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INTRODUCT ION

For several reasons it is becoming more and more common to provide formal
definitions of the semantics of new programming languages, using techniques such
as denotational semantics, attribute and affix grammars, algebraic semantics,
operational definitions and axiomatic definitions. The construction of such a defi-
nition tends to expose ambiguities and unexpected implications of proposed |language
features, and thus can be a significant aid when designing a new language. A pre-
cise definition of the "meaning! of a program is of course essential when implemen-
ting a compiler or other language processor, and such definitions have in some
cases guided the development of implementations. Further, the existence of formal
definitions of source and object languages makes it possible to formally prove the
correctness of compilers.

A number of translator-writing systems have been devised to systematize and
simplify the task of compiler construction. These are usually syntax-directed,
and provide in addition to parsing some means of manipulating symbol tables, parse
tree attributes, etc. Still, compiler writing is at present largely handcraft — con-
struction of such a large and complex piece of software requires considerable
creativity, is quite prone to errors, and involves an enormous amount of work.

Correctness proofs for real compilers seem to be more of an ideal than a
reality at this time, since construction of a correctness proof seems to require
even more creativity and labor than construction of the compiler itself.

Clearly both problems would be alleviated if there were a closer connection
between the semantic definition of the language and the structure of its compiler,
just as parsing problems were much simplified after a firm connection was made
between syntax definition and parser structure.

An ideal solution would be a true compiler generator, which if given definitions
of the syntax and semantics of a programming language would automatically produce
a compiler of acceptable compile-time and run-time efficiency. The purpose of the
workshop was to bring together researchers whose work brings us closer to this
goal.

The papers presented at the workshop naturally fall into four categories.

The first group contains three papers with a common goal: to produce a compiler
from the denotational semantics of a programming language. The second group is
concerned with the use of abstract algebra to define semantics, to specify compi-
lers and to prove them correct. The third group has to do with several aspects of
attribute or affix grammars. These are a powerful and natural medium for expres-—
sing compilers, and thus provide a promising output language for compiler genera-
tors. The last group contains three papers which are related to compiler genera-
tion but not in the earlier categories, including one on the formal semantic defini-—

tion of the ADA programming language. The definition is intended to serve
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"for the validation of implementations and as a guideline for implementors ... (and)
as an input for a compiler generator when the technology becomes available." As
such it is likely to stimulate further research in automating the compiler generation

process.

The "Workshop on Semantics-Directed Compiler Generation'" was held
January 14-18 at the University of Aarhus, Denmark. The meeting was made possible
by grants from the Danish Research Council (Forskningsrdd) and the Aarhus Univer-
sity Computer Science Department (Datalogisk Afdeling). Local arrangements were
handled by an organizing committee consisting of Neil Jones, Peter Mosses and
Mogens Nielsen and by the workshop secretary, Karen Mgller. The department de-
serves a round of thanks for providing (in addition to funds) the use of its repro-
duction, secretarial and library facilities, and for providing an excellent milieu
for work and discussion. The contributions of a number of individuals are warmly
acknowledged, including Karen Mgller, Mogens Nielsen, Lene Rold and of course
the participants in the workshop, without whose professional expertise the work-

shop would not have been possible.
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TRANSFORMING DENOTATIONAL SEMANTICS INTO PRACTICAL
ATTRIBUTE GRAMMARS™

Harald Ganzinger

Institut fiir Informatik
Technische Universitat Minchen
Postfach 202420

D-8000 Miinchen 2
Fed. Rep. of Germany

1. INTRODUCTION

It is generally accepted that, in order to reason about programs,

a formal definition of the semantics of the programming language is
a prerequisite. Additionally, such a definition must be the basis
for the systematic composition and verification of specific imple-
mentations of the language, especially compilers. The mathematical
method of Scott and Strachey [ScS 71] has been developed to provide
a universal concept for describing formally languages and implemen-
tation issues [MiS 76].

Independently, much effort has been devoted to the development
of practical compiler generators (see [R&@i 77] for an overview).
These systems are mostly based on the concept of attribute grammars
(AGs), as introduced in [Knu 68]. Since attribute grammar defini-
tions describe the compilation of a language in many of its tech-
nical details, they cannot.be viewed to describe the abstract se-
mantics. Thus, the problem arises, to prove a compiler description
correct with respect to an abstract semantics definition, or, even
better, to develop a compiler description correctly. This paper is
a contribution to a solution of this problem.

*The work reported in this paper was sponsored by the Sonderforschungsbe-
reich 49 -Programmiertechnik- at the Technical University of Munich.



Much work has already been done concerning the development of
compilers from denota*ion:1 definitions of lenguages and t2rcet
machines [Bjg 77, Jon 76, MiS 76]. Thereby, the development pro-
cess has been divided into two major phases. In the first phase,
the abstract language definition is transformed into an implementa-
tation-oriented definition. The latter defines a language in terms
of the data types (operations and objects) of an abstract machine,
which is relatively close to the real target machine. In this step,
well-known implementation techniques are used implicitly. The
transformation is guided by very general software development prin-
ciples, as that of (stepwise) refining data abstractions [Hoa 72].
The methods for formulating the correctness proofs are well-under-
stood [MNV 73, Rey 74]. The resulting definition is denotational
but already effective in the sense that it can be input to an ex-
perimental compiler generating system, as described in [Mos 75].

The second phase has to develop the concrete compiler from
that implementation-oriented definition. Apart from some very in-
formal arguments in [Bjg 77], we do not know of any satisfactory
solution in the literature, illustrating the principles of this sec-
ond phase. The work reported here is based on the observation that
this phase is mostly language and implementation independent, but
depends on the meta language to be used for compiler descriptions.

The development phase is divided into three major steps. The
first modifies the given denotational definition such that it can
considered to be an attribute grammar in some generalized sense:
The semantic domains are re-structured into domains of n-ary func-
tions, yielding m-ary results. The function parameters become the
inherited, the results the synthesized attributs of that syntactic
constructs with which the domain is associated. Equations over pa-
rameters and results serve to define the (functional) meaning. The
equations are similar to attribute rules.

In the second step, the analyzation of the dependencies be-
tween the arguments and results of the semantic objects yields a
separation between static and dynamic semantics. The denotational
definition in attribute grammar form is splitted into two parts.
An attribute grammar (in the classical sense) is obtained for the
static semantics. The dynamic remainder is embodied in a descrip-
tion of the ‘interpretation uf the attributeua program tree with re-



spect to given input data. The handling of semantic errors is add-
ed. This leads to rejecting erroneous programs from being interpret-
ed. The principle of defunctionalization [Rey 72] is applied to
handle semantic objects such as "procedure addresses" in symbol
tables by references to the corresponding nodes in the program

tree.
In a Tast step, the interpretation description has to be transformed

into a description of code generation. This step is not dealt with in this
paper. For a first approach which is based upon relating interpretation
schemes with code templates on a flow graph level, we refer to [Gan 79c].
The primitive operations in these flow graphs constitute an interface to

the description of concrete target machines.

The main result of the paper will be that most of the trans-
formation steps are mechanizable or, at least, can be supported by
automatic methods.

We assume that the reader is familiar with the denotational
semantics method, at least at the level of [Ten 76]. Additionally,
it is necessary that the reader has some acquaintance with the use
if attribute grammars for the definition of semantic analysis and
the preparation of code generation, at least at the level of
[LRS 76].



2. BASIC NOTATIONS

Domains and basic functions

Domains are complete lattices. B denotes, as usually, the boolean
domain {l,true,false,T}. If DI,...,Dm are m>0 domains and
Sys--e»S, are pairwise distinct symbols, then

D= [51: Dl, S, :Dz,...,sm :Dm] is the cartesian product of the
domains, where S; is the name of the i-th selector, i.e. Ax. X.s;
denotes the projection from D to its i-th component Di' For
m=0, D is the domain of empty records, D={Ll,(),T}. (We write
simply D= D]xDZx---xDm, if the selector names are of no interest.)
EEESD(XI""’Xm)’ fir x; €D,, denotes the tupel (x],...,xm) €D
(We write simply (xl,...,xm), if D is determined by the con-
text.)

D= Dl+"'+Dm’ l<m<e, 1is the (separated) sum of the Di’

i.e. Dz{(hx)llsiSm,xeDi}UﬁuTL For x€eD, x to D,
denotes that X; GDi which corresponds to x in D, i.e.
(i,xi) to Di==xi T to D; =T, and L otherwise. Conversely, for
x; €D, it s x; in D=(i,x;), if x, ¢{1,7}. Otherwise it is
X, in D==xi. (If D 1is uniquely determined by the context, we
sometimes emit in D.) is D; tests the tvpe of a xe€D, i.e.
(i,x) iE.Dj =true, if i=j, and (i,x) is Dj:=jgl§g, if i+].
1_1'30J.=J., TEDJ.=T. )

Let D be a domain and D'=[s1 2B ceesSit D], i=0, with
arbitrary selectors s.. Then 0* =D°+D'+D%++.+ is the domain of
all lists with elements from D. nil (or gilD) denotes the empty
list () in D°. append(d*,d) = (d,...,d_,d), if d*=(d,...,d ),
adds an element deD-{L,T} to d*. hd(d*) =d, if d*=(d,...),
yields the head of d*, whereas t1(d*)=(d',...), if
d*=(d,d',...), eliminates the head in d*. append, hd, and t1
are call-by-value in their arguments, i.e. yield L1, 1if one of the
arguments is 1, and yields T, 1if one of the arguments is T
and if none is L.



If S s some countable set then D=5" denotes the flat do-
main obtained by adjoining L and T to S (and by defining
1<s, s<T, for all se€S, L<T, and 51552-sl=sr for
$125; €S). If D' 1is also a domain and if f 1is a partial mapp-
ing from S into D', then the doubly strict extension of f to
7 (i.e. Lol, T+—T, x€Sw f(x), if f(x) defined, x€SmL,
otherwise) is also denoted by f.

If D] and D2 are domains, then D:=[Dj-+Dz] is the domain
of continuous functions from D1 into DZ' For fe€D, XEED], and
yEEDZ, f[x-y] denotes that function which is identical to f,
except that it maps x to y, i.e. flx=yl(z)="F(z), if z#x,
and f[x=yl(x)=y. fix denotes the fixpoint operator, i.e.
fix(f) yields the Teast fixpoint of feD. The conditional
c=if p then X, else Xy for peB, x1,x2€D,D any domain, is
doubly strict in p, i.e. c=1, if p=1, c=T, if p=T,
if p=false. A function f is

€C=X if p=true, and c=x

1’ 2’
said to be total in an argument x, if f(...,%,...)€{L,T} 1im-

plies x€{L,T}. Our notation for defining (continuous) functions
used in the sequel is very close to the notation for untyped Tamhda

expressions introduced in [Don 76]. It is defined in the appendix.
Grammars and syntactic domains

We assume, for simplicity, that in any context-free production no
grammar symbol occurs twice. To achieve this, indexes can be at-
tached to the symbols. Moreover, e-productions are forbidden.
Syntactic trees t, which we call program trees, are defined
as usual: t 1dis a labelled, ordered, rooted, and finite tree. The
label X(t,u) of a node u in t 1is a grammar symbol. At each
node u in t, which is not a leaf, some syntactic production
rule prod(t,u) =Xy X;---X  is applied, i.e. it is X(t,u) =X,
and u has n sons u;,...,u  in t, such that X(t,ui) =X;-
The root of t 1is labelled with the start symbol. Subsequently,
soni(t,u) denotes the i-th son of u in t, if i1>0. For
i=0 it denotes u itself. Instead of soni(t,u) we also write
uei or soni(u), if t 1is determined by the context.



Additionally, lexical information Tlexinf(t,u) 1is attached to the
terminal leafs u in t.

We denote by TREES the flat domain
{(t,u)|t syntactic tree, u node in 19 of _tree configurations
given by a context-free grammar. Members of TREES are denoted by
1,1',11, etc. (The doubly strict extensions of the above functions
X,prod, son;, and Tlexinf are the only standard functions over
TREES which we allow to use in the following.)




3. DENOTATIONAL DEFINITIONS AND INTERPRETATIONS

Denotational definitions are given by semantic valuation functions
which map constructs in the program to the abstract values (num-
bers, functions, etc.) which they denote. The valuation functions
are defined recursively. The value denoted by a construct - the
meaning of the construct - is specified in terms of the values de-
noted by its syntactic components.
For later purposes, we have to define this more formally. A
denotational definition associates
- semantic domains D[X] with each grammar symbol X,
- semantic functions z with each syntactic rule p, such that
Xp € [J:I D[X[p,i]]] - D[X[p,0]], if X[p,i] is the i-th symbol in p.
Thereby it specifies for any program tree t and any node u in
t a meaning wplu] €D[t(u)], given by
- wulu]=Tlexinf(t,u), if u 1is a (terminal) leaf
- pulul= fix(ku.zp(u,u[u 01],...,uluo np])), if the rule p is
applied at u, where the fixpoint operator is applied to solve
the possible recursions.

When considering the syntactic domain TREES, we extend u to
u € [TREES -» D], D being the sum of all semantic domains, defined
by

Denotational definitions of a language can be given on different
levels of abstraction. Following the classification in [MiS 76]
and [Sto 77], the most abstract definition operates with domains
of complicated functionality and rich structure, and is free of
implementation details, i.e. avoids prejudicing an implementer
towards any particular technique. Such an definition is called the
standard semantics of the language. Our example which will be giv-



en in the next section is located somewhere between the store and
the stack semantice levels (cf. [MiS 76]), since it already contains
strategies for symbol table administration and storage allocation.
In fact, we need such a level as our starting point in this paper:
Since we want to study the both Tanguage and implementation Zndepend-
ent aspects of compiler description development, we start from a
level of abstraction where the standard semantics definition has
already been refined by introducing various implementation-oriented
concepts (as shown in [MiS 76, Bjg 77, Jon 76, Sto 77]). This de-
scription is neither an interpreter nor a compiler description yet,
but it describes the meanings by combining primitive and implemen-
tation-oriented data types, using the standard constructors (includ-
ing fix), into objects of almost arbitrary complexity.

Such definitions are the starting-point for applying the de-
velopment principles to be investigated in this paper.

Interpreter definitions are used to define an interpretation n of

program constructs. In contrast to denotational definitions, they
operate explicitly on the tree configurations, i.e. on the syntactic
domain TREES. They also attach semantic domains D[X] to the gram-
mar symbols X and semantic functions €p called interpretation
functions, to the syntactic rules p==XO—»X1...Xn. But this time

it is ep € [TREES - D[Xo]]. Thus, the € can refer to all oper-
ations on trees, e.g. son., lexinf, 1in particular, recursively,

to the interpretation function n itself. n is specified by the
ep as follows: n € [TREES - D], where D is the sum of all

D[X], and

n(t) = rec if prod(t) = P, then e (t) in D

S Py —_
elsf prod(t) = p, then e (t) in D
elsf prod(t) = P then S5 (t) in D

n
else - - T is terminal

lexinf(t) in D,
if Pys.-.sp, are the syntactic rules of the grammar.



Any denotational definition can be regarded as an interpreter de-
finition by defining

ep(r) =Zp(n(1’) to D[Xo],n(son1(-r)) to D[X1],...,n(sonn(r)) to D[Xn]),

if p as above.

One verifies easily that in that case in fact u=n holds.

Note that due to the fact that our syntactic domain  TREES
is a primitive one, there is no possibility of defining semantic
aspects by complex manipulations of the source programs as in
[AdB 77].

The next section presents a denotational language definition from
which we shall develop a compiler description.



