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Preface

The supplementary volumes of the journal Advances in Mathematics
are issued from time to time to facilitate publication of papers already.
accepted for publication in the journaj. The volumes will deal in
generzl—but not always—with papers qn related subjects, such vas

algebra, topology, foundations, etc., and are available individually and
independently of the journal.
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1. INTRODUCTION

Let G be a noncompact connected simple Lie group of split-rank 1 let I’
be a discrete subgroup of G such that the volume of G/I' is finite but such
that G/I" is not compact. For example, the pair (G, ") where G = SL(2,R),
I' = SL(2, Z) satisfies these hypotheses. Call L, the left regular representa-
tion of G on the Hilbert space L*(G/I')—then a central problem in the theory
of automorphic forms relative to the pair (G,I') is the decomposition of
Lg,r into irreducible unitary representations. As a first step one proves,
using the theory of Eisenstein series, that L%(G/I') admits an orthogonal
decomposition

LXG/T) = LYG/T")@® LAG/T),

L3(G/T') (respectively LXG/I')) being an L, -invariant subspace of L*(G/T")
in which L, decomposes discretely (respectively continuously). Call LE °
(respectively L§ ;) the restriction of Lg,, to L3(G/I') (respectively L{G/I')).
It turns out that L§,- can be written as a direct integral over the “principal

! Supported in part by NSF Grant MPS-75-08549.
1
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2 GARTH WARNER

series” representations of G, so one’s understanding of Lg, - is essentially
complete. As for L¢,r, if G is the set of unitary equivalence classes of irre-
ducible unitary representations of G and if my is the multiplicity with which
a given U in G occurs in LE, (necessarily finite), then

Lgr= ) @myl.
UeG

To describe Ldg,r, therefore, one must determine those U for which my; > 0
together with an explicit formula for m,. Apart from a few numerical ex-
amples, nothing is known about this important problem. One method of
attack is to develop a “trace formula” of “Selberg type”; it is to this question
that the present article is addressed. The basic idea behind what is going on
here is not difficult to describe; on the other hand, the actual execution of
the method and justification of the details is rather lengthy. Suppose that «
is a smooth integrable function on G—then

Lar(®) = [, a(x)Lgr () de(x)

is an integral operator on L%(G/I') which, however, need not be of the trace
' class. Write L () (respectively L (o)) for the restriction of Lg () to
L2(G/T') (respectively L2(G/I'))—then

Ler(a) = Lg;r(2) + Lg ().

If o is sufficiently regular (say in an appropriate Schwartz space in the sense
of Harish-Chandra), then both L¢  (x) and L () are integral operators:
moreover, it can be shown that L, (x) is of the trace class, the trace being
computable by integrating its kernel over the diagonal. We shall refer to
this result as the first stage of the Selberg trace formula. The next step in the
analysis is the computation of the integral giving the trace of L{ (a). A key
role here is played by the Poisson summation formula. The net result is that
the trace of L& (x) can be expressed in terms of certain distributions on G,
e.g., orbital integrals (or perturbations thereof). This is the Selberg trace
formula in its second stage. The third and final stage of the Selberg trace
formula consists in the explicit determination of the Fourier transforms, in
the sense of Harish-Chandra, of the aforementioned distributions. This is
the most difficult step in the analysis. For general G, we shall only be able
to give a complete answer in the special case when « is bi-invariant under a
maximal compact subgroup; this will suffice, though, for certain important
applications which will be considered elsewhere. It should be stressed that
the only obstacle to having a satisfactory theory in general is the computa-
tion of the Fourier transform of a single, albeit complicated, noncentral
distribution. Once this has been done, a number of important consequences
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will follow, e.g., explicit formulas for the multiplicities of the integrable
discrete series in L3(G/T').

The thrust of the present paper, then, is to give a complete and detailed
proof of the Selberg trace formula for nonuniform lattices I' in a simple
split-rank 1 group G, at least through the second stage. The investigation
depends heavily on the Garland-Raghunathan reduction theory and the
theory of Eisenstein series, both of which are reviewed in Section 2. In
Section 3 we discuss the spectral decomposition of L*(G/I'), establishing in
particular the orthogonal decomposition

L*(G/T') = L§(G/T) @ LX(G/T)

mentioned above. Sections 4 -6 are devoted to the proof of the Selberg trace
formula in its second stage (subject to a certain technical restriction on I').
The analysis in Section 6 is carried out under the assumption that x has
compact support. For the applications, it is necessary to know that the
Selberg trace formula is valid for suitable classes of noncompactly supported
functions, e.g., the K-finite matrix coeflicients of the integrable discrete series.
Such an extension is made in Section 8. Section 7, which is of a preliminary
nature, serves tc establish the convergence of certain Epstein-like zeta func-
tions. In Section 9, the Selberg trace formulz in its third stage is developed
for “class one” functions. We terminate in Section 10 with a list of open
problems and indicate a number of avenues for further research.

At this point it is perhaps appropriate to make some remarks of a his-
torical nature. The whole subject originated with Selberg’s [27a] famous
paper (although Delsarte had apparently anticipated some of the ideas years
before this). Selberg only made explicit statements about SO(2)\SL(2,R)/I"
and did not give any proofs there. Selberg did give, however, complete proofs
for this case in an unpublished manuscript which has had a fairly wide
circulation. Independently, proofs have been provided in this special situa-
tion by a number of people, including (at least) Faddev, Kalinin and Venkov,
Kubota, Lax and Phillips, Langlands, and the author. No progress of any
real significance was made for some fifteen years until the work of Langlands
appeared (cf. Jacquet and Langlands [16]). Langlands deals with GL(2) in
the adele picture and gives a comprehensive outline of how the trace formula
should go in that setting; complete details were later supplied by Duflo and
Labesse [6]. Langlands’ methods differ somewhat in detail from those of
Selberg (although not, of course, in spirit) and are more susceptible to
generalization. They were in fact developed by Arthur [la] in the adele
picture for semisimple algebraic groups of rank 1 over a number field. Much
of our treatment is directly motivated by the work of Arthur and Langlands.
Finally, we should mention that Venkov [32] has recently studied the case
SOn)\SO(n, 1)/T".
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2. EISENSTEIN SERIES

Let G be a noncompact connected semisimple Lie group with finite
center: let K be a maximal compact subgroup of G. We shall assume that
rank(G'K) = 1. In addition it will be supposed that G is simple and is
embedded in the simply connected complex analytic group corresponding
to the complexification of the Lie algebra g of G.

Let I' be a discrete subgroup of G such that the volume of G/I" 1s finite
but such that G I' is not compact. Under these circumstances. the reduction
theory of Garland and Raghunathan [11, pp. 304-306] is applicable and
may be described as follows. Relative to some Iwasawa decomposition
G=K-A-N of G. there is a parabolic subgroup P of G with Langlands
decomposition P = M - 4 - N (M the centralizer of A in K) having certain
properties which we shall now enumerate. Let /" be the unique simple root
of the pair (G, A) implicit in the choice of N;let &;: 4 — R be the associated
quasi-character of 4. Given r > 0, put

Alt] =lae A& (a) < 1), Alt) = lae A: & (a) < t).

For any compact neighborhood @ of 1 in N, the set S,, =K A[t] w is
called a Siegel domain in G (relative to P) while the set €, = K - A(r) - N 1s
called a cylindrical domain in G (relative to P). Let r be the number of I'-
inequivalent cusps-—then one can choose elements k;, = 1, ... .k, in K such
that the conjugates P, = P form a complete set of representatives for the
I'-cuspidal parabolic subgroups of G mod /. Each P; admits a Langlands
decomposition P, = M, 4,- N, where M, =M, A, =%A. N, ="N (i =
... r). Let k, = k7', s = {k;]—then one can find a Siegel domain S, _,,
such that the set £ = &, - s has the following properties:

i) < I'=g¢G:
[
[

(11) S # () is finite.

m
e

o
D)
G

. B
We remark that once 1, and o, have been shown to exist, they can then be
replaced by any r > 1,. v = w, without affecting either statement (i) or
statement (11). For | <i<r,

N/N, AT

is compact. Because s is finite. it can be assumed that ), is chosen in such
a way that kwok; ' =k 'mwyk; contains a fundamental domain for the
group N; n I' acting to the right on N;. Using this hypothesis on ), one
can then produce a 4t < t, such that:

(i) K-A[ot] 0o ki K- A[ot] wo-k;; = & for k. k; €5 (i # j) and
fory el
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(iv) K-A[ot] o K; 0 K- A[ot] 0o Ky # @ fork; € sand for y e I,
onlyifye M;- N;.

Speaking roughly, these two properties say that it is possible to separate the
cusps of I'. A simple argument (cf. Raghunathan [23a, p. 289]) then gives
that the sets

K - A[4t] - Nk, (1<i<n
arc mutually disjoint and that, moreover, for any
K- A[ot] N l\yl\'i N K- A[O[] . A)V'\',“,y # @

ifand only if y € M; - N;. Consequently (cf. Raghunathan [23a. p. 290]) there
exists a compact subset Q , of G such that the complement of the I'-saturation
Q. T of Q,in G decomposes into a finite number of mutually disjoint
I'-saturated open sets O, . ... O, where each O, contains € x; as an open
and closed subset and is in fact the I'-saturation of € ,k;. In other words
G=Q, I'v!| )€,k I (disjoint union),
t=1
SO

G/ =n(Q,) v | n(€,x,) (disjoint union),

i=1
where n: G — G/I" 1s the natural projection. As a final point in this circle of
ideas, we mention that the set of conjugacy classes of maximal unipotent sub-
groups of I" 1s finite and. n fact, thal every maximal unipotent subgroup of
I" is conjugate to a unique N; N [': for details, see Raghunathan [23b, p. 202].

We turn now to the theory of Eisenstein series on G I'. Complete proofs
can be found in Harish-Chandra [ 13a] or Langlands [ 19a]. Harish-Chandra
[13a] explicitly treats only the case when I' is arithmetic; this is done be-
cause Borel's reduction theory is then applicable. But, using the Garland-
Raghunathan reduction theory. one can carry over the theory virtually
word for word to the general case. Alternatively, it is easy to verify that the
Garland-Raghunathan reduction theory implies that the axioms assumed
by Langlands [19a] are in force in the present case so that one can quote
Langlands [19a] directly.

Keeping to the above notations, identify M with M - N'N. It is known
that 'n Pc M- N (cf. Garland and Raghunathan [11. p. 295]). Put
I'yvy=TnM-NT n N—then I'y, is a discrete subgroup of M. hence is
finite, M being compact. Let M* be the normalizer of 4 in K—then W(4) =
M*/M is the Weyl group of the pair (G. A). Since rank(G/K) = 1, W(A) is
of order 2. Let M be the set of unitary equivalence classes of irreducible
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unitary representations of M. For each o € M, let £, denote the character
of g, d(a) the degree of g, and y, = d(0)¢,. The group W(A) operates to the
left on M in the obvious way. Write
LXM/Ty) = ¥ @n(o.Iy)o,
geM
the n(o, I'y,) being certain nonnegative integers. Given an orbit J in W(A\M,
pick o € 3 and set

Sy = n(a, I 'y)o + n(wa, I'y)wa,
w the nontrivial element in W(A). Then
LA M/I'y)= 3 @S,

SeW(A\M

Let K be the set of unitary equivalence classes of irreducible unitary repre-
sentations of K. For each é € K, let &; denote the character of &, d(J) the
degree of 8. and y; = d(d)¢s. Fix a class 6 € K. Denote by L*(K: ) the sub-
space of L*(K) consisting of those functions which transform under the left
regular representation according to 8. Given 9 € W(A)\M such that Sy is
nontrivial, let &£(3,J) be the set of all continuous functions @:G — C such
that:

(1) @ is right invariant under (I' " P)- A- N;
(i1) for every x € G, the function

m— ®(xm)

belongs to Sy;
(i) for every x € G, the function

ki @(kx)
belongs to L4(K;§).

It is known that &(9,9) is a finite-dimensional Hilbert space of analytic
functions with inner product

@ W)= [ [\, @lkm)Flhm) dy(k) dyy(m)

This is proved formally in Langlands [19a, p. 50] and is actually a con-
sequence of some observations made in the next section.

Let a be the Lie algebra of A—then we shall agree to equip the dual of a
with the usual Euclidean structure derived from the Killing form. Since
//|A| is a unit vector for this structure, a complex number s becomes a linear
function on a through the identification s < s(4/|A|). In particular p, the sum
of the positive roots of the pair (G, A) (counted with multiplicity) divided by
2, is identified with its length |p|. For any x € G, we denote by H(x) that
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element of a such that x e K exp(H(x)) - N. This said, let ® € &(9,5)—then,
attached to @ is the Eisenstein series

E(P:@:s:x)= Y e IPDHEDG(xy)
yel/T nP
E(P:®:s:x)isa C* function on {s:Re(s) < —|p|} x G which is holomorphic
in s and right invariant under I'. For every x € G, the function

k> E(P:®:s:kx)  (Re(s) < —|p|)
belongs to L*(K;d). If 3 is the center of the universal enveloping algebra

® of g, (g. the complexification of the Lie algebra g of G), then E(P:®:5:x)
is 3-finite. All these assertions are detailed in Harish-Chandra [13a, pp.

26-31). .
Modulo obvious notational changes, the definitions and results indicated
above carry over to each of the P, (i=1,...,r). Fix i and j—then P; =

M;-A;-N;,P;=M;- A;- N; and the orbit spaces

W(A)M;,  W(A4,)\M;
are in a canonical one-to-one correspondence. Corresponding orbits are
said to be associate. Introduce the set W(A4;, A;) of all bijections w: A4; — A;

such that wa; = xa;x ! (a; € A;) for some x € G. Now fix § € K and associate
orbits 9; € W(A4,)\M,;, 3;€ W(A;)\M;. Let ®; € £(3;,5)—then the integral

fN;/N,r\T E(P;:@;:s:xn))dy (n)),

known as the constant term of the Eisenstein series E(P;: ®;:s:x) along.P;
and denoted by Ep (P;: ®;:5:x), is computaple and in fact
Ep(Pi:®;:s:x)= ) e IeDHD . (of p (w:s)P;)(x).
! weW(A,,A)) ?

Here
CP',|P,(W:S):£(9|"'6) = (g’(lgj,&)

is a certain linear transformation which, as a function of s, is defined and
holomorphic in the region Re(s) < —|p| (cf. Harish-Chandra [13a, p. 44]).
Let 3=3,.8,,..., 3, be a complete collection of associate orbits. Put

85.5)= 3. @ &3,,0)
i=1

where the column vector
¢l

D= |e&Y.9)

D

r
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has norm ||®||* = Y7~ ||@,||*>. For any complex number s such that Re(s) <

—|p| we want to define a linear transformation

c:;.a(s):f;(-{*. 0) = &(3.0).

This is done as follows. Let

b,
D =] |eb(Ho)
P,
Then it is enough to define ¢y ()@, (i = 1.. . .. r), which in turn is completely
prescribed when (¢, 4(5)@;); is defined (j = 1... .. r). Put

(€4 slID,); = cpp (Kwh P kis)P, € (3.0,
w the nontrivial element in W(A). Interchanging i and j. we thus have

(Z €yl \)(I),)

N S

=) cpphiwk; ks

J

(C;,.,;(S)(b},-

which can be interpreted as saying that the image of ® under ¢, 4s) is simply
obtained by formal matrix multiplication. Fundamental to the theory is the
fact that ¢, 5 can be meromorphically continued to the whole s-plane. Its
poles in the half-plane Re(s) < 0 lie in the set {se R: —|p| < s <0]: there
are but finitely many of them there and they are all simple. Along the imagi-
nary axis. ¢, ; is holomorphic. Another basic point is that ¢, ; satisfies a
functional equation. viz.

Cy sy ol —3) = 1.

I the identity operator. Because the adjoint ¢, 48)* of ¢, (5) 15 €, 45), it
follows that if s is pure imaginary, then

Coal5)€a sl =) = €, ,(5)€ 5(F) = €y s(s)ey sls)* = L.
SO ¢, 5 is unitary along the imaginary axis. Given

@,

® =" )€£(-’J.($).
4)r/

E@:s:x)= Y E(P;:®;s:x).
=1

put
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One can prove that E(®:s:x), as a function of 5. can be meromorphically
continued to the whole s-plane: moreover, its poles are poles of ¢ ,. Finally,

E@:5:x) = E(¢cg 4(s)®: —5:x).

The proofs of the above results are set down in Harish-Chandra [13a,
pp. 89-105].

Eisenstein series, while right invariant under I'. do not lie in L*G/I").
Their significance in the spectral decomposition of L(G/I") will be explained
in the next section. To produce functions in L*G/I), it is convenient to
introduce the notion of theta series. This will now be done.

Fix an orbit 4 € W(A4)\M such that S, is nontrivial. Fix a class € K. Let
¢: G — C be a differentiable function such that:

(1} ¢ is right invariant under (I' n P)- N;
(1) for every x € G. the function
in— ¢{xm)
belongs to S,:
(i) for every x € G. the function
k— p(kx)

belongs to L*(K ;).

Then one can associate with ¢ a dificrentiable function
(/5: A - &(59,0),

that is. 2 differentiable function
H:AxG->C

with the property that for cach u € A. the function x — ¢(a: x) belongs to
&(3.8). Explicitly, if k, is the K-component of x in the Iwasawa decomposi-
tion G = K- A- N, then ¢(u:x) = p(k.a). The set of all ¢ for which §, as a
function frem A to £(9,0). is of compact support is denoted by ¥7(9,9). It
can be shown without difficulty that the wrrespondence ¢ — ¢ serves to
identify #7(3.8) with CX(A)® £(9.5). Let C/ (4) be the set of Fourier-
Laplace trunsforms of CZ(A4). Suppose that ¢ € ¥ (3. m-——thnn there is asso-
ciated with ¢ in a canonical way an element (b € CL (A) ® &(8,0), called the
Fourier transform of ¢, such that

l -
__ e oS D) ! g
P(x) = 5 J;elﬂ:\n Pls:x)e \ds|.



