Lecture Notes in

Computer Science

Edited by G. Goos and J. Hartmanis

94

‘Semantics-Directed
Compiler Generation

Proceedings of a Workshop |
Aarhus, Denmark, January, 1980

Edited by Neil D: Jones

‘Springer-Verlag
Berlin Heidelberg New York

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

94

Semantics-Directed

Compiler Generation

Proceedings of a Workshop
Aarhus, Denmark, January 14-18, 1980

Edited by Neil D. Jones

Berlin Heidelberg New York 1980

Editorial Board

W. Brauer P.Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Editor

Neil D. Jones
Datalogisk Afdeling
Matematisk Institut
Aarhus Universitet
8000 Aarhus C
Denmark

AMS Subject Classifications (1970): 68 B10
CR Subject Classifications (1974): 4.12, 5.24

ISBN 3-540-10250-7 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10250-7 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1980
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

Lecture Notes in Computer Science

Vol. 1: Gl-Gesellschaft fiir Informatik e.V. 3. Jahrestagung, Ham-
burg, 8.-10. Oktober 1973. Herausgegeben im Auftrag der Ge-
sellschaft fiir Informatik von W. Brauer. XI, 508 Seiten. 1973.

Vol. 2: Gl-Gesellschaft fiir Informatik e.V. 1. Fachtagung tiber
Automatentheorie und Formale Sprachen, Bonn, 9.-12. Juli 1973.
Herausgegeben im Auftrag der Gesellschaft fiir Informatik von
K.-H. Bohling und K. Indermark. VII, 322 Seiten. 1973.

Vol. 3: 5th Conference on Optimization Techniques, Part I.
(Series: I.F.LP. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIll, 565 pages. 1973.

Vol. 4: 5th Conference on Optimization Techniques, Part Il.
(Series: I.LF.LP. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIll, 389 pages. 1973.

Vol. 5: International Symposium on Theoretical Programming.
Edited by A. Ershov and V. A. Nepomniaschy. VI, 407 pages.
1974,

Vol. 6: B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
Y.lkebe, V. C.Klema, and C. B. Moler, Matrix Eigensystem Routines -
EISPACK Guide. XI, 551 pages. 2nd Edition 1974.1976.

Vol. 7: 3. Fachtagung uber Programmiersprachen, Kiel, 5.-7.
Mirz 1974. Herausgegeben von B. Schlender und W. Frieling-
haus. VI, 225 Seiten. 1974.

Vol. 8: GI-NTG Fachtagung iber Struktur und Betrieb von
Rechensystemen, Braunschweig, 20.-22. Marz 1974. Heraus-
gegeben im Auftrag der Gl und der NTG von H.-O. Leilich. VI,
340 Seiten. 1974

Vol. 9: GI-BIFOA Internationale Fachtagung: Informationszen-
tren in Wirtschaft und Verwaltung. Kéln, 17./18. Sept. 1973.
Herausgegeben im Auftrag der Gl und dem BIFOA von P.
Schmitz. VI, 259 Seiten. 1974.

Vol. 10: Computing Methods in Applied Sciences and Engineer-
ing, Part 1. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 497 pages. 1974.

Vol. 11: Computing Methods in Applied Sciences and Engineer-
ing, Part 2. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 434 pages. 1974.

Vol. 12: GFK-GI-GMR Fachtagung Prozessrechner 1974. Karls-
ruhe, 10.-11. Juni 1974. Herausgegeben von G. Kriiger und
R. Friehmelt. XI, 620 Seiten. 1974.

Vol. 13: Rechnerstrukturen und Betriebsprogrammierung, Er-
langen, 1970. (Gl-Gesellschaft fir Informatik e.V.) Herausgege-
ben von W. Hindler und P. P. Spies. VII, 333 Seiten. 1974,

Vol. 14: Automata, Languages and Programming - 2nd Col-
loquium, University of Saarbriicken, July 29-August 2, 1974.
Edited by J. Loeckx. VI, 611 pages. 1974.

Vol. 15: L Systems. Edited by A. Salomaa and G. Rozenberg.
VI, 338 pages. 1974.

Vol. 16: Operating Systems, International Symposium, Rocquen-
court 1974. Edited by E. Gelenbe and C. Kaiser. VI, 310 pages.
1974.

Vol. 17: Rechner-Gestiitzter Unterricht RGU '74, Fachtagung,
Hamburg, 12.-14. August 1974, ACU-Arbeitskreis Computer-
Unterstiitzter Unterricht. Herausgegeben im Auftrag der Gl von
K. Brunnstein, K. Haefner und W. Hindler. X, 417 Seiten. 1974.

Vol. 18: K. Jensen and N. E. Wirth, PASCAL - User Manual and
Report. VII, 170 pages. Corrected Reprint of the 2nd Edition 1976.

Vol. 19: Programming Symposium. Proceedings 1974. V, 425 pages.

1974.

Vol. 20: J. Engelfriet, Simple Program Schemes and Formal
Languages. VII, 254 pages. 1974.

Vol. 21: Compiler Construction, An Advanced Course. Edited by
F. L. Bauer and J. Eickel. XIV. 621 pages. 1974.

Vol. 22: Formal Aspects of Cognitive Processes. Proceedings 1972.

Edited by T. Storer and D. Winter. V, 214 pages. 1975.

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C. E.
Hackl. VI, 501 pages. 1975.

Vol. 24: Parallel Processing. Proceedings 1974. Edited by T. Feng.
VI, 438 pages. 1975.

Vol. 25: Category Theory Applied to Computation and Control. Pro-
ceedings 1974. Edited by E. G. Manes. X, 245 pages. 1975.

Vol. 26: GI-4. Jahrestagung, Berlin, 9.-12. Oktober 1974. Her-
ausgegeben im Auftrag der Gl von D. Siefkes. IX, 748 Seiten.
1975.

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk, July 1-7, 1974. (Series: |.F.ILP. TC7 Optimization
Conferences.) Edited by G. |. Marchuk. VIIl, 507 pages. 1975.

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw. June 17-22, 1974. Edited
by A. Blikle. VI, 484 pages. 1975.

Vol. 29: Interval Mathematics. Procedings 1975. Edited by K. Nickel.
VI, 331 pages. 1975.

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 81) XIl, 545 pages. 1975.

Vol. 31: S. H. Fuller, Analysis of Drum and Disk Storage Units. IX,
283 pages. 1975.

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. Betvar. X, 476 pages. 1975.

Vol. 33: Automata Theory and Formal Languages, Kaiserslautern,
May 20-23, 1975. Edited by H. Brakhage on behalf of GI. VIII,
292 Seiten. 1975.

Vol. 34: GI - 5. Jahrestagung, Dortmund 8.-10. Oktober 1975.
Herausgegeben im Auftrag der Gl von J. Mihlbacher. X, 755 Seiten.
1975. ’

Vol. 35: W. Everling, Exercises in Computer Systems Analysis.
(Formerly published 1972 as Lecture Notes in Economics and
Mathematical Systems, Vol. 65) VIII, 184 pages. 1975.

Vol. 36: S. A Greibach, Theory of Program Structures: Schemes,
Semantics, Verification. XV, 364 pages. 1975.

Vol. 37: C. Bshm, 4-Calculus and Computer Science Theory. Pro-
ceedings 1975. XIl, 370 pages. 1975.

Vol. 38: P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille,
M. Vanbegin. An Optimized Translation Process and Its Application
to ALGOL 68. IX, 334 pages. 1976

Vol. 39: Data Base Systems. Proceedings 1975. Edited by H. Hassel-
meier and W. Spruth. VI, 386 pages. 1976.

Vol. 40: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 1. Proceedings 1975. Edited by J. Cea. XIV,
854 pages. 1976.

Vol. 41: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 2. Proceedings 1975. Edited by J. Cea. XIil,
852 pages. 1976.

Vol. 42: James E. Donahue, Complementary Definitions of Pro-
gramming Language Semantics. VII, 172 pages. 1976.

Vol.43: E. Specker und V. Strassen, Komplexitit von Entscheidungs-
problemen. Ein Seminar. V, 217 Seiten. 1976.

Vol. 44: ECI Conference 1976. Proceedings 1976. Edited by K.
Samelson. VI, 322 pages. 1976.

Vol. 45: Mathematical Foundations of Computer Science 1976.
Proceedings 1976. Edited by A. Mazurkiewicz. XI, 601 pages. 1976.

Vol. 46: Language Hierarchies and Interfaces. Edited by F. L. Bauer
and K. Samelson. X, 428 pages. 1976.

Vol. 47: Methods of Algorithmic Language Implementation. Edited
by A. Ershov and C. H. A. Koster. VIIl, 351 pages. 1977.

Vol. 48: Theoretical Computer Science, Darmstadt, March 1977.
Edited by H. Tzschach, H. Waldschmidt and H. K.-G. Walter on
behalf of GI. VIII, 418 pages. 1977.

INTRODUCT ION

For several reasons it is becoming more and more common to provide formal
definitions of the semantics of new programming languages, using techniques such
as denotational semantics, attribute and affix grammars, algebraic semantics,
operational definitions and axiomatic definitions. The construction of such a defi-
nition tends to expose ambiguities and unexpected implications of proposed |language
features, and thus can be a significant aid when designing a new language. A pre-
cise definition of the "meaning! of a program is of course essential when implemen-
ting a compiler or other language processor, and such definitions have in some
cases guided the development of implementations. Further, the existence of formal
definitions of source and object languages makes it possible to formally prove the
correctness of compilers.

A number of translator-writing systems have been devised to systematize and
simplify the task of compiler construction. These are usually syntax-directed,
and provide in addition to parsing some means of manipulating symbol tables, parse
tree attributes, etc. Still, compiler writing is at present largely handcraft — con-
struction of such a large and complex piece of software requires considerable
creativity, is quite prone to errors, and involves an enormous amount of work.

Correctness proofs for real compilers seem to be more of an ideal than a
reality at this time, since construction of a correctness proof seems to require
even more creativity and labor than construction of the compiler itself.

Clearly both problems would be alleviated if there were a closer connection
between the semantic definition of the language and the structure of its compiler,
just as parsing problems were much simplified after a firm connection was made
between syntax definition and parser structure.

An ideal solution would be a true compiler generator, which if given definitions
of the syntax and semantics of a programming language would automatically produce
a compiler of acceptable compile-time and run-time efficiency. The purpose of the
workshop was to bring together researchers whose work brings us closer to this
goal.

The papers presented at the workshop naturally fall into four categories.

The first group contains three papers with a common goal: to produce a compiler
from the denotational semantics of a programming language. The second group is
concerned with the use of abstract algebra to define semantics, to specify compi-
lers and to prove them correct. The third group has to do with several aspects of
attribute or affix grammars. These are a powerful and natural medium for expres-—
sing compilers, and thus provide a promising output language for compiler genera-
tors. The last group contains three papers which are related to compiler genera-
tion but not in the earlier categories, including one on the formal semantic defini-—

tion of the ADA programming language. The definition is intended to serve

v

"for the validation of implementations and as a guideline for implementors ... (and)
as an input for a compiler generator when the technology becomes available." As
such it is likely to stimulate further research in automating the compiler generation

process.

The "Workshop on Semantics-Directed Compiler Generation'" was held
January 14-18 at the University of Aarhus, Denmark. The meeting was made possible
by grants from the Danish Research Council (Forskningsrdd) and the Aarhus Univer-
sity Computer Science Department (Datalogisk Afdeling). Local arrangements were
handled by an organizing committee consisting of Neil Jones, Peter Mosses and
Mogens Nielsen and by the workshop secretary, Karen Mgller. The department de-
serves a round of thanks for providing (in addition to funds) the use of its repro-
duction, secretarial and library facilities, and for providing an excellent milieu
for work and discussion. The contributions of a number of individuals are warmly
acknowledged, including Karen Mgller, Mogens Nielsen, Lene Rold and of course
the participants in the workshop, without whose professional expertise the work-

shop would not have been possible.

Vol. 49: Interactive Systems. Proceedings 1976. Edited by A. Blaser
and C. Hackl. VI, 380 pages. 1976.

Vol. 50: A. C. Hartmann, A Concurrent Pascal Compiler for Mini-
computers. VI, 119 pages. 1977.

Vol. 51: B. S. Garbow, Matrix Eigensystem Routines - Eispack
Guide Extension. VIIl, 343 pages. 1977.

Vol.52: Automata, Languages and Programming. Fourth Colloguium,
University of Turku, July 1977. Edited by A. Salomaa and M. Steinby.
X, 569 pages. 1977.

Vol. 53: Mathematical Foundations of Computer Science. Proceed-
ings'1977. Edited by J. Gruska. Xll, 608 pages. 1977.

Vol. 54: Design and Implementation of Programming Languages.
Proceedings 1976. Edited by J. H. Williams and D. A. Fisher. X,
496 pages. 1977.

Vol. 55: A. Gerbier, Mes premiéres constructions de programmes.
XIl, 256 pages. 1977.

Vol. 56: Fundamentals of Computation Theory. Proceedings 1977.
Edited by M. Karpinski. XIl, 542 pages. 1977.

Vol. 57: Portability of Numerical Software. Proceedings 1976. Edited
by W. Cowell. VI, 5639 pages. 1977.

Vol. 58: M. J. O'Donnell, Computing in Systems Described by Equa-
tions. XIV, 111 pages. 1977.

Vol. 59: E. Hill, Jr., A Comparative Study of Very Large Data Bases.
X, 140 pages. 1978.

Vol.60: Operating Systems, An Advanced Course. Edited by R. Bayer,
R. M. Graham, and G. Seegmiiller. X, 593 pages. 1978.

Vol. 61: The Vienna Development Method: The Meta-Language.
Edited by D. Bjerner and C. B. Jones. XVIIl, 382 pages. 1978.

Vol. 62: Automata, Languages and Programming. Proceedings 1978.
Edited by G. Ausiello and C. Bohm. VIIl, 508 pages. 1978.

Vol. 63: Natural Language Communication with Computers. Edited
by Leonard Bolc. VI, 292 pages. 1978.

Vol. 64: Mathematical Foundations of Computer Science. Proceed-
ings 1978. Edited by J. Winkowski. X, 551 pages. 1978.

Vol. 65: Information Systems Methodology, Proceedings, 1978.
Edited by G. Bracchi and P. C. Lockemann. XIl, 696 pages. 1978.

Vol. 66: N. D. Jones and S. S. Muchnick, TEMPO: A Unified Treat-
ment of Binding Time and Parameter Passing Concepts in Pro-
gramming Languages. IX, 118 pages. 1978.

Vol. 67: Theoretical Computer Science, 4th Gl Conference, Aachen,
March 1979. Edited by K. Weihrauch. VII, 324 pages. 1979.

Vol. 68: D. Harel, First-Order Dynamic Logic. X, 133 pages. 1979.

Vol. 69: Program Construction. International Summer School. Edited
by F. L. Bauer and M. Broy. VII, 651 pages. 1979.

Vol. 70: Semantics of Concurrent Computation. Proceedings 1979.
Edited by G. Kahn. VI, 368 pages. 1979.

Vol. 71: Automata, Languages and Programming. Proceedings 1979.
Edited by H. A. Maurer. IX, 684 pages. 1979

Vol. 72: Symbolic and Algebraic Computation. Proceedings 1979.
Edited by E. W. Ng. XV, 557 pages. 1979.

Vol. 73: Graph-Grammars and Their Application to Computer
Science and Biology. Proceedings 1978. Edited by V. Claus, H. Ehrig
and G. Rozenberg. VII, 477 pages. 1979.

Vol. 74: Mathematical Foundations of Computer Science. Proceed-
ings 1979. Edited by J. Betvat. IX, 580 pages. 1979.

Vol. 75: Mathematical Studies of Information Processing. Pro-
ceedings 1978, Edited by E. K. Blum, M. Paul and S. Takasu. VI,
629 pages. 1979.

Vol. 76: Codes for Boundary-Value Problems in Ordinary Differential
Equations. Proceedings 1978. Edited by B. Childs et al. VIIl, 388
pages. 1979.

Vol. 77: G. V. Bochmann, Architecture of Distributed Computer
Systems. VIII, 238 pages. 1979.

Vol. 78: M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF.
VIIl, 159 pages. 1979.

Vol. 79: Language Design and Programming Methodology. Pro-
ceedings, 1979. Edited by J. Tobias. IX, 255 pages. 1980.

Vol. 80: Pictorial Information Systems. Edited by S. K. Chang and
K. S. Fu. X, 445 pages. 1980.

Vol. 81: Data Base Techniques for Pictorial Applications. Proceed-
ings, 1979. Edited by A. Blaser. XI, 599 pages. 1980.

Vol. 82: J. G. Sanderson, A Relational Theory of Computing. VI,
147 pages. 1980.

Vol. 83: International Symposium Programming. Proceedings, 1980.
Edited by B. Robinet. VII, 341 pages. 1980.

Vol. 84: Net Theory and Applications. Proceedings, 1979. Edited
by W. Brauer. XlIl, 537 Seiten. 1980.

Vol.85: Automata, Languages and Programming. Proceedings, 1980.
Edited by J. de Bakker and J. van Leeuwen. VIII, 671 pages. 1980.

Vol. 86: Abstract Software Specifications. Proceedings, 1979. Edited
by D. Bjerner. XIll, 567 pages. 1980

Vol. 87: 5th Conference on Automated Deduction. Proceedings,
1980. Edited by W. Bibel and R. Kowalski. VII, 385 pages. 1980.

Vol. 88: Mathematical Foundations of Computer Science 1980.
Proceedings, 1980. Edited by P. Dembinski. VIIl, 723 pages. 1980.

Vol. 89: Computer Aided Design - Modelling, Systems Engineering,
CAD-Systems. Proceedings, 1980. Edited by J. Encarnacao. XIV,
461 pages. 1980.

Vol. 90: D. M. Sandford, Using Sophisticated Models in Reso-
lution Theorem Proving.

XI, 239 pages. 1980

Vol. 91: D. Wood, Grammar and L Forms: An Introduction. IX, 314
pages. 1980.

Vol. 92: R. Milner, A Calculus of Communication Systems. VI, 171
pages. 1980.

Vol. 93: A. Nijholt, Context-Free Grammars: Covers, Normal Forms,
and Parsing. VIl, 253 pages. 1980.

Vol. 94: Semantics-Directed Compiler Generation. Proceedings,
1980. Edited by N. D. Jones. V, 489 pages. 1980.

CONTENTS

COMPILERS BASED ON DENOTATIONAL SEMANTICS

Transforming denotational semantics into practical attribute grammars 1
Harald Ganzinger

Compiler generation from denotational semantics « .. cv et enannnn 70
Neil D. Jones, David A. Schmidt

From standard to implementation denotational semantics «......cveuuneen.. 94
Mairtin Raskovsky, Phil Collier

COMPILING AND ALGEBRAIC SEMANTICS

Specification of compilers as abstract data type representations «......e.... 140
Marie-Claude Gaudel

More on advice on structuring compilers and proving them correct «.......... 165
James W. Thatcher, Eric G. Wagner, Jesse B. Wright

A constructive approach to compiler correctness «««:eetitettteerienonncenn 189
Peter Mosses

Using category theory to design implicit conversions and generic operators .. 211
John Reynolds

ATTRIBUTE AND AFF IX 'GRAMMARS

On defining semantics by means of extended attribute grammars «............ 259
Ole Lehrmann Madsen

Tree-affix dendrogrammars for languages and compilerscoiuuune.nn 300
Frank DeRemer, Richard Jullig

An implementation of affix grammarsiienertneenneronnesnoenanens 320
Hans Meijer

Experiences with the compiler Writing System HLP ..vevivoenesmssmsssnssos 350
Kari-Jouko Raiha

Rule splitting and attribute—directed Parsinguve v eienennenenennnennns 363
David A. Watt

Attribute—influenced LR PArsing vttt et e e e e e e e e e e e e e 393
Neil D. Jones, C. Michael Madsen

On the definition of attribute ‘GrammMar « s sweeee s ssssesssssssssssesosssss 408
Martti Tienari

RELATED TOPRICS

State transition machines for lambda calculus expressions ., o 10 5 & b 415
David A. Schmidt

Semantic definitions in REFAL and the automatic production of compilers 441
Valentin F. Turchin

On the formal definition of AD A ...ttt ettt ettt ettt ettt e eenens 475

Veronique Donzeau-Gouge, Gilles Kahn, Bernard Lang

TRANSFORMING DENOTATIONAL SEMANTICS INTO PRACTICAL
ATTRIBUTE GRAMMARS™

Harald Ganzinger

Institut fiir Informatik
Technische Universitat Minchen
Postfach 202420

D-8000 Miinchen 2
Fed. Rep. of Germany

1. INTRODUCTION

It is generally accepted that, in order to reason about programs,

a formal definition of the semantics of the programming language is
a prerequisite. Additionally, such a definition must be the basis
for the systematic composition and verification of specific imple-
mentations of the language, especially compilers. The mathematical
method of Scott and Strachey [ScS 71] has been developed to provide
a universal concept for describing formally languages and implemen-
tation issues [MiS 76].

Independently, much effort has been devoted to the development
of practical compiler generators (see [R&@i 77] for an overview).
These systems are mostly based on the concept of attribute grammars
(AGs), as introduced in [Knu 68]. Since attribute grammar defini-
tions describe the compilation of a language in many of its tech-
nical details, they cannot.be viewed to describe the abstract se-
mantics. Thus, the problem arises, to prove a compiler description
correct with respect to an abstract semantics definition, or, even
better, to develop a compiler description correctly. This paper is
a contribution to a solution of this problem.

*The work reported in this paper was sponsored by the Sonderforschungsbe-
reich 49 -Programmiertechnik- at the Technical University of Munich.

Much work has already been done concerning the development of
compilers from denota*ion:1 definitions of lenguages and t2rcet
machines [Bjg 77, Jon 76, MiS 76]. Thereby, the development pro-
cess has been divided into two major phases. In the first phase,
the abstract language definition is transformed into an implementa-
tation-oriented definition. The latter defines a language in terms
of the data types (operations and objects) of an abstract machine,
which is relatively close to the real target machine. In this step,
well-known implementation techniques are used implicitly. The
transformation is guided by very general software development prin-
ciples, as that of (stepwise) refining data abstractions [Hoa 72].
The methods for formulating the correctness proofs are well-under-
stood [MNV 73, Rey 74]. The resulting definition is denotational
but already effective in the sense that it can be input to an ex-
perimental compiler generating system, as described in [Mos 75].

The second phase has to develop the concrete compiler from
that implementation-oriented definition. Apart from some very in-
formal arguments in [Bjg 77], we do not know of any satisfactory
solution in the literature, illustrating the principles of this sec-
ond phase. The work reported here is based on the observation that
this phase is mostly language and implementation independent, but
depends on the meta language to be used for compiler descriptions.

The development phase is divided into three major steps. The
first modifies the given denotational definition such that it can
considered to be an attribute grammar in some generalized sense:
The semantic domains are re-structured into domains of n-ary func-
tions, yielding m-ary results. The function parameters become the
inherited, the results the synthesized attributs of that syntactic
constructs with which the domain is associated. Equations over pa-
rameters and results serve to define the (functional) meaning. The
equations are similar to attribute rules.

In the second step, the analyzation of the dependencies be-
tween the arguments and results of the semantic objects yields a
separation between static and dynamic semantics. The denotational
definition in attribute grammar form is splitted into two parts.
An attribute grammar (in the classical sense) is obtained for the
static semantics. The dynamic remainder is embodied in a descrip-
tion of the ‘interpretation uf the attributeua program tree with re-

spect to given input data. The handling of semantic errors is add-
ed. This leads to rejecting erroneous programs from being interpret-
ed. The principle of defunctionalization [Rey 72] is applied to
handle semantic objects such as "procedure addresses" in symbol
tables by references to the corresponding nodes in the program

tree.
In a Tast step, the interpretation description has to be transformed

into a description of code generation. This step is not dealt with in this
paper. For a first approach which is based upon relating interpretation
schemes with code templates on a flow graph level, we refer to [Gan 79c].
The primitive operations in these flow graphs constitute an interface to

the description of concrete target machines.

The main result of the paper will be that most of the trans-
formation steps are mechanizable or, at least, can be supported by
automatic methods.

We assume that the reader is familiar with the denotational
semantics method, at least at the level of [Ten 76]. Additionally,
it is necessary that the reader has some acquaintance with the use
if attribute grammars for the definition of semantic analysis and
the preparation of code generation, at least at the level of
[LRS 76].

2. BASIC NOTATIONS

Domains and basic functions

Domains are complete lattices. B denotes, as usually, the boolean
domain {l,true,false,T}. If DI,...,Dm are m>0 domains and
Sys--e»S, are pairwise distinct symbols, then

D= [51: Dl, S, :Dz,...,sm :Dm] is the cartesian product of the
domains, where S; is the name of the i-th selector, i.e. Ax. X.s;
denotes the projection from D to its i-th component Di' For
m=0, D is the domain of empty records, D={Ll,(),T}. (We write
simply D= D]xDZx---xDm, if the selector names are of no interest.)
EEESD(XI""’Xm)’ fir x; €D,, denotes the tupel (x],...,xm) €D
(We write simply (xl,...,xm), if D is determined by the con-
text.)

D= Dl+"'+Dm’ l<m<e, 1is the (separated) sum of the Di’

i.e. Dz{(hx)llsiSm,xeDi}UﬁuTL For x€eD, x to D,
denotes that X; GDi which corresponds to x in D, i.e.
(i,xi) to Di==xi T to D; =T, and L otherwise. Conversely, for
x; €D, it s x; in D=(i,x;), if x, ¢{1,7}. Otherwise it is
X, in D==xi. (If D 1is uniquely determined by the context, we
sometimes emit in D.) is D; tests the tvpe of a xe€D, i.e.
(i,x) iE.Dj =true, if i=j, and (i,x) is Dj:=jgl§g, if i+].
1_1'30J.=J., TEDJ.=T.)

Let D be a domain and D'=[s1 2B ceesSit D], i=0, with
arbitrary selectors s.. Then 0* =D°+D'+D%++.+ is the domain of
all lists with elements from D. nil (or gilD) denotes the empty
list () in D°. append(d*,d) = (d,...,d_,d), if d*=(d,...,d),
adds an element deD-{L,T} to d*. hd(d*) =d, if d*=(d,...),
yields the head of d*, whereas t1(d*)=(d',...), if
d*=(d,d',...), eliminates the head in d*. append, hd, and t1
are call-by-value in their arguments, i.e. yield L1, 1if one of the
arguments is 1, and yields T, 1if one of the arguments is T
and if none is L.

If S s some countable set then D=5" denotes the flat do-
main obtained by adjoining L and T to S (and by defining
1<s, s<T, for all se€S, L<T, and 51552-sl=sr for
$125; €S). If D' 1is also a domain and if f 1is a partial mapp-
ing from S into D', then the doubly strict extension of f to
7 (i.e. Lol, T+—T, x€Sw f(x), if f(x) defined, x€SmL,
otherwise) is also denoted by f.

If D] and D2 are domains, then D:=[Dj-+Dz] is the domain
of continuous functions from D1 into DZ' For fe€D, XEED], and
yEEDZ, f[x-y] denotes that function which is identical to f,
except that it maps x to y, i.e. flx=yl(z)="F(z), if z#x,
and f[x=yl(x)=y. fix denotes the fixpoint operator, i.e.
fix(f) yields the Teast fixpoint of feD. The conditional
c=if p then X, else Xy for peB, x1,x2€D,D any domain, is
doubly strict in p, i.e. c=1, if p=1, c=T, if p=T,
if p=false. A function f is

€C=X if p=true, and c=x

1’ 2’
said to be total in an argument x, if f(...,%,...)€{L,T} 1im-

plies x€{L,T}. Our notation for defining (continuous) functions
used in the sequel is very close to the notation for untyped Tamhda

expressions introduced in [Don 76]. It is defined in the appendix.
Grammars and syntactic domains

We assume, for simplicity, that in any context-free production no
grammar symbol occurs twice. To achieve this, indexes can be at-
tached to the symbols. Moreover, e-productions are forbidden.
Syntactic trees t, which we call program trees, are defined
as usual: t 1dis a labelled, ordered, rooted, and finite tree. The
label X(t,u) of a node u in t 1is a grammar symbol. At each
node u in t, which is not a leaf, some syntactic production
rule prod(t,u) =Xy X;---X is applied, i.e. it is X(t,u) =X,
and u has n sons u;,...,u in t, such that X(t,ui) =X;-
The root of t 1is labelled with the start symbol. Subsequently,
soni(t,u) denotes the i-th son of u in t, if i1>0. For
i=0 it denotes u itself. Instead of soni(t,u) we also write
uei or soni(u), if t 1is determined by the context.

Additionally, lexical information Tlexinf(t,u) 1is attached to the
terminal leafs u in t.

We denote by TREES the flat domain
{(t,u)|t syntactic tree, u node in 19 of _tree configurations
given by a context-free grammar. Members of TREES are denoted by
1,1',11, etc. (The doubly strict extensions of the above functions
X,prod, son;, and Tlexinf are the only standard functions over
TREES which we allow to use in the following.)

3. DENOTATIONAL DEFINITIONS AND INTERPRETATIONS

Denotational definitions are given by semantic valuation functions
which map constructs in the program to the abstract values (num-
bers, functions, etc.) which they denote. The valuation functions
are defined recursively. The value denoted by a construct - the
meaning of the construct - is specified in terms of the values de-
noted by its syntactic components.
For later purposes, we have to define this more formally. A
denotational definition associates
- semantic domains D[X] with each grammar symbol X,
- semantic functions z with each syntactic rule p, such that
Xp € [J:I D[X[p,i]]] - D[X[p,0]], if X[p,i] is the i-th symbol in p.
Thereby it specifies for any program tree t and any node u in
t a meaning wplu] €D[t(u)], given by
- wulu]=Tlexinf(t,u), if u 1is a (terminal) leaf
- pulul= fix(ku.zp(u,u[u 01],...,uluo np])), if the rule p is
applied at u, where the fixpoint operator is applied to solve
the possible recursions.

When considering the syntactic domain TREES, we extend u to
u € [TREES -» D], D being the sum of all semantic domains, defined
by

Denotational definitions of a language can be given on different
levels of abstraction. Following the classification in [MiS 76]
and [Sto 77], the most abstract definition operates with domains
of complicated functionality and rich structure, and is free of
implementation details, i.e. avoids prejudicing an implementer
towards any particular technique. Such an definition is called the
standard semantics of the language. Our example which will be giv-

en in the next section is located somewhere between the store and
the stack semantice levels (cf. [MiS 76]), since it already contains
strategies for symbol table administration and storage allocation.
In fact, we need such a level as our starting point in this paper:
Since we want to study the both Tanguage and implementation Zndepend-
ent aspects of compiler description development, we start from a
level of abstraction where the standard semantics definition has
already been refined by introducing various implementation-oriented
concepts (as shown in [MiS 76, Bjg 77, Jon 76, Sto 77]). This de-
scription is neither an interpreter nor a compiler description yet,
but it describes the meanings by combining primitive and implemen-
tation-oriented data types, using the standard constructors (includ-
ing fix), into objects of almost arbitrary complexity.

Such definitions are the starting-point for applying the de-
velopment principles to be investigated in this paper.

Interpreter definitions are used to define an interpretation n of

program constructs. In contrast to denotational definitions, they
operate explicitly on the tree configurations, i.e. on the syntactic
domain TREES. They also attach semantic domains D[X] to the gram-
mar symbols X and semantic functions €p called interpretation
functions, to the syntactic rules p==XO—»X1...Xn. But this time

it is ep € [TREES - D[Xo]]. Thus, the € can refer to all oper-
ations on trees, e.g. son., lexinf, 1in particular, recursively,

to the interpretation function n itself. n is specified by the
ep as follows: n € [TREES - D], where D is the sum of all

D[X], and

n(t) = rec if prod(t) = P, then e (t) in D

S Py —_
elsf prod(t) = p, then e (t) in D
elsf prod(t) = P then S5 (t) in D

n
else - - T is terminal

lexinf(t) in D,
if Pys.-.sp, are the syntactic rules of the grammar.

Any denotational definition can be regarded as an interpreter de-
finition by defining

ep(r) =Zp(n(1’) to D[Xo],n(son1(-r)) to D[X1],...,n(sonn(r)) to D[Xn]),

if p as above.

One verifies easily that in that case in fact u=n holds.

Note that due to the fact that our syntactic domain TREES
is a primitive one, there is no possibility of defining semantic
aspects by complex manipulations of the source programs as in
[AdB 77].

The next section presents a denotational language definition from
which we shall develop a compiler description.

