, application, and exploitation
of the trust domain concept. First, a statement
of some problems to be solved is given. Then,
the limitations of previous structuring attempts
to solve the problems are recounted. This is
followed by a detailed description of the concept
of a trust domain together with an explanation of
how the concept helps to solve the problems
presented. An extended example of the use of
trust domains is provided, including its embodi=-
ment in a trust domain representation language.
Finally, we demonstrate the utility of the trust
domain approach for formal verification in terms
of the identified problems, and from this demons-
tration we draw several conclusions.

Problem Statement

Several problems related to the structuring of a
system for verification are at least partially
solved by the use of trust domains. These prob-
lems is described in this section.

Problem 1: Assessment of Verification Results.
Consider a moderately complex computer system
whose adherence in operation to a given security
policy 1is critical. Suppose that the design,
development, and documentation of the system fol-
low the guidelines given in the DoD Computer
Security Center’s Trusted Computer System Evalua-
tion Criteria [27. One might now ask exactly

what was verified, and further, how do the verif-
ication results really contribute to the confi-
dence that the system will not violate the secu-
rity policy. The answer can be formulated and
expressed only in terms of the formal structure
of the system, how that structure relates to the
system environment, and how the proofs relate to
the system structure. On one hand certainly, a
small quantity of proof output (e.g., "TRUE" or
"FALSE") 1is easy to understand, but one does not
gain much confidence via such an understandable
statement. On the other hand, .a great deal of
output, if it is not well-structured or does not
relate cleanly to a well-structured system, is
impossible to understand well enough to be sure
what is proved.

At least three criteria need to be used in
assessing the specification and verification out-
put:

1. Prcofs are small or at least understand-
able. The proofs are not just terse, but
both complete and simple a possible.

2. The specification information and verifica-
tion results are clearly related to the
actual implemented system.

3. There are well-formed boundary conditions
(environmental assumptions).

The latter two criteria are directly tied to the
system’s '"architectural reference points" so one
can more meaningfully discuss what 1is actualiy
modeled, the underlying hardware constraints,
assumptions, other non-proved components and code
correspondence issues. By an architectural
reference point we mean a significant aspect of a
system architecture that is taken as given and so
must be reflected by not only the system imple-
mentation, but also by the formal description of
the system. For example, in a system of network
gateways, an architectural reference point might
include specific aspects of the geographical
separation of the gateway nodes. Aspects of the
I1SO model layering of the protocols might form
another example. The basic point about an
"architectural reference point" is that it con-
strains the allowed design space of the system.

Problem 2: Verifying System Specific Charac-
teristics. While the previous discussion was in
terms of a "moderately complex" system, distri-
buted systems typically possess an especially
complex structure . A noteworthy class of exam—
ples 1is the class of communications systems. In
an "AIP," or host, system, a case might be made
to consider the interface of an operating system
kernel as the exclusive subject of formal specif-
ication; but there is no analog in a communica-
tions environment. The software and hardware
that implement network functions are structurally
and conceptually far removed from the 'system
interface," i.e., the network system as seen from
the "host users."

Problem 3: Ensuring Trustworthiness. Many sys-
tems, in enforcing a specific set of require-

ments, such as a given access control scheme
based on sensitivity labels, determine properties
and derived requirements that are not directly
related to the labeling requirements. Sometimes
the traceability between the original and derived
requirements 1is weak because the derivation pro-
cess hasn’t been well documented. Second, some
systems have well-defined security requirements
that are not given via sensitivity labels. The
result is a problem of truly understanding and
agreeing on what trustworthiness means in an
environment that may include but is not entirely
dependent upon sensitivity labels.

Problem 4: Domain Reusability. In order to
reduce the cost and, hopefully, technical risk of
the specification and verification process, dif-
ferent components that are either identical in
function, similar with only parametric differ-
ences, or significantly different while assuming
or providing similar or identical interfaces --
such different components ought not to have to be
specified and verified in a completely indepen-
dent manner. Some means of reusing the formalism
of these components is needed. This aspect has
been discussed and an approach, based on a notion
of reusable problem domain theories, has been
suggested by Don Good [4]. Additional work needs
to be accomplished in this area.

Previous and Current Structuring Attempts

Previous attempts to provide effective verifica-
tion results have paved the way to the current
state of the art. Although much good work has
been accomplished, previous attempts, however,
fall short of what we feel is possible now. It 18
instructive to see in which ways this latter
statement is true, in terms of the three criteria
presented in the discussion of the assessment of
verification results. Although specific examples
refer to the Kernelized Secure Operating System
(KS0S), and by extension to Honeywell’s SCOMP
[11], they are relevant to a wider spectrum of
contemporary projects.

Criterion 1: Proof Complexity. Of ten, the

verification conditions (VCs) to be proved were
linked to the formal specification in a way very
difficult to trace because they were the result
of much syntactic manipulation and other process-
ing. Further, even though the most trivial of
them were weeded out early, large numbers of
proofs were still necessary. And yet, the true
complexity of the results was much greater than
it would seem from the amount of proof generated.
A typical place of hiding complexity was in a
special-purpose VC generator tool. Both of these
observations were true, for example, for the KSOS
formal verification [9]. The transition and
translation steps from the SPECIAL language of
HIM into VCs suitable for the Boyer-Moore theorem
prover were rather large ones. The attempted
examination of intermediate forms were to aid
understanding of the translation process; in
fact, they only added to the complexity to be
digested. The Feiertag VC generator [3] is
indeed a very complex program, and for the pur-

pose of analyzing complexity, must be included in
the actual proofs to be examined.

In addition, the proof material was artificially
small because it was not the full system that was
involved. 1In KSOS, the kernel interface, along
with relevant internal functionality, was the
only part formally specified and verified. Yet
what the wuser of KSOS depends on for enforcing
security is the KSOS system as a whole, and so
statements about the system as a whole is what
needed proving. While the Unix emulator was not
to be part of the trusted computing base, that
fact needed to be a result of the specification
and proof process, not an assumption of it.
Further, the Non Kernel Security Related (NKSR)
portion was part of the trusted computing base,
yet was not part of any integrated proof process.
Were the proof of KSOS, using the HDM-Feiertag
technology, to be complete and integrated into a
single FTLS as ordinarily conceived, the complex-
ity of the proof would be increased by a large
factor.

Criterion 2: True System Representation. Accu-
rate representation of the target system also
fell short in several ways. Security models were
typically simple "flow-upward” models based on a
lattice structure of security classifications,
However, within the system (and sometimes visible
to at least certain users), "exceptions" or spe-
cial privileges had to be allowed for the sake of
correct system operation. These never fit within
the model, and so had to be either ignored in
specification or else allowed to generate "spuri-
ous,"” wunprovable VCs, which were then explained
away informally. 1In addition, because of great
disparity between the structure of the specifica-
tion and the implemented code, the informal code
correspondence argument in KSOS never became very
convincing.

Criterion 3: Boundary Conditions. Finally,
assumptions necessarily made about the system as
a whole (but not provable) were dealt with quite
informally, and in fact often were never men-
tioned but made tacitly. . Such assumptions
involved hardware and other entities with which
‘the trusted computing base must interface and on
which it depended, as well as the initial setup
of file system data bases and even correct admin-
istrative procedures. By handling such issues in
an ad hoc manner, more unprovable VCs were gen-
erated. Consequently the specification and
verification results were confusing, lacked con-
vincing power, and missed the opportunity to
point out exactly where certain conditions had teo
be maintained externally for the system to remain
secure.

TOWARDS A SOLUTION

Progress has been made in each of the identified
four general problem areas in recent times. What
is needed still is a conceptual framework to aid
in organizing this type of specification and
verification information. While much work
remains to be accomplished in solving the prob-

lems described, we have seen initial applications
of the trust domain concept to offer an effective
step. The motivation for a trust domain idea is
continued and provided next via a conceptual
description. Having established the concept, how
one actually describes such an entity is given by
a description of the necessary structural and
constraining relationships.

Trust Domain Description: Concept

A trust domain is characterized by the following
list of attributes:

l. It is a part of a system (a component) with
a well-defined functional boundary.

2. There are certain properties about 1its
behavior that can be expected.

3. It is entitled to expect the validity of
certain assertions about its environment.

4. It may have internal (non-externally visi-
ble) characteristics that are used to pro-
vide behavioral guarantees.

The "well-definedness” attribute is essential in
producing the limitations on the scope of a trust
domain construct to specify what is actually
"trusted". A trust domain’s trustworthiness is
established either by assumptions that may or may
not be proved (clearly identified), or else by
proofs of assertions based on the environment of
the trust domain, Such proved assertions are
called resultant theorems of the trust domain.

Note that part of a trust domain’s environment is
typically some set of other trust domains. In
that case, the guarantees of the other trust
domains become part of the environmental asser-
tions of the original trust domain. The asser-
tions to be proved are termed 'derived con-
straints"” or resultant theorems. The original
trust domain is then said to be constrained by

" each of the other trust domains. The relationship

of each of the other trust domains with the ori-
ginal is spoken of as a constraint relatiomship.
Other constraints external to a trust domain
include assertions about the system’s environment
that must be taken as given in the development
process.

Thé conceptual interface of two trust domains so
related consists of functional abstraction (based
on functional decomposition); data abstraction
(based on private and shared abstract data
types); and rule abstraction (based on con-
straints for function usage and interactions
among functions and the data types they govern).
A trust domain may be pictured as in Figure l.

L
N

/

INTERNAL
CONSTRAINTS

TRUST
DOMAIN

/ \
RECEIVED
CONSTRAINTS

Figure 1. Trust Domain

Trust domains may have not only constraint rela-
tionships, but also containment relationships.
Figure 2 provides an example of trust domains
with constraint relationships; the figure also
serves as a basis for illustrating containment
relationships.

AC DERIVED
CONSTRAINTS
S - - - =~
AP RECEIVED
CONSTRAINTS

\\
\L7

HRA DERIVED
CONSTRAINTS

AC

RECEIVED N

CONSTRAINTS HARDWARE
RESOURCE
ALLOCATOR
(HRA)

Figure 2. Trust Domain Constraint Concept

Figure 2 could be a picture of the major activi-
ties within a simple secure system. The system
as a whole is a trust domain that contains the
three trust domains shown. This must be so,
since it is only about trust domains that proper-
ties can be proved, and it is the system as a
whole that must be proved secure. Further, the
individual trust domains of Figure 2 themselves
may (usually at this level, will) contain inte-
rior trust domains.

It is important to note that no a priori distinc-
tion is made between "trusted" and "untrusted"
components, though that distinction falls out of
the interpretation of constraint rules. The idea
is that external constraints (portrayed as exter-
nally applied assumptions) allow a limited scope
of activity, so that all that must be proved
about the trust domain itself is that, within
that limited scope, it will not allow a violation
of the constraint rules (its derived constraints)
it is to enforce. Consequently, a trust domain is
"trusted" to satisfy only the derived con-
straints. If a trust domain is placed so that no
expectations need to be applied to its behavior
(it has no derived constraints), it is "trusted"
to satisfy no constraints. It is then said to be
"untrusted". It is this usage in which the term
"untrusted” 1is applied and simply means a trust
domain with no resultant theorems or derived con-
straints. "Trusted", of course, means that
derived constraints do exist. Note that this
implies that '"trusted" is not an absolute term,
but is relative to the content of the derived
constraints -- i.e., it is always in the sense of
"trusted to obey what particular rules".

A key issue, then, in the application of such a
concept 1is the facility to describe the various
sets of rules or behavior properties of a given
trust domain. The realization of trust domains
and associated constraint rules depends on the
use of certain established software design tech-
niques, viz., functional abstraction and data
type abstraction. A given formally described set
of constraints or rules then 1is represented in
terms of the visible functions and the abstract
data types.

Trust Domain Description: Structure and Con-
straint

The trust domain notion has been described to
this point as a structuring concept to of express
desired properties and system structure. The
previous discussion was to motivate the types of
entities needed in a description of a trust
domain, The explicit means by which a trust
domain is described 1is outlined now so that
specific examples can_be described.

A "domain" is an entity with, of necessity, two
types of relationships. The types of relation-
ships are structural and constraint. A domain
may "adjoin" another domain or "contain"
or("inhabit") another domain. These two rela-
tionships, adjoin or contain, are structural. If
two domains adjoin one another, they cannot con-
tain one another, The identification of which

domains adjoin or contain other domains provides
a topographical description of the system. A
domain may "derive" or ‘'receive'" from another
domain. These are constraint relationships.
Figures 3 and 4 identify and illustrate how the
two types of relationships are identified and
described (denoted). The following paragraphs
provide motivation for such a description.

Suppose domain A adjoins domain B and contains
domain C (or C 1inhabits A). In order to
represent actual systems and to describe communi-
cations among system éntities (whether within a
personal computer or among internets), domain are
identified as either node or link. This identif-
ication is called the gender of the domain.
Adjoined domains must be of opposite gender.
Figure 3 1identifies additional relationships
among three domains that share adjoin and contain
relationships.

NODE
DOMAIN A

CONTAIN

INHRBIT

NODE
DOMAIN C

ADJOIN

LINK DOMAIN
B

Figure 3. Trust Domain Structure Relationship

First, a domain that inhabits another domain 1is
either a boundary or an interior domain with
respect to the containing domain (C 1is interior
to A and 1is, in fact, a boundary domain of A).
Note also that domain A, containing domain C,
"associates" C with domain B and C adjoins B
"via" A. From A’s point of view C is associated
with B; from C’s point of view C is adjoined to B
via A; from B’s point of view C is not present or
in fact not visible. Thus "adjoin", "adjoin via"
and "assoclates" are distinct structural rela-
tionships.

Constraint relationships are now incorporated
with the structural relationships. Figure 4
identifies and illustrates this. Note that
domain A "derives" constraints Y, Z for domain B,
and "receives" constraint X from C; domain B
"receives" constraints Y,Z from A and domain C
"derives" constraint X for A. Note also that A
receives constraint W from B if and only if B
derives constraint W for A.

NODE
DOMAIN A

MODE
DOMAIN C

Figure 4. Trust Domain Constraint Relationship

The three domains can be described in terms of a
trust domain description language as follows:

node domain A shall
contain boundary node C;
adjoin link B;
associate C with B;
derive for B
constraint Y;
constraint Z;
receive from C
constraint X;
end Aj;

node domain C shall
inhabit boundary of node A;
adjoin link B via A;
derive for A
constraint X;
end C;

link domain B shall
adjoin node A;
receive from A
constraint Y;
constraint Z;
end B;

It is useful to observe that although the arrows
in Figure 3 illustrate the contains, adjoins and
associates relationships, they are not integral
to the structural description. Such arrows are
redundant to the identified relationships. The
dotted arrows together with the "boxes" identi-
fied in Figure 4 denote what constraints are
levied between which domains. They are integral
to the description.

Examples of domains using this description are
given next.

EXAMPLE: STRUCTURING A SYSTEM

This section presents an example that illustrates
the previously described aspects of a trust
domain. The example is a network system fabri-
,cated for purposes of illustration. It includes
multiple sites containing local area networks,
and inter-site (presumably geographically exten-
sive) transmission. Each site possesses a single
mainframe processor operating in multilevel
secure mode and multiple workstations. Figure 5
shows the topography of the system.

Note that all Processors and Workstations are
considered to be "surface" system components,
outside the system communications element (the
Interconnect), and thus logically outside of any
site. This choice of representation has been
seen to provide a clear view of security-related
constraints in several actual eystems described
in terms of trust domains. The level of detail
of system representation depicted 1in Figure 5
might be typical of the initial structuring step
performed to provide a security architecture.

Figure 6 describes a portion of the example sys-
tem, introducing the constraint relationships.
In fact Figure 6 is representative of a second
step performed in building up a system security
architecture. It is characterized by the
analysis of the constraints relating the trust
domains. The assignment of suggestive names to
those constraints lays the groundwork for the
addition of rigorous, mathematically oriented
representations for each of the constraints.

ENVIRONMENT

Figure 5. Example System Structure

ENVIRONMENT

TRANSMISSION
LINES

PM - POLICY MODEL

SA - SECURE AUTHENTICATION

LD - LABELED DATA

UF - UPWARD FLOW

PT - PROTECTED TRANSMISSION

LP - LABEL ASSOCIATION PRESERVATION
SD - SECURE DELIVERY

SE - SECURE TRANSMISSION ENCAPSULATION
SL - SECURE LABELING

SLA - SECURE LABEL ASSURANCE

WFL - WELL-FORMED LABELS

\ NTC - NO TRANSMISSION COMPROMISE

CEl - CORRECT END POINT IDENTIFICATION
\\ST-SECURETRANSFORT

\
\

Figure 6. Example System Constraints

Several properties of the constraints in Figure 6
should be noted. A single named property is
derived by the system '"for the environment."
This property is suggestively named
"policy model," which is the set of assertions
comprising the model of the system security pol-
icy. Other constraints between domains build
upon one another, finding their ultimate source
in the descriptions of the components of the
trusted computing base (and further in its imple-
mentation). If these source constraints are
correct, and the proofs linking all the con-
straints are correct, and the trust domain struc-
turing of the system faithfully represents the
system’s design, then the resultant constraint,
the policy model, has been verified to be valid
for the implemented system.

Trust Domain Description

This subsection contains the text of the descrip-
tion of the example system in terms of the trust
domain description language introduced in section
2.

node domain ENVIRONMENT shall
contailn
interior node System;
receive from System
constraint policy model;
end ENVIRONMENT;

node domain System shall
inhabit interior of node ENVIRONMENT;
contain
interior link Interconnect,
interior node Processor multiple,
interior node Workstation multiple;
derive constraint policy model;
receive
from Interconnect
constraint secure_transport;
from Processor
constraint labeled data;
constraint upward flow only;
: from Workstation NO CONSTRAINTS;
end System;

node domain Workstation shall
inhabit interior of node System;
adjoin link Interconnect;
derive NO_CONSTRAINTS;

end Workstation;

node domain Processor shall
inhabit interior of node System;
adjoin link Interconnect;
derive for System
constraint labeled data;
constraint upward flow only;
end Processor;

link domain Interconnect shall
inhabit interior of node System;
contain

boundary link Workstation Line multiple,

boundary link Processor Line multiple,
interior node Site multiple,

interior link Transmission Link multiple;

adjoin
node Workstation,
node Processor;
associlate
Workstation Line
with Workstation one_to one,

Processor Line with Processor one to one;

derive
for System constraint secure_transport;
for Processor
constraint well formed labels;
receive
from Site
constraint well formed labels;
constraint correct endpoint ID;
from Workstation Line
constraint protected transmission;
from Processor Line
constraint protected transmission;
from Transmission link
constraint no trans compromise;
end Interconnect;

link domain Workstation Line shall
inhabit boundary of link Interconnect;
adjoin
) node Site,
node Workstation via Interconnect;
derive for Interconnect
constraint protected transmission;
end Workstation Line;

link domain Processor Line shall
inhabit boundary of link Interconnect;
adjoin
node Site,
node Processor via Interconnect;
derive for Interconnect
constraint protected transmission;
end Processor Line;

link domain Transmission Link shall
inhabit interior of link Interconnect;
adjoin node Site multiple;
derive for Interconnect
constraint no trans compromise;
receive from Site -
constraint no_trans compromise;
end Transmission Link; -

node domain Site shall
inhabit interior of link Interconnect;
contain
boundary node Workstation LAN IF,
boundary node Processor LAN IF,
boundary node Gateway,
interior link Local Area Network;
adjoin
link Workstation Line multiple,
link Processor Line,
link Transmission Link multiple;
assoclate
Workstation LAN IF
with Workstation Line one to one,
Processor LAN IF
with Processor Line one_to one,
Gateway with Transmission_ Link
one_to_one;
derive
for Interconnect
constraint well formed labels;
constraint correct endpoint ID;
for Transmission Link
constraint no_trans_compromise;
receive
from Local Area Network

constraint label assoc preservation;’

constraint secure delivery;
from Workstation LAN IF
constraint secure authentication;
constraint secure_labeling;
from Processor LAN IF
constraint secure label assurance;
from Gateway
constraint
secure_trans_encapsulation;
end Site;

node domain Workstation LAN IF shall
inhabit boundary of node Site;
adjoin
link Local Area Network,
link Workstation Line via Site;
derive for Site
' constraint secure authentication;
constraint secure labeling;
end Workstation LAN IF;

node domain Processor LAN IF shall
inhabit boundary of node Site;
adjoin
link Local Area Network,
link Processor Line via Site;
derive for Site
constraint secure_ label assurance;
end Processor LAN IF;

node domain Gateway shall
inhabit boundary of node Site;
adjoin
link Local Area Network,
link Transmission Link via Site;
derive for Site
constraint
secure_trans_encapsulation;
end Gateway;

link domain Local Area Network shall
inhabit interior of node Site;
adjoin
node Workstation LAN IF multiple,
node Processor LAN IF,
node Gateway multiple;
derive for Site
constraint label assoc preservation;
constraint securz_deliVery;
end Local Area Network;

Selected Detailed Examples

The example in Figure 6 is complete in its iden-
tification of major structures and constraints in
terms of trust domains. Two areas of expansion
remain to be completed. The first is the ela-
boration of each of the constraints to include a
complete mathematical representation of the con-
straint. Such representation will typically fol-
low the standards of the specification language
into which the trust domains are to be mapped.
In general, this will involve expressions (e.g.,
predicate calculus), which are in fact prescribed
by the existing trust domain language grammar.
The second area is the description of the imple-
mentation requirements for the hardware and
software interfaces so that they can be related
to the rest of structure of the system, including
the interface of the system itself. The follow-
ing two subsections present a limited example of
the identified areas.

Constraint Elaboration The trust domain chosen
for constraint elaboration is the Processor, dep-
icted in Figure 6 with the notation "Proc." Fol-
lowing 1is the Processor trust domain description
with constraints elaborated in terms of predicate
calculus expressions.

node domain Processor shall
inhabit interior of node System;
adjoin link Interconnect;
derive for System
constraint labeled data:
FORALL datum,
is_valid_label(class(datum));
constraint upward flow only:
FORALL datum,proc,
canread(proc ,datum) =>
dominates(class(proc),
class(datum))
AND canwrite(proc,datum) =>
dominates(class(datum),
class(proc));
specify
type element, proc subject,
proc_object, label;
variable datum: proc object;
variable proc: proc subject;
function is valid label(label):
boolean;
function class(element): label;
" function
canread(proc subject,proc object):
boolean;
function dominates(label,label): boolean;
end Processor;

Note the "specify" clause added to the domain
that allows truncated declarations of types,
variables, and functions (also constants) to
clarify the predicate calculus expressions. With
the full form of the constraints, the suggestive
names are retained; the two parts of each con=-
straint thus complement each other.

Sof tware-Related Example The example of this sec-
tion has so far only been described in terms of
its major system structures. This description
will now be augmented by a selected example that
relates the interface of a portion of the trusted
computing base to the rest of the system struc-
ture.

The domain to be so augmented is the Processor
LAN interface (Processor LAN IF). A pictorial
description of that domain is given in Figure 7.

PROCESSOR
LINE

HLPF - HOST LABELING PROTOCOL FUNCTION
LVC- LABEL VALIDITY CHECKER

IPF - INTERNET PROTOCOL FUNCTION

IPC - INTER-PROCESS COMMUNICATION

HLA - HLP-LABEL-ASSOCIATION

CLI - CONRECT-LABEL-INSERTION
CVC - CORRECT-VALIDITY-CHECK
ICl - INTERPROC-COMM-INTEGRITY
SLA - SECURITY-LABEL-ASSURANCE

Figure 7. Software Domains of Processor_LAN_IF

It consists of three software domains, a Host
Labeling Protocol Function, a Label Validity
Checker, and an Internet Protocol Function.
These domains communicate via a multiply instan-
tiated Inter-Process Communication link domain.
As with the previously presented portion of the
example, these internal domains derive con-
straints that allow the proof of the constraint
of Processor LAN IF derived for the Site (viz.,
secure label assurance).

This domain, as detailed in Figure 7, is now
presented in terms of the trust domain descrip-
tion language.

